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Abstract In this work, the rectilinear Poiseuille flow of
a complex liquid flowing in a vibrating pipe is analyzed.
The pipe wall performs oscillations of small amplitude
that can be adequately represented by a weakly sto-
chastic process, for which a quasi-static perturbation
solution scheme is suggested. The flow is analyzed
using the Bautista–Manero–Puig constitutive equation,
consisting on the upper-convected Maxwell equation
coupled to a kinetic equation to account for the break-
down and reformation of the fluid structure. A drastic
enhancement of the volumetric flow is predicted in the
region where the fluid experiences pronounced shear-
thinning. Finally, flow enhancement is predicted using
experimental data reported elsewhere for wormlike mi-
cellar solutions of cetyl trimethyl ammonium tosilate.
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Introduction

In the past, attention has been given to the flow of
non-Newtonian liquids through pipes of circular cross-
section generated by a pressure gradient that oscillates
around a mean non-zero value. Theoretical predictions
using perturbation methods on viscometric flows (or
nearly viscometric flows) of the flow enhancement as
a function of frequency and amplitude of oscillations
have been reported (Fredrickson 1964; Barnes et al.
1969, 1971; Edwards et al. 1972; Gianetto et al. 1973;
Sundstrom and Kaufman 1977; Manero and Mena 1977;
Manero and Walters 1980; Kazakia and Rivlin 1978,
1979; Davies et al. 1978; Mena et al. 1979; Phan-Thien
1978, 1980a, b, 1981, 1982; Phan-Thien and Dudek
1982a, b; Mori et al. 1984; Khabakhpasheva et al. 1989;
De Andrade Lima and Rey 2005, 2006; Bird et al.
1977; Herrera-Velarde and Mena 2000, 2001; Herrera-
Velarde et al. 2003).

They include analytical approximations and numer-
ical solutions of the equation of motion using several
constitutive equations, namely, Maxwell, generalized
Maxwell, generalized Newtonian, Bingham, Power law,
Ellis, Carreau Yasuda, Tanner, White–Metzner, four-
constant Oldroyd, Goddard–Miller, Wagner, B-KBKZ,
Filbey–Ericksen–Criminale, and MacDonald–Bird–
Carreau (Fredrickson 1964; Townsend 1973, Phan-
Thien 1978, 1980a, b, 1982; Phan-Thien and Dudek
1982a, b; Bird et al. 1977; Barnes et al. 1969, 1971;
Davies et al. 1978).
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Previous works showed that the flow enhancement
is related to the shear-thinning properties of the fluid
and its magnitude depends strongly on the shape of the
viscosity function. The resonance curves reported by
several authors can be explained by a coupling of the
viscoelastic properties with the macroscopic perturbed
motion. Among them are the shape of the viscosity
curve and the inter-relation of the characteristic times
of the system (Manero and Walters 1980; Phan-Thien
1978, 1980a, b, 1981, 1982; Phan-Thien and Dudek
1982a, b).

In addition, it has been shown that inertia is not
the dominant mechanism and that elasticity plays a
secondary role in the flow enhancement (Davies et al.
1978). For viscoelastic materials, it was found that
the flow enhancement depends strongly on the square
of the amplitude of the oscillating pressure gradient.
Nevertheless, as pointed out in several experimental
studies, larger magnitudes of the flow enhancement
are obtained under a constant pressure gradient with
an oscillatory motion of the boundaries (Manero and
Mena 1977; Kazakia and Rivlin 1978, 1979; Mena et al.
1979; Manero and Walters 1980; Phan-Thien 1980a, b;
Mori et al. 1984; Khabakhpasheva et al. 1989).

Manero and Mena (1977) studied the flow without
restrictions of amplitude or frequency of the oscilla-
tions. Experimental results show that the superimposed
oscillations on the boundaries produce an increase in
the flow, and the magnitude of this enhancement is
a function of the amplitude and the frequency of the
oscillations.

In addition, Kazakia and Rivlin (1978, 1979), using
a perturbation technique for a slightly non-Newtonian
fluid, showed that inertia is an important mechanism
behind the flow enhancement, although predictions
cannot match the large increments in the flow observed
by Manero and Mena (1977).

Mena et al. (1979) showed that a longitudinal vi-
bration of the pipe wall can have a strong effect on
the Poiseuille flow in non-Newtonian fluids. These ef-
fects are a function of the shear-thinning behavior,
viscoelastic properties, and amplitude of the super-
imposed oscillations, and elasticity only plays a sec-
ondary role in the flow enhancement. One way to
evaluate the flow enhancement effect is the following
equation: I = Qosc−Qstat

Qstat
, where Qosc and Qstat are the

volumetric flows corresponding to the oscillatory and
stationary (Poiseuille) conditions, respectively. Experi-
ments demonstrate that a positive flow enhancement is
attainable.

Phan-Thien (1980a, b) studied the problem of a fluid
driven by a constant pressure gradient with random

stationary oscillations of the wall with a stochastic
perturbation scheme. Three constitutive equations
were analyzed, namely, generalized Newtonian, strain
rate, and strain-dependent constitutive equations. He
found that these equations were able to describe the
flow enhancement phenomenon observed by Mena
et al. (1979) and that this effect was entirely associ-
ated to the interplay of inertia and the shear-thinning
properties of the fluid. It was also found that a max-
imum in the resonance curves is determined by the
coupling between the macroscopic perturbations and
the viscoelastic properties of the fluid.

The interesting effects observed by Manero and
Mena (1977) and Mena et al. (1979) exhibited by the
flow of viscoelastic solutions through oscillating pipes
suggest numerous possibilities for industrial applica-
tions in the processing of polymer melts.

For example, some of the industrial applications of
the oscillating flow are in the polymer processing area
(Middleman 1977), e.g., extrusion using oscillatory dies
(Casulli et al. 1990; Herrera-Velarde and Mena 2000,
2001; Herrera Velarde et al. 2003). More recently,
Isayev et al. (1990) and Wong et al. (1990) studied
theoretically and experimentally the effects of oscillat-
ing the extruder die at high frequencies, in a polymer
melt process including non-isothermal effects. Their
results show the influence of the oscillation of the mean
temperature of the extrudate. For the non-isothermal
case, they detect an increasing temperature in the melt
resulting from the oscillations; the viscous dissipation
resulting from the oscillations is larger than that caused
only by the pressure gradient across the die for the case
of large amplitude oscillations and the conduction of
heat dominates for the case of low mass flow. More
recent studies consider the effects of oscillations on the
heat transfer (Dunwoody 1996; Ding et al. 1999) who
examined the inertial effects on the viscous dissipation
under oscillations. In addition, Herrera-Velarde et al.
(2003) studied the temperature rise due to viscous dis-
sipation in oscillatory pipe flow with non-Newtonian
fluids. Their results showed that the bulk temperature
of the fluid at the exit of the oscillating section increases
with the oscillating frequency and amplitude.

Complex fluids have been used in enhanced oil
recovery operations, especially those related to un-
derground formations. The extraction of additional
amounts of oil can be achieved by hydraulically induc-
ing fractures in the rock formations. Water-based frac-
turing fluids have been obtained using high molecular
weight water-soluble polymers. Recently, polymer-free
fracturing fluids, based on viscoelastic surfactants, have
been developed for fracturing underground formations.
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Fluids made of viscoelastic surfactants may provide im-
proved fracture conductivity in comparison to polymer-
based fluids.

