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Abstract – The generation of nanoscale square and stripe patterns is of major technological
importance since they are compatible with industry-standard electronic circuitry. Recently, a
blend of diblock copolymer interacting via hydrogen bonding was shown to self-assemble in square
arrays. Motivated by those experiments we study, using Monte Carlo simulations, the pattern
formation in a two-dimensional binary mixture of colloidal particles interacting via isotropic core-
corona potentials. We find a rich variety of patterns that can be grouped mainly in aggregates that
self-assemble in regular square lattices or in alternate strips. Other morphologies observed include
colloidal corrals that are potentially useful as surface templating agents. This work shows the
unexpected versatility of this simple model to produce a variety of patterns with high technological
potential.

Copyright c© EPLA, 2009

It has been a challenge in nanotechnology to produce
highly ordered structures by controlling the position
of nanoparticles over an extended length scale [1]; it is
not easy to achieve this goal using direct micro- and
nano-fabrication since such processes are prohibitively
expensive and time-consuming below a certain length
scale. As a result, the search of particles on the mesoscopic
scales that self-organize into potentially useful structures
by virtue of their mutual interactions is extremely
important [2,3]. The ability of soft-matter systems to
self-assemble in a surprisingly large variety of periodic
arrangements has lead to use it as building blocks of
bottom-up nanofabrication processes. This is a large and
rapidly growing field of tremendous technological poten-
tial and fundamental interest that has been stimulated
by the continuing progress in the manipulation of the
interaction potentials between nanoparticles [4–8]. In
particular, the self-assembly of nanometer-length-scale
patterns in two dimensions is currently of interest as
a method for improving throughput and resolution in
nanolithography [9]; however, traditional self-assembling
approaches based on block copolymer lithography spon-
taneously yield nanometer-sized hexagonal structures
that are incompatible with the square arrangements
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used in industry-standard circuits [8]. That is the reason
why among the targeted morphologies, stripes and square
arrays are particularly important for the manufacture
of microelectronic components since they would enable
simplified addressability and circuit interconnection
in integrated-circuit nanotechnology. There have been
theoretical efforts to tailor interparticle interactions to
spontaneously produce target many-particle configura-
tions for single-component systems [2,3] but the optimized
potentials found are difficult to fit by available interac-
tions. Recently, an experimental technique based on a
blend of diblock copolymers was developed to produce
nanoparticles that assemble into square arrays [8]. The
blend consists of two kinds of diblock copolymers, A-B
and B′-C, being the A and C blocks mutually repul-
sive and incompatible with blocks B and B′. Block B
contains small numbers of groups that form hydrogen
bonds to complementary groups in block B′ (fig. 1a).
The attractive interactions between complementary
hydrogen bonds suppress macrophase separation in favor
of microphase separation, thereby producing large-scale
assembly of nanoscale features. By controlling the amount
of hydrogen bonding units, the molecular weights and
compositions of the block copolymers, diverse families
of ordered structures are achieved, including square
arrays of cylinders that are the result of the competition
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Fig. 1: (Colour on-line) Description of the model. (a) Two
kinds of diblock copolymer, A-B and B′-C. Block B contains
small numbers of groups (blue) that form hydrogen bonds
to complementary groups (red) in block B′. (b) Schematic
representation of the blend of block copolymer with hydrogen-
bond interactions forming cylindrical micelles (top view).
(c) The interaction between a pair of cylindrical micelles is
modeled by a hard-core soft-corona potential. If the micelles are
of the same component, then the corona is a square shoulder,
otherwise the corona is a square well.

between the different interactions (see fig. 3 of ref. [8]).
Inspired by these experiments, we propose a simple model
system that reproduces such structures as a result of a
binary mixture of nanoparticles interacting via isotropic
short-ranged competing potentials. The model we propose
treats the interactions between the block copolymers in
an effective way that takes into consideration the entropy
of the brush-like coronas surrounding each cylinder via
a soft repulsive shoulder and the hydrogen bonding via

a square-well attraction. Such simple pair potentials
are often used to describe effective interactions among
substances with supramolecular architecture [10,11]. We
consider a two-dimensional (2D) assembly of particles
consisting of a hard core surrounded by a soft corona
which is repulsive for particles of the same species and
attractive otherwise. The simplicity of the model allows
to predict, based on geometrical arguments, under which
circumstances a given family of structures is obtained.
Among the rich variety of patterns encountered, we
can highlight the formation of square arrays and stripe
phases for equimolar mixtures and the formation of
colloidal corrals for asymmetric mixtures. These results
suggest a strategy for producing a range of self-assembled
structures which could be exploited for use as templating
or directing agents in materials syntheses. Although we
are primarily interested in the crystalline structures at
low temperatures, we find that at higher temperatures
the system presents a transition from an isotropic fluid
phase to a disordered fluid-like stripe phase.
Our model is not limited to the above-mentioned

