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a b s t r a c t

We present an analytical and numerical study of the competition between double and super-exchange

interactions in a one-dimensional model. For low super-exchange interaction energy we find phase

separation between ferromagnetic and anti-ferromagnetic phases. When the super-exchange interac-

tion energy gets larger, the conduction electrons are self-trapped within separate small magnetic

polarons. These magnetic polarons contain a single electron inside two or three sites depending on the

conduction electron density and form a Wigner crystallization. A new phase separation is found

between these small polarons and the anti-ferromagnetic phase. Spin-glass behavior is obtained

consistent with experimental results of the nickelate one-dimensional compound Y2�xCaxBaNiO5.

& 2009 Published by Elsevier B.V.
1. Introduction

The double exchange (DE) or indirect exchange interaction is the
source of a variety of magnetic behavior in transition metal and
rare-earth compounds. DE has been widely used in the context of
manganites [1–4]. The origin of the DE interaction lies in the intra-
atomic coupling of the spin of the itinerant electrons with localized

spins S
!

i. In this coupling, localized and itinerant electrons belong to
the same atomic shell. According to Hund’s rule, the coupling is
ferromagnetic (F) when the local spins have less than half-filled
shells and anti-ferromagnetic (AF) for more than half-filled shells
[2]. Independently of the sign of the coupling, the ‘‘kinetic’’ energy
lowering, favors a F background of local spins. This F tendency is
expected to be thwarted by AF super-exchange (SE) interactions

between localized spins S
!

i as first discussed by de Gennes [5] who
conjectured the existence of canted states. In spite of recent
interesting advances, our knowledge of magnetic ordering resulting
from this competition is still incomplete.

Although it may look academic, the one-dimensional (1D)
version of this model is very illustrative and helpful in building an
unifying picture. On the other hand, the number of pertinent
real 1D systems as the nickelate one-dimensional metal oxide
carrier-doped compound Y2�xCaxBaNiO5 [6] is increasing. In this
compound, carriers are essentially constrained to move parallel to
NiO chains. Spin-glass-like behavior was found at low tempera-
ture. Recently, it has been shown that three-leg ladders in
the oxyborate system Fe3BO5 may provide evidence for the
existence of spin and charge ordering resulting from DE and SE
competition [7].
Elsevier B.V.
Naturally, the strength of the magnetic interactions depends
significantly on the conduction band filling, x. At low conduction
electron density, F polarons have been found for localized S ¼ 1

2

quantum spins [8]. F polarons in an AF background were also
found in 2D [9]. ‘‘Island’’ phases, periodic arrangement of F
polarons coupled anti-ferromagnetically, have been clearly iden-
tified at commensurate fillings both for quantum spins in one
dimension [10] and for classical spins in one [11] and two
dimensions [12]. Phase separation between hole-undoped anti-
ferromagnetic and hole-rich ferromagnetic domains has been
obtained in the Ferromagnetic Kondo model [13,14]. Phase
separation and small ferromagnetic polarons have been also
identified for localized S ¼ 3

2 quantum spins [15]. Therefore, it is of
importance to clarify the size of the polarons, and whether it is
preferable to have island phases, separate small polarons or
eventually large polarons.

In this paper, we present an analytical and numerical study
of the one-dimensional double and super-exchange model. Our
results allow a straightforward explanation of the spin-glass-like
behavior, which has been experimentally observed in the nick-
elate one-dimensional compound Y2�xCaxBaNiO5 [6]. The paper is
organized as follows. In Section 2 a brief description of the model
together with our results and a discussion are presented. Finally,
conclusions are given in Section 3.
2. The model, results and discussion

Our one-dimensional double and super-exchange model will
be described by the following Hamiltonian:

H ¼ �t
X

i

cos
yi;iþ1

2

� �
ðcþi ciþ1 þ h:c:Þ þ JS2

X
i

cosðyi;iþ1Þ,

www.sciencedirect.com/science/journal/magma
www.elsevier.com/locate/jmmm
dx.doi.org/10.1016/j.jmmm.2009.04.026
mailto:emapion@yahoo.com


ARTICLE IN PRESS

Fig. 2. P2 phase for x ¼ 1
2, showing N � 1 angles y and charge distribution n. Angles

in this figure are 0 or p exactly.

Fig. 3. P3 phase for x ¼ 1
3, showing the same as in Fig. 2.
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where t is the hopping parameter and yi;iþ1 is a relative angle
between classical localized spins, S!1, at sites i and iþ 1. cþi ðciÞ

are the fermion creation (annihilation) operators of the conduc-
tion electrons at site i. A strong Hund’s coupling limit is used in
this work, JH !1. Because of this limit electrons are indeed
spinless electrons. This part of the Hamiltonian represents the DE
interaction [2]. On the other hand, J is the super-exchange
interaction energy.