Viscoelastic surfactants are characterized by an
entangled network of large wormlike micelle struc-
tures. These structures break and reform during flow,
exhibiting variable and rich rheological behavior.
Predictions of the flow behavior of viscoelastic surfac-
tants by constitutive equations have been a challenging
issue (Cates 1987; Cates and Candau 1990). These sys-
tems exhibit Maxwell-type behavior in small-amplitude
oscillatory shear flow and saturation of the shear
stress in steady simple shear, which leads to shear
banding flow (Spenley et al. 1993, 1996; Spenley and
Cates 1994). In the non-linear viscoelastic regime, elon-
gated micellar solutions also exhibit remarkable fea-
tures, such as the presence of a stress plateau in steady
shear flow past a critical shear rate accompanied by
slow transients to reach steady state (Berret 1997).

In view of the potential technological applications, it
is surprising that the rheological modeling of complex
fluids, such as viscoelastic surfactants (or wormlike mi-
cellar systems) in oscillating flow, has not been treated
amply in the current literature. The main objectives of
this work are:

1. Predictions of the flow enhancement generated by
a longitudinal vibration of the pipe wall of a com-
plex liquid using the Bautista–Manero–Puig (BMP)
constitutive equation. This equation couples a time-
dependent equation for the structure changes with
the upper-convected Maxwell constitutive equa-
tion. The evolution equation for the structural
changes was conceived to account for the kinetic
process of breakage and reformation of the micelles
under flow (Bautista et al. 1999, 2000, 2002; Manero
et al. 2002; Soltero et al. 1999).

2. Solution of the momentum and constitutive equa-
tions with a perturbation stochastic technique when
the longitudinal vibration of the pipe wall is repre-
sented by a stochastic random function n(t).

3. Characterization of the role of the kinetics, struc-
tural and viscoelastic mechanisms on the flow en-
hancement through dimensionless groups.

4. Use of rheometric data of an aqueous wormlike
micellar solution (cetyl-trimethyl ammonium tosi-
late) to calculate the flow enhancement for various
concentrations.

This paper is organized as follows: “Introduction” con-
tains the introduction to the problem and previous
work. “Constitutive equation (BMP model)” presents
the BMP model (mathematical and physical proper-

ties). The formulation to the problem is presented
in “Problem formulation”, with the non-dimensional
variables and the stochastic properties of the random
function n(t) used to describe the longitudinal vibra-
tion of the pipe wall. In the fourth section, the per-
turbation solution is proposed and analytical results
are shown in the fifth section. Particular asymptotic
results for the flow enhancement are described in
“Particular and asymptotic cases”. Discussion of the
results, conclusion remarks and proposed future work
are exposed in the last sections.

Constitutive equation (BMP model)

The BMP (Bautista et al. 1999) model is defined by the
following equations:
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In Eq. 1 the stress σ is a viscoelastic stress tensor,
∇
σ

is the upper-convected derivative of the stress tensor
given by Eq. 3, η is the viscosity function, and D is
the rate of deformation tensor, which is the symmetric
part of the velocity gradient tensor (Eq. 5), IID is the
second invariant of the rate of deformation tensor given
by Eq. 6, G0 is the elastic modulus (Eq. 1), and finally,
∇V,

(∇V
)T are the velocity gradient and its transpose,
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respectively (Eq. 5). In Eq. 2, η0 and η∞ are the viscosi-
ties at zero and very high shear rates, respectively, λ is
the structural relaxation time and k can be interpreted
as a kinetic constant for the structure breakdown. The
BMP model was selected for this study due to its capac-
ity of predicting the thixotropic behavior of structured
fluids, like wormlike micellar solutions, dispersions of
lamellar liquid crystals, bentonite suspensions (Bautista
et al. 1999), and polymer nanocomposites (Calderas
et al. 2009) apart from reproducing the complete flow
curve for a shear thinning fluid, i.e., Newtonian plateau
at low and high shear rate, and the intermediate power
law region (Bautista et al. 1999). Analytical solutions
for the simple shear flow are obtained by using this
model due to its simplicity as compared to more com-
plex models (Acierno et al. 1976; De Kee et al. 1994;
Giesekus 1966, 1982, 1984, 1985). Furthermore, all five
parameters of the model are related to the fluid proper-
ties and can be estimated from rheological experiments
in steady and unsteady state (Bautista et al. 1999).

Problem formulation

A schematic diagram of a problem under consideration
is shown in Fig. 1. The isothermal rectilinear flow of an
incompressible complex liquid under a constant pres-
sure gradient is analyzed in a circular pipe of radius
r = a and axial longitude z = L. Entry and exit effects
and gravitational forces are neglected. In this system,
all physical quantities in cylindrical coordinates (r, θ , z)
are defined with respect to an origin at the pipe cen-
tre. The axial velocity is a function of the spatial and
temporal variables r and t, respectively, i.e., Vz (r, t).
The condition for a random longitudinal vibration at
the wall is [Vz (r = a,t) = ωan(t)], where n(t) is a
fluctuation (noise) when the pipe wall is executing a
random longitudinal vibration.

Fig. 1 Schematic representation when the pipe wall executes a
random longitudinal vibration

Dimensionless variables, groups, and equations

Non-dimensional variables

To simplify the momentum and rheological equations,
we introduce the following dimensionless variables for
the axial velocity, pressure gradient, time, shear stress,
first and second normal stress differences, shear rate,
radial coordinate, viscosity function, and frequency,
respectively.
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;
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In the system of equations, the characteristic time is
λ (structural build-up time). This election of the non-
dimensional variables enables the comparison of this
time with other characteristic times associated with
the physical mechanism (e.g., viscoelastic λ0 = η0G−1

0 ,
λ∞ = η∞G−1

0 and rupture λr = kη0 times).

Non-dimensional groups

Using Eq. 7, the non-dimensionless components of the
momentum equation, constitutive equations, and the
flow enhancement are obtained. In addition, we define
the following non-dimensional groups:

Re = ρ (ωa) a
η0

; De = η0/G0

λ
; A = kη0

λ
;

B = η0

η∞
; C = (AB)1/2 =

(
kη0

λ

η0

η∞

)1/2

(8)

The pulsating Reynolds number (Re) (Mena et al. 1979)
relates the inertial and viscous forces in the fluid. The
second group is the Deborah number (De), which rep-
resents the relation between two characteristic times,
the Maxwell relaxation time (which is associated to
the viscoelastic properties of the fluid λ0 = η0G−1

0 ),
and the structure relaxation time (which is a structure
buildup time λ). When De > 1, the Maxwell time is
larger than the structure time, and the fluid structure
recovers faster than the rupture caused by the flow.
Bautista et al. (1999) showed that, when the structural
time is larger than the Maxwell time, thixotropic loops
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are predicted, since the structure of the fluid does not
recover during the deformation period, i.e., destruction
of the structure is faster than recovery. The third non-
dimensional number (A) is a relationship between the
kinetic and viscous processes for structure breakdown
(destruction function) and the structural recovery time
λ. This dimensionless relationship can be interpreted
as a ratio between two characteristic times. One is the
rupture time λr = kη0 and the other one is the structural
build-up time λ. In particular, if the kinetic constant
takes the value k = G−1

0 , the dimensionless number
A reduces to the Deborah number, i.e., A = De = λ0

λ
,

which is a measure of the magnitude and shape of
the thixotropic loops in the system, so the Deborah
number is a particular case of the non-dimensional
number A, i.e., De ∈ A. The fourth group (B) is the
ratio of the viscosities at low and high shear rates.
This group is a measure of the shear-thinning (B > 1)
and shear-thickening (B < 1) behavior. In terms of the
structure, shear thinning behavior can be conceived as
a structure breakdown process; the system undergoes a
transition from a high structured state (first Newtonian
plateau) to a low structured one (second Newtonian
plateau), while shear thickening can be thought of as
the opposite mechanism. Finally, the last group is a
product of the dimensionless numbers A and B. This
group can be interpreted as the square ratio of two
geometrical mean relaxation times (defined as λr =
kη0, λ0 = η0G−1

0 , λ∞ = η∞G−1
0 ), so the dimensionless

number C can be rewritten as C = √
AB = λI

G

λI I
G

=
√

λrλ0√
λλ∞

.