diblock copolymer blend since core-corona architectures
are also present in numerous physical systems such as
dendritic polymers, hyper-branched star polymers, etc.
Among these are, for instance, colloidal particles with
block-copolymers grafted to their surface where self-
consistent field calculations lead to effective interactions
that can be modeled by a square-shoulder potential [12].
Such interactions can be controlled by adjusting the
length, species, the grafting density of the grafted poly-
mers, the quality of the solvent, the density and location
of the hydrogen bonding, etc. Numerical simulations
have shown that single-component softened-core repulsive
potentials may give rise to strip phases [12–17] and
periodic structures that are explained in terms of the
competing interactions between the hard core and the
soft shoulder. Our aim is to study the influence that the
introduction of a second component has in the domain
formation. The second component interacts attractively
with the first one in order to suppress macroscopic
phase separation. This attractive interaction models the
hydrogen bond attraction between B and B′ segments
of the diblock copolymer system of ref. [8]. When this
system forms cylindrical micelles, as shown schematically
in fig. 1b, then our model treats them as nanoparticles
with a core-corona architecture where the hard core
represents the blocks A and C and the soft corona models
the effective interactions between the blocks B and B′.
Therefore, our system consists of a binary mixture of
particles interacting through a radially symmetric pair
potential composed by an impenetrable core of diameter
σ0 with an adjacent square shoulder with range λσ0
(fig. 1c), i.e.,

φ(r) =






∞, r� σ0,
±ε, σ0 < r < λσ0,
0, r� λσ0,

(1)
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r being the pair distance. Particles of the same component
interact through the repulsive shoulder ε, whereas parti-
cles of different species interact through the attractive
potential well of depth −ε. The model intend to represent
the interactions of the block copolymers of ref. [8] as
long as they form cylindrical micelles (fig. 1b). At large
distances, the particles do not overlap and the interac-
tion vanishes, the repulsive shoulder models the steric
repulsion between blocks B or between blocks B′ due to
the overlap of the brush-like coronas, and the attractive
well models the hydrogen bonding between blocks B
and B′. Finally, at small separations penetration of the
compact cores is very unfavorable and gives rise to the
hard-core repulsion. The simple functional form of
the interaction potential not only captures the essential
features of colloidal particles with core-corona architec-
ture, it also offers many computational advantages and
allows to understand, using simple geometrical consider-
ations the system’s self-assembly strategy [18]. Standard
Monte Carlo simulations based on the canonical ensemble
(NVT simulations) in a square box of side L with periodic
boundary conditions have been carried out using the
Metropolis algorithm. We have used σ0 and ε as length
and energy units, respectively and we have studied the
pattern formation dependence on λ, reduced temperature
T ∗ = kBT/ε, where kB is Boltzmann’s constant; reduced
number density ρ∗ =Nσ20/L2, and relative amount of each
species x=N2/N1, with Ni the number of particles of
species i and N =N1+N2 the total number of particles.
Simulations are performed with N = 1000 particles (runs
with N = 4000 were done for the largest value of λ). In all
cases, the system is first disordered at high temperature
and then brought from T ∗ = 1 (T ∗ = 10 for the largest
value of λ) to the final temperature T ∗ = 0.1 through an
accurate annealing procedure with steps of 0.01 (0.1 for
the largest value of λ). An equilibration cycle consisted,
for each temperature, of at least 2× 106 MC steps, each
one representing one trial displacement of each particle,
on average. At every simulation step a particle is picked
at random and given a uniform random trial displacement
within a radius of 0.5σ0.
A variety of interesting structural features of this

simple model at low temperatures are in evidence in
fig. 2, where a few of them are exhibited. Panel (a)
shows a representative example of the spatial configuration
that the system adopts for λ= 1.5, ρ∗ = 0.5, and x= 1.
We observe that the system self-assemblies forming an
aggregate made of an alternating square array of particles
with a lattice parameter determined by the range of
the soft coronas (inset fig. 1a). The system adopts this
array in order to maximize the number of favorable
overlaps between particles of different species avoiding
at the same time unfavorable overlaps between particles
of the same type. Thus, this simple model reproduces
qualitatively well the main characteristic of the block
copolymer system of ref. [8], i.e., the fundamentally
and technologically important result that this system