We determine the complete phase diagram of this model in
one dimension as a function of the super-exchange interaction
energy J and the conduction electron density x by using open
boundary conditions on a linear chain of N ¼ 60 sites (Fig. 1). For a
given conduction electron density x (0pxp0:5 because of the
hole-electron symmetry), we have to optimize all the ðN � 1Þ
angles yi;iþ1. For this goal, we use an analytical optimization and a
classical Monte Carlo method. The analytical solution has been
tested as a starting point in the Monte Carlo simulation. Besides
the quantum results already published [8,10,15] we find two types
of phase separation. In addition to the expected F–AF phase
separation (AFþ F in Fig. 1) appearing for small J consisting of one
large ferromagnetic polaron within an AF background (all
electrons are inside the ferromagnetic polaron) we obtain a new
phase separation between small polarons (one electron within
two or three sites, i.e. AF+P3) and AF regions at larger J. It is
interesting to note that large polarons are never found stable in
this limit. Above F phase for the commensurate fillings x ¼ 1

2 and 1
3,

we recover the ‘‘island’’ phases P2 (Fig. 2) ð� � � ""##""##""## � � �Þ
and P3 (Fig. 3) ð� � � """###"""### � � �Þ identified previously for
classical [11] and S ¼ 1

2 quantum [10] local spins. The electrons are
self-trapped in small independent F polarons of two and three
sites, respectively, each polaron contains one electron, forming in
this way a Wigner crystallization see Figs. 2 and 3. In Ref. [16], a
spiral phase has been proposed instead of the P2 phase for x ¼ 1

2.
The ferromagnetic phase is stable for weak SE interaction below
P2 phase, P2 phase becomes stable for ð2=pÞ � 1

2oJS2=to 1
4.

For JS2=t4 1
4, P2 transforms into a canted phase CP2 in which

the angle inside the F islands becomes finite ðy1Þ while the angle
between the polarons ðy2Þ still keeps the value p. A complete
analytical solution can be derived in this case. Similar phases P3
and CP3 are obtained for x ¼ 1

3. In CP3, two angles y1, y2 are finite
inside the polaron while y3 ¼ p; this phase has a continuous
degeneracy within each 3-site polaron given by the condition,
Fig. 1. Magnetic phase diagram as a function of the SE interaction energy J and the

conduction electron density x. A dotted line in this diagram represents a guide for

the eyes. The different phases are described in the text.

Fig. 4. AFþ CP3 phase at x ¼ 0:20 (12 electrons) and JS2=t ¼ 0:20. N � 1 angles and

charge distribution are presented.
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cosðy1Þ þ cosðy2Þ ¼ ð1=8ðJS2=tÞ2Þ � 2 see Fig. 4. Both CP2 and CP3
evolve towards complete anti-ferromagnetism as JS2=t!1.
P3! CP3 at JS2=t ¼ 1=4

ffiffiffi
2
p

. These phases result from the ‘‘spin-
induced Peierls 2kF instability’’ due to the modulation of the
hopping with I ¼ 1=x angles. For lower commensurate fillings
xo1

3, such PI polaron phases are not found stable. Instead, above
the F phase at low J we find AF–F phase separation. Of course, an
anti-ferromagnetic phase always occurs at x ¼ 0.

Fig. 1 shows that when the SE interaction energy is small
JS2=tt0:12, the F phase occurs for a large conduction electron
density. At lower density, we obtain F–AF phase separation; the
analytical optimization implies angles 0 and p exactly for the F
and AF domains, respectively. For small SE interaction, the F–AF
phase separation has been reported in two dimensions [17], in one
dimension using classical localized spins and JH ¼ 8 [16] and in
the one-dimensional ferromagnetic Kondo model [14]. Quantum
results for S ¼ 3

2, show phase separation when Coulomb repulsion
was taken into account [15]. We can see that in this limit, our
results differ from those of Koshibae et al. [11] within the ‘‘spin-
induced Peierls instability’’ mechanism. At low concentration xo1

3,
if the SE interaction energy increases 0:12tJS2=tt0:17, we find a
new phase separation between P3 and AF phases which trans-
forms into AFþ CP3 for JS2=t\0:17 as P3! CP3. Both phase
separations are degenerate with respect to the position of the
individual polarons while keeping the number of F and AF bonds
fixed; the phase obtained within the ‘‘spin-induced Peierls
instability’’ [11] belongs to this class. A phase like AFþ P3 has
been identified using S ¼ 3

2 quantum spins [15].
Phase separation also takes place for incommensurate fillings

between x ¼ 1
2 and 1

3 for SE interactions JS2=tX1=4
ffiffiffi
2
p

. It is
between CP3 and P2 or CP2 due to the canting inside the P2
polaron with increasing J. The transition between the two occurs
for JS2=t ¼ 0:25, where P2! CP2.

Below CP3þ P2, the phase labeled T in Fig. 1 is a more general
complex phase obtained by the Monte Carlo method and can be
polaronic like or not. Of course, all the phase separations involving
CP3 ðAFþ CP3;CP3þ P2;CP3þ CP2Þ present the spin configura-
tion degeneracy ðy1; y2Þ of the CP3 phase. This is clearly observed
in Fig. 4 for the case of AFþ CP3. This analytical continuous
degeneracy in the spin configuration can be related to the spin-
glass behavior as, for example, in the nickelate compound
Y2�xCaxBaNiO5 [6]. It is interesting to note that such a possibility
of ferromagnetic polarons immersed into an anti-ferromagnetic
background has been invoked by Xu et al. [18] to fit their neutron
data.
3. Conclusions

In this work we presented a unifying view for the magnetic
phase diagram of the one-dimensional DEþ SE model using large
Hund’s energy and classical localized spins. The solution is in
general (a) phase separation between F and AF phases for low SE
interaction energy and (b) phase separation between small
polaronic and AF phases when the SE interaction is large. In this
large SE limit a Wigner crystallization and a spin-glass behavior
can be identified. We believe that the ground state of the nickelate
one-dimensional compound Y2�xCaxBaNiO5 belongs to the phase,
AFþ CP3, providing a plausible explanation for the spin-glass-like
behavior observed at low temperature.
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