The time λI
G is associated to the structure rupture and

Maxwell times, and λII
G is related to the structural and

Maxwell times at high shear rate. As particular cases,
when λr = λλ0 λ−1∞ , the dimensional number C reduces
to the dimensional number B, which is a measure of
the shear-thinning or shear-thickening properties of
the fluid. Similarly, when λr = λ∞λ0λ

−1, the equality
C = De is obtained. It is important to note that when
C > 1, the rupture and viscoelastic relaxation times
dominate over the structural and Maxwell (at high
shear rates) times. In contrast, when C < 1, the effects
of the structural and Maxwell times (at high shear
rates) are the dominating mechanisms. Moreover, the
effects of thixotropy are included as particular cases
when k = G−1

0 . These quantities satisfy the inequality
De ≤ C ≤ B.

Non-dimensional momentum equation
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Notice that, in Eq. 10, n(t∗) is a stochastic dimensionless
random stationary function.

Non-dimensional BMP equation of state
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Non-dimensional flow enhancement
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Previous theoretical works and experimental observa-
tions in micellar solutions, such as cetyl trimethylam-
monium tosylate (CTAT) and erucyl bis(hydroxyethyl)
methylammonium chloride (EHAC) (and works by
Soltero et al. 1999; Bautista et al. 1999, 2002), showed
that the contribution of the second stress difference
is small, so the third term can be neglected, i.e.,

Deη∗( •
γ

∗)
N∗

(2)
∼= 0.

Stochastic non-dimensional random function

A non-dimensional stochastic function n(t∗) is consid-
ered. It is assumed that the longitudinal vibration pipe
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is given in the non-dimensional form (Eq. 10). It is
important to note that the stochastic function n(t∗)
represents random wall oscillations of small amplitude.
Analytical progress is possible if n(t∗) is considered as a
stationary random function of time (Yaglom 1965)

n
(
t∗
) =

+∞∫

−∞
eiαt∗dZ (α) (18)

where dZ(α) is an interval random function of α with
zero mean and uncorrelated increments

〈dZ (α)〉 = 0 (19)

〈
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(
α j
)〉 = δij�(αi) dα j (20)

here and elsewhere in the paper, 〈 〉 denotes an en-
semble average and the overbar a complex conjugate
quantity. In Eq. 20, δij is the Kronecker delta and �(αi)

is the spectral density of n(t∗) defined by:
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In Eqs. 21 and 22, it is assumed that |R(s)| tends to
zero fast enough as |s| tends to infinity, a condition
met by most, if not all, physically realizable processes
as reported by Phan-Thien (1980a, b, 1981) and by
Phan-Thien and Dudek (1982a, b).

Perturbation scheme

In order to find an analytical expression for the flow
enhancement, a quasi-static perturbation solution in
terms of the oscillatory Reynolds number is suggested.
Experimental observations and theoretical works have
shown that the Reynolds number is smaller that 0.01
(Barnes et al. 1969, 1971; Mena et al. 1979; Manero
and Mena 1977; Manero and Walters 1980; Davies et al.
1978; Phan-Thien 1982). The axial velocity, shear strain,
shear stress, viscosity function, and first and second

normal stress differences can be expressed in power
series of the oscillatory Reynolds number:
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In Eq. 23, n(
•
t∗) and n(

••
t∗) are the first and second times

derivatives of the non-dimensional stochastic function
n(t∗), respectively.

In order to find an analytical solution, Taylor’s
theorem allows to express τ j(r∗,t∗) and η∗

j(r∗,t∗) ( j ∈
I = {0, 1, 2...,}) of Eq. 23 in terms of the derivatives
of τ 0(r∗) and η∗

0 (r∗), where the following shorthand
notation has been used:
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It is important to note that the particular perturbation
expansion for the velocity is different to the other
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variable expansions to simplify the inertial effects in the
momentum equation (Phan-Thien 1980a, b; Herrera
Velarde et al. 2003; Herrera 2009; Brown and Churchill
2001), i.e., the partial time derivative of the axial
velocity.

Asymptotic analysis for small oscillatory
Reynolds numbers

Zeroth-order theory

Substitution of Eqs. 23, 24, and 25 into 9–17, and 18
and equating terms of the same order in the oscillatory
Reynolds number leads to the zeroth-order solution,
i.e., O(Re0):

τ0 = η∗
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γ
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0 = τwr∗ (26)
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N∗
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0 (28)

N∗
(2)0 = 0 (29)

I (%) = 0 (30)

In Eq. 26, τw = τ 0(r = 1) is the wall stress, and the
boundary condition τ 0 = 0 at r = 0 has been used.
Equations 27, 28, and 29 are the viscosity and first and
second normal stress differences of the BMP model.
According to Eq. 30, no flow enhancement to zeroth
order is predicted. In the rest of the paper, the first and
second normal stresses differences are not considered
since they are not relevant for the calculation of the
flow enhancement.

First-order theory

The following equations show the solutions to first
order in the oscillatory Reynolds number, i.e., O(Re1):

τ1
(
r∗, t∗

) = 1

2τw
τ0

•
n
(
t∗
)

(31)

•
γ

∗
1

(
r∗, t∗

)= 1

2τw

(
τ0
•
τ 0

)( •
n
(
t∗
)+Deη∗

0

••
n
(
t∗
)) •

τ 0 �= 0

(32)

I (%) = 100Re

1∫
0

〈 •
γ

∗
1 (r∗, t∗)

〉
r∗2dr∗

1∫
0

•
γ

∗
0 (r∗) r∗2dr∗

(33)

In Eqs. 31 and 32, the boundary conditions τ1 (r∗, t∗) =
•
γ

∗
1 (r∗, t∗) = 0 at r∗ = 0 were used. The shear rate to

first order satisfies the differential equation given in
Appendix A. On the other hand, the average of equa-

tions (Eq. 32) is zero, i.e.,
〈 •
γ

∗
1 (r∗, t∗)

〉
= 0. As a conse-

quence, the flow enhancement (Eq. 33) to first order is
again zero, i.e., I(%) = 0.