a b

c d

e f

Fig. 2: (Colour on-line) Spatial arrangements of the system
at temperature T ∗ = 0.1 for an equimolar mixture x= 1.
(a) Square array formed in a system with λ= 1.5 and ρ∗ = 0.5,
(b) stripe phase obtained for λ= 2 and ρ∗ = 0.5, (c) a square
array of tetrameres appears for λ= 3 and ρ∗ = 0.5, (d) square
array obtained for λ= 2 and ρ∗ = 0.3. Comparing panels (b)
and (d) we see that at the lowest density shown the system
aggregates in square arrays whilst at the largest density the
system prefers to form stripes of alternating species. For very
large values of λ, larger aggregates of hexagonal close-packed
particles of the same species are formed. These aggregates in
turn self-assemble in (e) square arrays for λ= 10 and ρ∗ = 0.3,
and (f) thick stripes for λ= 10 and ρ∗ = 0.65.

self-assemblies forming square arrays. Unlike systems with
only one component [14], the ratio between the hard and
soft cores is critical even if they are comparable to each
other since different patterns may appear by just changing
the value of λ. In fig. 2b we show the structures obtained
for the same set of parameters as in fig. 2a except that
the value of λ has been increased to λ= 2. The particles
now form aggregates in which the particles prefer to align
forming intercalated stripes of alternating species. Each
stripe consists of only one type of particles and try to
avoid overlap between the coronas of neighboring stripes
of the same species, thus, the shoulder width act as
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spacer between neighboring stripes (see inset of fig. 2b).
Increasing even more the range of the soft corona, the
system develops a completely different strategy to form
stable configurations giving rise to the appearance of new
patterns. This is shown in fig. 2c where a pattern formed
by a square array of tetrameres develops if λ is increased
to λ= 3. Each square tetramer is formed by four close
packed particles of the same species and the separation
between the tetrameres is dictated by the condition that
the coronas of each particle overlaps at most four coronas
of particles of the same species, as shown in the inset of
fig. 2c where we have highlighted the coronas that settle
the spacing between tetrameres. Two lines of defects, one
near the upper side and the second near the right side of
the simulation cell are in evidence. They are originated in
the periodic boundary conditions; effectively, the lattice of
tetrameres extend over the entire length of the simulation
cell and join up with their periodic images. Since this
length is not commensurable with the periodicity of the
lattice the defect lines appear. A few vacancies scattered
along the lattice that could not be annealed out are also
present, but this is to be expected for kinetic reasons. For
very large values of λ (λ= 10 in figs. 2e and f), hexagonal
close-packed aggregates of particles of the same species
are formed and this aggregates in turn self-assemble in
square arrays (panel (e)) or thick stripes (panel (f))
formed similarly of hexagonal close-packed particles (inset
figs. 2e and f). We can think of the aggregates as
larger interacting particles with the internal structure only
changing the effective inter-aggregate interactions [16],
thus the system try to arrange particles so that the shape
of the cluster becomes as circular as possible. This, in
turn, guarantees that the underlying structure is close
to the energetically most favorable hexagonal lattice [17].
Within the lane structure (fig. 2f) the system follows a
similar strategy consisting in first optimize the packing
inside a stripe, leading to hexagonal particle arrangements
inside each lane. Nevertheless, due to the increasing
complexity of the inner structure of the patterns, a simple
energetic explanation in terms of overlapping coronas is
very difficult.
Let us stress that the attraction between different

species not only causes the alternation of the different
species in the lattices. It also gives rise to structures
that are not present in the homogeneous system and
viceversa. For example, a square lattice is not present in
the single-component case with the shoulder range used in
fig. 1a, as shown in ref. [17]. On the other hand, the ideal
hexagonal lattice exhibited in the homogeneous case is not
present in the binary mixture for the same shoulder range.
Similarly, a square array of square tetrameres has not
been observed in the single-component system. Thus, the
additional requirement of maximizing favorable overlaps
in the binary mixture leads to different self-assembly
strategies.
In our model, configurational energy is essentially

determined by geometry; thus, simple geometrical

considerations can be used to predict the parameters
at which a given pattern is expected to be adopted at
zero temperature. For values of the range of the soft
coronas such that λ�

√
2 the lattice constant a at T ∗ = 0

is determined by the condition that the soft coronas
of the nearest-neighbors of the same species just touch
as shown in the inset of fig. 2a. Therefore, the lattice
parameter takes the value a= λσ0 and the density of the
aggregate is ρ∗squares = 2/λ2. On the other hand, if λ<

√
2,

then the particle hard cores just touch forming a close
packed square array whose lattice constant a=

√
2σ0 is

determined by the hard-core diameter σ0 and the density
of the aggregate is ρ∗squares = 1. The energy per particle
of this array is u=−4ε which is the number of overlaps
between the corona of a given particle and its first neigh-
bors times the energy of each overlap. The square array
has the characteristic that no overlap between the coronas
of particles of the same component takes place. However,
if the density is so high that the coronas of particles of
the same species have not enough space to accommodate
without overlapping, then the system adopts a different
strategy in order to minimize its energy; the formation
of lanes provides the energetically best solution. This is
achieved (if λ� 2) when the soft corona of a given particle
just touch the ones of the second nearest neighbors of
the same stripe determining the separation between
the particles in the same stripe. On the other hand, if
λ< 2, neighboring particles of the same stripe are in
direct contact, forming a one-dimensional close-packed
arrangement. As a result, in both cases, the particles form
a centered rectangular arrangement as shown in the inset
of fig. 2b, with the lattice parameter in the direction of the
stripe given by a= λσ0/2 if λ� 2 or a= σ0 if λ< 2. The
lattice parameter perpendicular to the stripes is given by
the distance between adjacent stripes of the same species
which are separated by a distance b= λσ0 if λ�

√
3 or

b=
√
2σ0 if λ<

√
3. The densities are, correspondingly,

ρ∗stripes = 4/λ
2 if λ� 2, ρ∗stripes = 2/λ if

√
3� λ< 2, and

ρ∗stripes = 2/
√
3� 1.1547 if λ<√3; the last situation

corresponds to a hexagonal close packing. Using similar
geometrical considerations we obtain the energy per parti-
cle in each case, u=−6ε if λ�√3 or u=−2ε if λ<√3.
Finally, for the square array of tetramers the lattice
parameter is a= σ0/

√
2(1+

√
2λ2− 1) if λ�√5 and the

corresponding density is ρ∗tetramers = 16(1+
√
2λ2− 1)−2.

When λ<
√
5 the particles of the adjacent tetramers

touch their hard cores forming a square close packing and
therefore ρ∗tetramers = 1. The energy per particle of this
array is given by u=−8ε if λ�√5, u=−4ε if 2� λ<√5,
or u= 0 if λ< 2.
By comparing to each other the energies of the lattices

found previously, it is possible to construct a phase
diagram at zero-temperature which allows to predict
the structures adopted for a given set of parameters.
Regions of the phase diagram where minimum energy
configurations at T ∗ = 0 appear are shown in fig. 3 for
the three simplest structures obtained in the simulations.
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Fig. 3: (Colour on-line) Zero-temperature phase diagram. This
figure shows the different regions of the parameter space where
different patterns appear. The blue zone represents the region
where squares are present; the red zone corresponds to the
appearance of stripes; finally, tetrameres appear in the green
zone. The yellow zone at the upper-right corner of the figure
corresponds to other structures not studied in this work. The
blue (dotted line), red (dashed line) and green (dash–double-
dotted line) define the maximum density at which squares,
stripes, and tetrameres could also appear, respectively, at finite
temperatures.

Here we see, for instance, that stripes are preferred over
squares at larger densities and for a larger range of the
coronas, and that tetrameres will be preferred at even
larger values of λ. The previous results, obtained using
only geometrical arguments, agree with the structures
obtained in fig. 2a, b and c; nonetheless, we do not expect
an exact correspondence between the phase diagram at
T ∗ = 0 with finite-temperature simulations, since in that
case entropy plays an important role. This is put in
evidence in fig. 2d which shows the square array adopted
in a system with the same parameters as in fig. 2b except
that the density is reduced to ρ∗ = 0.3. According to the
phase diagram, for this set of parameters one expects the
formation of stripes at T ∗ = 0; however, since the square
array is less dense, then the particles have more room to
vibrate around their equilibrium positions which in turn
means that the contribution to the free energy F =U −TS
due to the entropy associated with the thermal motion is
more important for the square array than for the stripes
and therefore the system may adopt the square array.
Thus, polymorphic transitions are expected under cooling,
specially for parameters near the border of the different
regions, i.e., λ�√3 and √5 .
Here we are primarily interested in the crystalline

configurations that the system may adopt at low temper-
atures. Nonetheless, the behavior of the system at higher
temperatures is also very interesting since under cooling

ab

a b

Fig. 4: (Colour on-line) Spatial configurations at temperatures
T ∗ = 0.5 and T ∗ = 0.1. Snapshots taken at two temperatures
along the annealing isochore for λ= 3, ρ∗ = 0.65 and x= 1. At
high temperatures the system self-assemblies forming fluid-like
disordered stripes (a), while at low temperatures the system
crystallizes in an ordered square array of tetramers (b).