Second-order theory

The second order solutions in the oscillatory Reynolds
number, i.e., O(Re2), are:

τ2
(
r∗, t∗

) = 1

2τw
τ0

••
n
(
t∗
)

(34)

•
γ

∗
2

(
r∗, t∗

)=−1

2

••
τ 0
•
τ 0

•
γ

∗2

1

(
r∗, t∗

)+De
•
η0

∗ τ0
•
τ 0

•
n
(
t∗
) •
γ

∗
1

(
r∗, t∗

)

+ τ0

2τw

⎛
⎝n

••(
t∗
)+Deη∗

0n
•••(
t∗
)

•
τ 0

⎞
⎠ (35)

I (%) = 100Re2

1∫
0

〈
γ ∗

2 (r∗, t∗)
〉
r∗2dr∗

1∫
0

γ ∗
0 (r∗) r∗2dr∗

(36)

•
η0

∗ �= 0; •
τ 0 �= 0

In Eqs. 34 and 35, the boundary conditions τ2 (r∗, t∗) =
•
γ

∗
2 (r∗, t∗) = 0 at r∗ = 0 were used. Notice that the shear-

rate to second order (Eq. 35), satisfies the differential
equation given in Appendix A.

To calculate the flow enhancement, the average
value of Eq. 36 is taken. Substituting Eq. 32 into Eq. 35
and using the random stochastic definitions (Eqs. 18–
21, and 22), the average shear rate to second order is
obtained:

〈 •
γ

∗
2

(
r∗, t∗

)〉 = 1

2

(
1

2τw

)2

× τ 2
0

⎧⎨
⎩−

••
τ 0

•
τ

3

0

(
R0(0)+De2η∗2

0 R1(0)
)

+ De2

•
η0

∗2

•
τ

2

0

R0(0)

⎫⎬
⎭ (37)
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where:

R0 (0) =
+∞∫

−∞
α2�(α) dα (38)

R1 (0) =
+∞∫

−∞
α4�(α) dα (39)

(The mathematical development of Eqs. 37, 38, and 39
is given in Appendix B).

Particular stochastic random function

Sinusoidal pressure wave form

The simplest harmonic random function is given by a
sinusoidal function with frequency ω∗ = λω and ampli-
tude M, i.e.,

n
(
t∗
) = M sin

(
ω∗t∗

)
(40)

the spectral density �(α) and the correlation functions
R0 (0) and R1 (0) are given by:

�(α) = 1

4

(
δ
(
α − ω∗)+ δ

(
α + ω∗)) (41)

R1 (0) = ω∗2 R0 (0) (42)

where

R0 (0) = 〈n (t∗)n
(
t∗ + 0

)〉 = 1

2
ω∗2 M2 (43)

The election of a sinusoidal pressure wave enables the
comparison with the representative theoretical works,
as reported by Barnes et al. (1969, 1971), Phan-Thien
(1978, 1980a, b, 1981, 1982), Phan-Thien and Dudek
(1982a, b), and Bird et al. (1977). On the other hand,
non-harmonic effects are included in the Fourier se-
ries proposed by Townsend (1973). Phan-Thien (1978,
1980a, b) showed that the harmonics can increase o
decrease the flow enhancement depending on the par-
ticular random function n(t∗).

Next, Eq. (42) is substituted into Eq. 37 and then in
Eq. 36 to give

I (%) = 25

4
M2ω∗2 Re2

1∫
0

τ 2
0

(
− ••

τ 0
•
τ

3

0

(
1 + ω∗2 De2η∗2

0

)+ ω∗2 De2
•

η∗2
0
•
τ

2

0

)
r∗2dr∗

τ 2
w

1∫
0

•
γ

∗
0 (r∗) r∗2dr∗

(44)

To simplify the numerical integration, Eq. 44 can be
expressed in terms of the wall shear rate. From Eq. 26,
the shear stress to zeroth-order is τ0 = τwr∗, so:

I (%) = 25

4
M2ω∗2 Re2

•
γ
∗
w∫

0
τ 4

0

(
− ••

τ 0
•
τ

2

0

(
1 + ω∗2 De2η∗2

0

)+ ω∗2 De2
•

η∗2
0•

τ 0

)
d

•
γ

∗
0 (r∗)

τ 2
w

•
γ
∗
w∫

0

•
γ

∗
0 (r∗) d

(
1
3τ 3

0

)
(45)

Equation 45 can be examined in particular cases.
Changing the integration variable u = τ 4

0

(
1 +

ω∗2 De2η∗2
0

)
and dv = − ••

τ 0
•
τ

2

0

d
•
γ

∗
0 = d

d
•
γ

∗
0

[
1
•
τ 0

]
d

•
γ

∗
0 = d

[
1
•
τ 0

]
in the first integral and thereafter integrating by parts,
the flow enhancement is obtained (see Appendix C)

I (%) = 75

4
M2ω∗2 Re2

τ 4
w − 4

•
τw

•
γ
∗
w∫

0
τ 3

0 d
•
γ

∗
0 + We2

⎛
⎝τ 4

wη∗2
w − 4

•
τw

•
γ
∗
w∫

0
η∗2

0 τ 3
0 d

•
γ

∗
0

⎞
⎠

τ 2
w

•
τw

⎛
⎝ •

γ
∗
wτ 3

w −
•
γ
∗
w∫

0
τ 3

0 d
•
γ

∗
0

⎞
⎠

(46)
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In Eq. 46, We = ω∗ De = η0

G0
ω is the pulsating

Weissenberg number, which characterizes the relation
between the relaxation Maxwell time and the frequency

of the pulsations, and η∗
w = η∗

0

( •
γ

∗
w

)
, τw = τ0

( •
γ

∗
w

)
are the

viscosity function and stress at the wall, respectively.
Bird et al. (1977) used the White–Metzner model with
an alternative perturbation technique and obtained a
similar expression.

To solve the integrals given in Eq. 47, the following
relationship between the wall shear stress and the wall
shear rate in Eqs. 25 and 26 is used:

•
γ

∗
w (τw) = ABτ 2

w − 1 +
√(

ABτ 2
w − 1

)2 + 4Aτ 2
w

2Aτw
(47)

Phan-Thien (1980a, b) obtained similar results for three
different constitutive equations, the generalized New-
tonian fluid and the Tanner and KBKZ models.

Flow enhancement as a function
of the oscillating frequency

The flow enhancement is dependent on the dimension-
less frequency, according to Eq. 46, which may be cast
in the following form:

I (%) = 75

4
M2β2

{
δ1 + δ2ω

∗2 De2
}
ω∗4 (48)

where β = a2/λ

η0/ρ
and δ1 and δ2 are given by:

δ1 (A, B) = τ−2
w

τ 4
w − 4

•
τw

•
γ
∗
w∫

0
τ 3

0 d
•
γ

∗
0

•
τw

⎛
⎝ •

γ
∗
wτ 3

w −
•
γ
∗
w∫

0
τ 3

0 d
•
γ

∗
0

⎞
⎠

;

δ2 (A, B) = τ−2
w

τ 4
wη∗2

w − 4
•
τw

•
γ
∗
w∫

0
η∗2

0 τ 3
0 d

•
γ

∗
0

•
τw

⎛
⎝ •

γ
∗
wτ 3

w −
•
γ
∗
w∫

0
τ 3

0 d
•
γ

∗
0

⎞
⎠

(49)

Equation 49 describes the flow enhancement as a func-
tion of the non-dimensional frequency when the values
of δ1 and δ2 are fixed. It is important to note that β

can be interpreted as a ratio between two diffusion
coefficients. One of them is associated to the diffusive
processes of the structure and the other one related
to the momentum transport mechanisms. Finally δ1

and δ2 are ratios of integrals that may be determined

for particular values of the non-dimensional numbers
(A, B).

It is possible to obtain a frequency range for which
both the perturbation stochastic solution technique and
equations given by Eq. 46 or 48 are valid but only in the
limit of sufficiently low oscillating Reynolds number,
i.e., Re << 1, and therefore,

0 ≤ Re << 1 ⇒ 0 ≤ βω∗ << 1 ⇒ 0 ≤ ω∗ << ω∗
C = β−1

(50)

Consequently, the critical non-dimensional frequency(
ωC = β−1

)
is determined according to the ratio be-

tween structural and momentum diffusivities.

Maximum flow enhancement as a function
of the oscillating frequency

An analytical solution for the maximum flow enhance-
ment as a function of frequency can be obtained by
taking the first derivative of Eq. 48 and setting the
result to zero. The critical dimensionless frequency is
henceforth obtained:

d
dω∗

[
I (%)

] = 0; ⇒ ω∗
crit

= De−1

√
1

2

δ1

(−δ2)
; δ1

(−δ2)
> 0 (51)

Taking the second derivative of Eq. 48 and substituting
in the result of the critical non-dimensional frequency
(Eq. 51), the following expression is obtained:

d2

dω∗2

[
I (%)

] = −75M2β2δ1 < 0 (52)

Substituting the critical dimensionless frequency (Eq. 51)
into Eq. 49, the maximum flow enhancement Imax (%)
as a function of the non-dimensional frequency is
obtained:

Imax (%) = 2.34M2 δ2
1

(−δ2)

(
β

De

)2

; (−α2) > 0 (53)

Equation 53 implies that the value of the maximum flow
enhancement is determined by the kinetic, structural,
viscoelastic, and inertial contributions through the non-
dimensional numbers (β, De) and the square of the
amplitude and the particular form of the stochastic
function considered.
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Particular and asymptotic cases

Tanner model

Equation 46 embodies the Tanner model (TM) and
generalized Newtonian models if the following iden-
tifications are made: viscosity functions

(
η∗

w = η∗
0 = 1

)
,

the viscoelastic and the structural times in the BMP
model

(
η0G−1

0
∼= λ
)
, ε 〈V〉 = ωa, and the amplitude of

the longitudinal vibration of the pipe wall
(
M2 = 1

)
. In

this case, Eq. 46 takes the form

I(%)= 75

4
ε2ω∗2 Re2τ−2

w

τ 4
w−4

•
τw

•
γ
∗
w∫

0
τ 3

0 d
•
γ

∗
0

•
τw

⎛
⎝ •

γ
∗
wτ 3

w−
•
γ
∗
w∫

0
τ 3

0 d
•
γ

∗
0

⎞
⎠

(
1+ω∗2

)

(54)

In Eq. 54, ε is a small parameter. The above equation
was deduced by Phan-Thien (1978, 1980a) using a simi-
lar scheme.

Generalized Newtonian model

Notice that Eq. 54 can be simplified to the flow en-
hancement expression for a generalized Newtonian
fluid as reported by Phan-Thien (1980a) and by Davies
et al. (1978), when the dimensionless frequency is of
order one, i.e., 1 + ω∗2 ∼= 1. Equation 54 reduces to the
inelastic case:

I (%) = 75

4
ε2ω∗2 Re2τ−2

w

τ 4
w − 4

•
τw

•
γ
∗
w∫

0
τ 3

0 d
•
γ

∗
0

•
τw

⎛
⎝ •

γ
∗
wτ 3

w −
•
γ
∗
w∫

0
τ 3

0 d
•
γ

∗
0

⎞
⎠

(55)

In addition, Phan-Thien (1980a, b, 1981, 1982) and
Phan-Thien and Dudek (1982a, b) obtained similar
results for three different constitutive equations, the
strain-rate-dependent fluid and strain-dependent fluid
models using a similar stochastic perturbation tech-
nique in terms of the small parameter (ε).

Inelastic effects

Equation 48 contains the following asymptotic solu-
tions when δ1 >> ω∗2 De2δ2:

I1 (%)

I0 (%)
∼=
(

ω∗
1

ω∗
0

)4

(56)

In Eq. 56, I0 (%) and I1 (%) are the flow enhancements
for dimensional frequencies ω∗

0 and ω∗
1 , respectively. If

ω∗
1 = Nω∗

0 ;
(
N ∈ R+), Eq. 56 takes the form:

I1 (%) ∼= (N)4 I0 (%) (57)

Elastic effects

The flow enhancement has the approximate form when
elastic forces dominate:

I1 (%)

I0 (%)
∼=
(

ω∗
1

ω∗
0

)6

(58)

which implies that

I1 (%) ∼= (N)6 I0 (%) (59)

Approximate solution to the flow enhancement
in the shear-thinning region

In the shear-thinning region of the flow curve, the
flow enhancement calculated by the BMP model has
the following approximate expression when the first
derivative undergoes a minimum and Eq. 48 adopts the
asymptotic form of the maximum:

Imax −ela (%) ≈ 75

4
M2ω∗2 Re2 τ 2

w

(
1 + We2η∗2

w

)

•
τw

⎛
⎝ •

γ
∗
wτ 3

w

•
γ
∗
w∫

0
τ 3

0 d
•
γ

∗
0

⎞
⎠

(60)

The inelastic case is obtained when 1 + We2η∗2
w

∼= 1,

Imax −ine (%) ≈ 75

4
M2ω∗2 Re2 τ 2

w

•
τw

⎛
⎝ •

γ
∗
wτ 3

w −
•
γ
∗
w∫

0
τ 3

0 d
•
γ

∗
0

⎞
⎠

(61)

Flow enhancement

The flow enhancement for the BMP model can be
calculated using Eqs. 44 and 46. In these, the flow
enhancement can be separated into two contributions:
inelastic and elastic.

Equation 44 contains a higher order derivative of the
shear stress and describes the effects of the convexity
in the constitutive relationship between the shear stress
and shear strain in the flow enhancement.

In contrast, Eq. 46 describes the effect of the mono-
tonic increase of the constitutive equation through the
first derivative of the shear stress (to zero order). Notice
that both Eqs. 44 and 46 predict a maximum in the
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region where the first derivative of the shear stress is
near zero, i.e.,

•
τ0

∼= 0 (shear-thinning zone).
According to the BMP model, the flow enhancement

is a function of the square of the amplitude of the
oscillations, the Reynolds number, the Weissenberg
number, the dimensionless numbers A and B (repre-
senting viscoelastic, kinetic and structural effects).

The maximum flow enhancement is a function of
the frequency and depends on the structural properties,
diffusive coefficients, and wave pressure form as given
by Eq. 53.

Asymptotic results

When the elastic effects are neglected (e.g., micellar
system as EHAC and CTAT), Eqs. 55 and 56 relate the
flow enhancement and the non-dimensional frequency,
for sufficiently small frequencies.

Using rheometric data, in the region of maximum
shear thinning (where the system undergoes a struc-
tural transition), the largest flow enhancement can be
obtained using Eqs. 60 and 61 in the elastic and inelastic
cases, respectively.