ab

a b

Fig. 5: (Colour on-line) Two representative configurations for
asymmetric mixtures (x= 2 and ρ∗ = 0.5). In (a) we observe
a phase separation with a region consisting of a high-density
blend of the two species and a region consisting of a low-density
pure phase of only the majority component, when λ= 1.5. In
(b) we observe the formation of colloidal corrals, where the
majority component frames clusters of the minority component
when λ= 2.

other structures may preempt the crystalline lattice, as
previously discussed. In fact, we have found that the orig-
inal isotropic fluid phase may first suffer a transforma-
tion to a disordered fluid-like strip phase. This is exhib-
ited in fig. 4 where snapshots taken at two temperatures
along the annealing isochore are shown. Starting with an
isotropic fluid phase, as the temperature is decreased the
system first shows the formation of a low-temperature fluid
phase (panel (a)) consisting of a disordered stripe struc-
ture which under further cooling undergoes an abrupt
transition at a given temperature from the disordered
stripe pattern to a crystalline square array of tetrameres
(panel (b)). For the chosen parameters, the array of
tetrameres appears to coexist with a stripped structure in
which part of the configurational disorder typical of high
temperatures remains.
The complexity of the patterns grows with increas-

ing asymmetry in the stoichiometry of the sample. Two
representative configurations for non-equimolar mixtures
are shown in fig. 5. In panel (a) we observe a phase
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separation with a region consisting of a high-density blend
of the two species and a region consisting of a low-
density phase of the majority component. Lanes similar
to those obtained in the equimolar mixture are observed
in the high-density component. In general we find that
patterns similar to those found for the equimolar mixture
appear in the high-density phase. The pure component
may also form patterns in the surrounding regions. As
expected, the structures found in this pure phase are
also similar to those found in a single-component square-
shoulder system [13,14]. A different behavior is observed
in fig. 5b. Here, there is no macroscopic phase separa-
tion; instead, the system exhibits an ordered hexagonal
structure consisting of clusters of the minority species
corralled by particles of the majority component that form
an open network structure. It has been proposed that these
morphologies can be employed for the fabrication of nanos-
tructures [1]. For example, after selectively removing one
of the blocks, the remaining pattern can be transferred
into a functional material [9,19–24]. Similar nanoparti-
cle corrals have recently been obtained in network-self-
assembled monolayer hybrid systems [1] and are of partic-
ular interest as surface templates because they contain
cavities that can be filled by a variety of guest molecules.
This kind of open network is particularly flexible since the
pore size can be controlled by changing the range of the
corona and the asymmetry of the mixture.
It is known that computer simulations risk to be

trapped in local energetic minima due to the rough
and complex energy landscape [17]; thus, in order to
circumvent this problem we have followed a very accu-
rate simulated annealing procedure since for sufficiently
slow cooling down of the system one expects that the
particles accommodate to its minimum energy config-
urations when temperature vanishes [25]. Nonetheless,
alternative approaches could also be of great help to
predict the complete set of ordered equilibrium struc-
tures of the system; one of these approaches consists in
applying genetic-algorithm search strategies to find in a
systematic way minimum energy configurations [26]. Such
algorithms have proven to be a reliable way to predict
the ordered equilibrium structures for different systems,
including monolayers of binary dipolar mixtures [27].
In addition to illustrate the complexity of structures

that can arise from the simple model presented in this
paper, the system is possible to be carried out experimen-
tally thanks to the recent advances to control colloidal
and nanoparticle interactions [8]. From the huge variety
of different ordered equilibrium structures developed in
the system, here we have shown just a few of them that
were chosen due to their possible practical relevance
and because some of them have already been observed
experimentally [8]. The large versatility of the model indi-
cates that such systems can be adapted to a wide variety
of technological applications ranging from the directed
growth of molecular wires or carbon nanotubes [15]

to nanolithography and nanoelectricity [13] or even as
templates for metal deposition.
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