Results

BMP theoretical predictions

The flow enhancement integral Eq. 46 was solved
numerically by using a quadrature Gaussian method

combined with a Lagrange method to extrapolate to
zero mesh size. Without loss of generality, in all calcu-
lations, the amplitude of the vibration is equal to one
(M = 1).

In Fig. 1, a schematic representation of the vibrat-
ing pipe is shown. In Fig. 2, predictions of the shear
stress versus shear rate in steady shear flow are dis-

played. At low shear rates
(

0.001 ≤ •
γ

∗
0 (r∗) ≤ 0.01

)
,

the fluid presents a Newtonian region, followed by a
shear-thinning region and a quasi-plateau at moderate

shear rates
(

0.01 <
•
γ

∗
0 (r∗) ≤ 10

)
. Thereafter, the fluid

approaches a second Newtonian region at high shear

rates
( •
γ

∗
0 (r∗) > 10

)
. Under flow, the system under-

goes a transition from a highly structured state (first
Newtonian plateau) to a low structured one (second
plateau). In the latter, the structure is completely dis-
rupted, and the viscosity value is of the order of the
solvent.

It is important to note that the shear stress function is
a monotonically increasing function of the shear strain,
and its derivative

•
τ 0 �= 0 is always positive. Neverthe-

less, the second derivative changes sign due to the con-
vexity and concavity of the shear stress function. Insets
in Fig. 2 show the corresponding normalized viscosity
function and the first normal stress difference versus
shear rate in steady shear flow. At low shear rates, the
flow presents a region where the viscosity function is
constant. At moderate shear rate, the fluid becomes
shear thinning, and it tends to a second plateau at high
shear rates where the viscosity is lower than that of

Fig. 2 Dimensionless shear
stress versus shear rate.
In the insets, dimensionless
viscosity function and first
normal-stress difference
versus shear rate.
Non-dimensional numbers
used in the simulations are
A = 1, B = 1,000



790 Rheol Acta (2009) 48:779–800

the first plateau. On the other hand, the first normal
stress difference curve is similar to that of the shear
stress.

In Fig. 3, the derivative of the shear stress versus
shear strain is plotted. The parameters used in the
simulation are A = 1 and B = 1,000. At low shear

strains 10−3 ≤ •
γ

∗
0 (r∗) < 10−2, the first derivative of the

shear stress is almost constant. For moderate values of•
γ

∗
0(r

∗)
(

10−1 ≤ •
γ

∗
0 (r∗) < 2

)
, it decreases monotonically.

For
•
γ

∗
0 (r∗) > 2, the first derivative increases again and

the flow enhancement decreases. Notice that the min-
imum corresponds to the shear-thinning region, where
the system undergoes drastic structural changes. In this
context, Eqs. 60 and 61 are analytical approximations
for the maximum flow enhancement corresponding to
the largest structural breakdown.

In Fig. 4, the wall shear rate versus wall stress for
various values of the non-dimensional number B (rep-
resenting various CTAT concentrations) is plotted. At
low wall stresses 10−3 ≤ τw < 10−2, an almost constant
value is predicted, and past a critical wall stress, the
wall shear rate increases rapidly

(
10−2 < τw ≤ 10−1

)
.

For high wall stresses
(
τw > 10−1

)
, the behavior of the

wall shear rate is constant throughout. Moreover, the
asymptotic value increases as the fluid becomes more
shear thinning.

In Fig. 5, the flow enhancement versus wall
stress for various values of B is shown (Re = 0.25,

We = 0.5, A = 0.001, ω∗ = 1). Resonance behavior
consisting in a maximum in the flow enhancement is
observed at a critical wall stress. The magnitude of
this maximum increases, and the curves are shifted to
lower wall stresses as the shear-thinning characteristics

Fig. 3 First derivative of the shear stress versus shear rate. Non-
dimensional numbers used in the simulation are A = 1, B = 1,000

Fig. 4 Dimensionless wall shear rate versus wall stress for var-
ious CTAT concentrations. Values of B used in the simulation
are 1,000, 1,500, 2,000, 2,500 with A = 1. Inset Enlargement of
the lower wall stress region

of the fluid become predominant. At high wall stress
(τw > 1.2), all curves become asymptotic to zero flow
enhancement. Same result was obtained by Phan-Thien
(1978, 1980a, b) and Phan-Thien and Dudek (1982a, b)
using several constitutive equations (generalized
Newtonian, Tanner strain and strain-rate models) and
experimentally observed by Mena et al. (1979).

In Fig. 6, the flow enhancement versus wall stress
for various oscillatory Weissenberg numbers is plotted.
The parameters used in the mathematical predictions
are Re = 0.25, A = 0.001, B = 100, and ω∗ = 1. Inset
in Fig. 6 shows data for the inelastic case, i.e., We =
0, where, for any value of the shear stress, the flow

Fig. 5 Flow enhancement versus dimensionless wall stress for
various values of B: 1,000, 1,500, 2,000, and 2,500. The dimen-
sionless groups employed in the simulation are Re = 0.25, We =
0.25, ω* = 1, and A = 0.001
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Fig. 6 Flow enhancement versus dimensionless wall stress for
various oscillating Weissenberg numbers (We): 0.25, 1.0, and 10.
Inset: inelastic liquid. The dimensionless numbers employed in
the simulation are Re = 0.25, A = 0.001, B = 1,000, and ω* = 1

enhancement is always positive and tends to zero for
τw > 0.8. Nevertheless, when elasticity is present, i.e.,
We > 0, flow enhancement decreases slightly. Mena
et al. (1979) and Manero and Walters (1980) reported
only positive I (%) values increasing with frequency.
The value of the maximum in the flow enhancement
I (%) is directly related to the ratio of the upper to
lower plateau values of the viscosity, and the effect of
the elasticity plays a secondary role in the flow enhance-
ment. A similar conclusion was obtained elsewhere by
Phan-Thien (1978, 1980a, b, 1981), Phan-Thien and
Dudek (1982a, b), Mena et al. (1979), and Manero and
Walters (1980) for several constitutive equations.

It should be noted that this maximum is related
to the transition from a more structured fluid into a
less structure one (from the shear thinning to second
Newtonian plateau regions). The flow enhancement
reaches a maximum since the derivative of the stress
function in the denominator in Eqs. 60 and 61 attains a
minimum value.

Figure 7 shows the zeroth-order shear stress and
viscosity function (inset) versus shear rate for several
values of the non-dimensional number A (which ac-
counts for the ratio of kinetics of rupture and structure
times) at a fixed value of the non-dimensional number
B. All curves are monotonically increasing functions of
the shear rate. For low values of A, the curves show an
extended Newtonian region, whereas high values of A
cause the extent of the Newtonian region to decrease.
At moderate shear rates, the shear-thinning behavior
is observed in all cases (the region where a maximum
destruction of structure is achieved). Finally, at high
shear rate, the structure is fully disrupted attaining
values near the solvent viscosity.

Fig. 7 Dimensionless shear stress versus shear rate for B = 1,000
and various values of A: 0.0001, 0.001, 0.01, 0.1, and 1. Inset
Viscosity function versus shear rate

Figures 8 and 9 show the flow enhancement versus
wall stress for various values of the non-dimensional
number A. The other parameters employed in the
simulation are Re = 0.25, We = 0.25, ω∗ = 0.25,
and B = 1,000. To analyze systematically the effect of
thixotropy, the value of the kinetic constant is changed
to k = G−1

0 ; thus, A becomes the ratio A = η0/G0

λ
.

When the value of A lies in the range 10−4 ≤ A < 10−2

(thixotropy range), the structure does not recover dur-
ing the deformation period, and hence, the resonance
curves are drastically shifted to higher values of the wall
stress due to the evolution of the system structure. The
magnitude of the maximum increases with the value
of A. The shifting implies that, for a thixotropic fluid,
the system needs more energy to obtain a change in
the volumetric flow rate. In contrast, when the value

Fig. 8 Flow enhancement versus dimensionless wall stress for
A = 0.0001 and A = 0.001 (inset). Non-dimensional numbers used
in the simulation are Re = We = 0.25, ω* = 0.25, B = 1,000



792 Rheol Acta (2009) 48:779–800

Fig. 9 Flow enhancement
versus dimensionless wall
stress for A = 0.01 and A =
0.1 (inset). Non-dimensional
numbers used in the
predictions are
Re = We = 0.25, ω* = 0.25,
B = 1,000

Fig. 10 Dimensionless wall
shear stress and wall viscosity
function versus wall shear
rate for different CTAT
solutions. Parameters
employed in the simulation
are given in Table 1

Table 1 Values of the
parameters used in the model
as a function of CTAT
concentration (Soltero et al.
1999)

CCTAT (wt %) η−1
0 (Pa s)−1 η−1∞ (Pa s)−1 k × 10−6 (Pa)−1 λ (s) G0 (Pa)

5 0.0275 19.8 250.0 0.12 41.5
10 0.0061 15.0 30.3 0.33 176.0
15 0.0050 12.6 10.5 0.38 380.0
20 0.0042 12.0 4.2 0.42 620.0
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Fig. 11 Flow enhancement
versus dimensionless wall
stress for a 5 wt% CTAT
solution at T = 30◦C. In the
inset, 10 wt%, 15 wt%,
20 wt%. Parameters
employed in the simulation
are given in Table 2

Table 2 Values of the dimensionless number used in the model as a function of CTAT concentration

wt (%) Re ω* We A B Imax τw (Imax)

5 0.0688 0.12 0.876 0.076 720 8.15 1.4
10 0.0153 0.33 0.931 0.015 2459 4.42 1.7
15 0.0125 0.38 0.526 0.0055 2520 2.84 2.7
20 0.0105 0.42 0.384 0.0024 2857 1.12 3.9

The parameters employed in the simulation are ω = 1.0 rad/s; a = 5 × 10−2m3; ρ = 1, 000 kg/m3 Re = ρωa2

η0
; ω∗ = ωλ; We =

η0
G0

ω; A = kη0
λ

; B = η0
η∞

Fig. 12 Flow enhancement
versus dimensionless wall
stress for a 5 wt% CTAT
solution at T = 30◦C as a
function of the dimensionless
frequency. Parameters
employed in the simulation
are given in Table 3
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Table 3 Values of the dimensionless numbers used in the model for several frequencies

wt (%) = 10 β A B De Imax τw (Imax)

ω∗
1 = 0.12 0.573 0.076 720 7.30 8.14 1.4

ω∗
2 = 0.24 0.573 0.076 720 7.30 130 1.4

ω∗
3 = 0.36 0.573 0.076 720 7.30 656 1.4

Values of the pipe radius and liquid density are a = 5 × 10−2 m3; ρ = 1,000 kg/m3 β = a2/λ
η0/ρ

; De = η0/G0
λ

; A = kη0
λ

; B = η0
η∞ ; 0 ≤

ω∗ << ω∗
c = β−1 ω1 = 1 rad/s; ω2 = 2 rad/s;ω3 = 3 rad/s

Fig. 13 Flow enhancement
versus dimensionless
frequency for a 5 wt% CTAT
solution at T = 30◦C (τw =
0.23). In the inset, 10 wt%,
15 wt%, and 20 wt%.
Dimensionless numbers used
in the simulation are given in
Table 4

Table 4 Values of the dimensionless numbers used in the model as a function of CTAT concentration

wt (%) β A B De τw ω∗
C

5 0.573 0.076 720 7.30 0.23 1.7
10 0.046 0.015 2459 2.82 0.23 21.5
15 0.033 0.0055 2520 1.39 0.23 30
20 0.025 0.0024 2857 0.914 0.23 40

The parameters employed in the simulation are: a = 5 × 10−2m3; ρ = 1, 000 kg/m3 β = a2/λ
η0/ρ

; De = η0/G0
λ

; A = kη0
λ

; B = η0
η∞ ; 0 ≤

ω∗ << ω∗
c = β−1

Fig. 14 Flow enhancement
versus dimensionless
frequency for a 5 wt% CTAT
solution at T = 30◦C (τw =
0.15). In the insets, τw = 0.20
and 0.23. Non-dimensional
numbers used in the
simulation are given in
Table 4
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of A lies in the range 10−1 ≤ A ≤ 100 (Fig. 9), the
structure recovers quickly, and the curves are shifted to
lower wall stresses. Note that the resonance behavior
is clearly seen and the maximum in all curves is deter-
mined by a coupling between viscoelastic and structural
properties in the system.

Predictions of the flow enhancement using wormlike
solutions data

Figure 10 displays the zeroth-order shear stress versus
shear rate as a function of the CTAT content in the
system. The parameters used for this curves are shown
in Table 1. Increasing the CTAT content has the ef-
fect of enlarging the extent of the Newtonian region,
likewise increasing A. The structure of the solution is
related to the surfactant content. Inset of this figure
shows the corresponding viscosity as a function of the
wall shear rate. Again, the shear-thinning slopes have
the same value; nevertheless, the viscosity at high shear
rate is reported to have different values for each system
(Soltero et al. 1999). For low surfactant concentrations
(5 wt%), the system needs less energy to be disrupted,
which implies that the liquid becomes shear thinning at
lower wall stresses.

In Fig. 11, predictions of the flow enhancement (at
low frequency) versus wall stress using viscometric data
of CTAT for various concentrations at T = 30◦C are
plotted (Soltero et al. 1999). Parameters employed in
the model as functions of CTAT concentration are
given in Table 1, and the corresponding dimension-
less groups are disclosed in Table 2. For the solution
with 5 wt%, the flow enhancement presents at 1.2 <

τw < 1.4 a drastic enhancement with a maximum in
the resonance curve of I(%) = 8.15 at τw = 1.4. In
this region, the fluid experiences a pronounced shear-
thinning behavior. The maximum flow enhancement is
found in the 5 wt% CTAT content. It has been reported
by several authors that the shear thinning effect is
the main responsible for the flow enhancement (Phan-
Thien 1978, 1980a, b, 1981; Phan-Thien and Dudek
1982a, b; Manero and Mena 1977; Mena et al. 1979;
Manero and Walters 1980; Davies et al. 1978; Kazakia
and Rivlin 1978, 1979). However, the 5 wt% solution
has the smallest B and so the minimum shear-thinning
effect (see Table 2). Thixotropy was found to have
a negative effect in the flow enhancement, and since
the 5 wt% CTAT solution has the largest A value
(thixotropy is related to the dimensionless number
A, see Table 2), the thixotropy effect is the smallest.
The resulting combined effect of shear thinning and
thixotropy leads to a maximum flow enhancement at
this CTAT solution.

For a CTAT content of 10 wt% (inset in Fig. 11),
the maximum in the curve is I (%) = 4.42 at τw = 1.7.
For the 15 wt% solution, the maximum in the curve is
I (%) ≈ 2.84 at τw = 2.7, which is lower than that for
10 wt%. Finally, for a CTAT content of 20 wt%, the
maximum in the curve is I (%) = 1.12 at τw = 3.9.
The maximum in the curves is shifted to larger wall
stresses, implying a larger energy requirement for the
flow enhancement.

In Fig. 12, the flow enhancement versus wall stress
for a 5 wt% CTAT solution at various frequencies
is shown (non-dimensional numbers employed in the
predictions are given in Table 3). To quantify the flow
enhancement dependence on the frequency, the follow-
ing ratios are calculated: Iω∗=0.24

Iω∗=0.12
= 130

8.14
∼= 24 and Iω∗=0.36

Iω∗=0.12
=

656
8.14

∼= 34. A relationship between the non-dimensional
frequency of the fluid and the flow enhancement fol-
lows the form suggested in Eq. 56, when the elastic

effects are neglected, namely, I1
I0

∼=
(

ω∗
1

ω∗
0

)4
, where I0 is

the flow enhancement calculated at the dimensional
frequency ω∗

0 and ω∗
1 = N4ω∗

0 is a factor of ω∗
0

(
N ∈ R+).

The frequency dependence of the maxima are clearly
depicted, contrasting with other results that predict
that the flow enhancement is a decreasing function of
frequency (Barnes et al. 1971; Davies et al. 1978).

In Fig. 13, the flow enhancement versus frequency
for various CTAT solutions is larger in the more diluted
solutions. The flow enhancement is predicted to in-
crease with frequency up to a maximum and thereafter
it decreases.

Likewise, Fig. 14 shows the flow enhancement versus
non-dimensional frequency for a 5 wt% solution and
for various wall stresses. It is clear that the flow en-
hancement is an increasing function of the wall stress
and frequency, but in all cases, a maximum is predicted.

Conclusions

In this work, a stochastic perturbation solution of a
complex liquid flowing along a vibrating pipe for a
general class of noise is presented. The complex liquid
was characterized by the BMP equation, which couples
a time-dependent equation for the structure changes
with the upper-convected Maxwell constitutive equa-
tion. The evolution equation for the structural changes
was conceived to account for the kinetic process of
breakage and reformation of the micelles under flow.

The following conclusions are reached:

• The flow enhancement effect manifests itself as a
Re2 order effect and is only valid in the range of low
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frequencies: i.e., 0 ≤ ω∗ << ω∗
C, where the critical

frequency
(
ω∗

C

)
is determined by a ratio of two

transport coefficients. One is associated to the cur-
rent structure and the other one to the momentum
transport.

• The viscoelastic, kinetic, and structural mechanisms
in the BMP model were characterized by the asso-
ciation of non-dimensional numbers to each mech-
anism: (1) A = kη0

λ
and (2) B = η0

η∞ . The first one
is associated to the kinetic, viscous, and structural
process and the second one to the level of the struc-
ture in the system. In particular, when the kinetic
constant (k) is k = G−1

0 , the number A reduces to
the Deborah number, which is a measure of the
thixotropy effects in the system.

• A necessary condition to obtain a positive flow
enhancement in a structural complex liquid is that
the system undergoes a transition from a highly
structured state into a low structured one.

• The maximum in the curves is closely related to the
ratio of viscosities at low and high shear rates and
also to a coupling between the kinetics, viscoelastic,
structural, and thixotropy effects. The largest flow
enhancement was found for low thixotropy (high A
value) and low CTAT content.

• Thixotropy was found to have a negative effect in
the flow enhancement, i.e., high thixotropy causes
low enhancement. In addition, the CTAT content
was directly associated to the system thixotropy and
the form of the viscosity curve.

• Qualitatively, the flow enhancement for CTAT
solution increases with the non-dimensional fre-
quency according to I1

I0

∼=
(

ω∗
1

ω∗
0

)4
(when the elastic

effects are neglected). On the other hand, when the
elastic force are dominates, the flow enhancement

follows the relationship I1
I0

∼=
(

ω∗
1

ω∗
0

)6
, where I0 is the

flow enhancement calculated at frequency ω∗
0 and

ω∗
1 = Nω∗

0

(
N ∈ R+).

Future work

It would be worthwhile to compare the theoretical pre-
dictions with experimental observations, for example,
by using viscoelastic surfactants such as CTAT or liquid
crystalline suspensions.

Analysis of the effect of oscillating flow on the
viscous dissipation in polymer extrusion should be
conducted.

One of the most interesting effects of complex flu-
ids is the shear-banding flow. Due to mechanical and
thermodynamic instabilities, the system separates in re-

gions of different viscosities. The drastic shear-thinning
behavior may produce a very high enhancement in the
context of oscillating and pulsating flows.

An energetic advantage is predicted for a liquid
with low thixotropy and low CTAT content. It would
be desirable to conduct experiments to validate this
prediction.
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Appendix A

The shear rate to first order in the Reynolds number
satisfies the following partial differential equation:

∂

∂t∗
•
γ

∗
1

(
r∗, t∗

) = f1

(
A, B,

•
γ

∗
0

(
r∗) ) •

γ
∗
1

(
r∗, t∗

)

where f1

(
A, B,

•
γ

∗
0

)
is given by:

f1

(
A, B,

•
γ

∗
0

)
=
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η0

∗
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1 − 2η∗
0

) •
η0

∗
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) (
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0

(
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•
γ

•
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( •
η0

∗2
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The shear rate to second order in the Reynolds number
satisfies the following partial differential equation:

∂

∂t∗
•
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∗
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(
r∗, t∗
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(
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)
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(
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•
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)
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given by the next relationship
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∗
0
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and f31

(
A, B,

•
γ

∗
0

)
; f32

(
A, B,

•
γ

∗
0

)
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(
A, B,

•
γ

∗
0

)
;

f4

(
A, B, De,
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(
1 + Deη∗

0
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(62)

Substitution of the following equation

τ1
(
r∗, t∗

) = 1

2
n

•(
t∗
)
r = τ0

2τw
n

•(
t∗
)
r (63)
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Substitution of Eqs. 63–65, and 66 into Eq. 62
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Factoring and grouping the above expression
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Taking the average of Eq. 69
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and the definitions of shear rate to first order in the
Reynolds number
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Substitution Eqs. 71 and 72 into Eq. 70, the following
equation is obtained:
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In Eq. 73, the relationship
•
η0

∗2 = 2η∗
0

•
η0

∗ is used. Fi-
nally, using the Winner–Kitchen relationship, the fol-
lowing equation is obtained in terms of correlation
function:
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Hence, Eq. 73 can be rewritten in terms of R(0)
and R1(0)
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Equation 76 is an important result given in Eq. 37.

Appendix C

Equation 45 can be simplified integrating by parts the
first integral of the numerator

I (%) = 25
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The first integral can be rewritten as:
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Integrating by parts Eq. 78
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Finally, substitution of Eq. 81 into Eq. 77 and taking
We = ω∗2 De2 Eq. 46 is obtained
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