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It is shown that the Bethe–Salpeter approach, the Bardeen,

Cooper, and Schrieffer (BCS) based vertex method, and a

generalized random-phase approximation (GRPA) to themany-

electron problem in the presence of a condensed quantum phase

yield the same theoretical excitation spectrum vðQÞ to

collective modes. This spectrum reveals a secondary peak in
optical absorption in semiconductors that can be understood as

signaling the existence of an excitonic Bose–Einstein con-

densate (BEC). The analysis shows as well that there is an

additional, non-trivial linearly-dispersive ‘‘ moving’’ Cooper-

pair solution for superconductors in both weak and strong

coupling.
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1 Introduction The proper description of the linear
response of charged many-fermion systems under a weak
electromagnetic field is of fundamental physical interest
when a transition to a quantum condensed phase is possible.
This is the case of Bose–Einstein condensation (BEC) of
excitons in semiconductors or the creation of Cooper pairs in
superconductors. In the first instance, there is interest in
seeking compelling evidence of the existence or not of
an exciton condensed phase through experimental optical
probes (e.g., see Ref. [1] for possible signatures of BEC of
excitons). A question naturally arising in this connection is
whether the formation of the condensed phase leads to a new
peak in the absorption spectrum, which could serve as a
fingerprint for the existence of BEC in semiconductors.

In the theoretical description of collective-excitation
spectra one finds that the positions of excitonic peaks in the
presence of a condensed phase have been calculated by
applying the (a) generalized random-phase approximation
(GRPA) [2, 3], (b) vertex-equation method [4], based on
Bardeen, Cooper, and Schrieffer (BCS) theory that includes
the ladder diagram contribution to the vertex function, and
(c) Bethe–Salpeter equation (BSE) approach [5, 6]. Due to
the long-range behavior of the Coulomb interaction it is
difficult to obtain any analytical results. Numerical calcu-
lations done by Chu and Chang [4] show that close to the
exciton resonance the absorption spectrum exhibits a sharp
exciton peak followed by a secondary peak. The existence of
this double-peak absorption spectrum indicates the presence
of BE-condensed excitons. In contrast, numerical calcu-
lations based on the GRPA [2, 3] do not show a second peak
in the optical response. In both methods [2–4], numerical
calculations require dealing with giant matrices
(3000� 3000 in Refs. [2, 3]). Two different numerical
methods, namely the stability matrix method [2, 3] and the
usual singularity-removal method [4], have been used to
invert these giant matrices so that it is unclear whether the
secondary peaks in the optical response are artifacts
produced by the numerical methods needed to solve the
vertex equation, or that the vertex-equation method and the
GRPA provide different collective-excitation spectra.

As we shall see, the GRPA, the BSE approach, and the
vertex-equationmethod provide exactly the same position of
the collective modes at zero momentum wavevector Q ¼ 0.
At the point Q ¼ 0 there exists a so-called Goldstone (or
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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trivial) mode vðQ ¼ 0Þ ¼ 0. This trivial solution means that
the photon energy needed for direct transitions is equal to the
exciton chemical potential. The chemical potential varies as
the density of excitons increases. Strictly speaking, the
observation of this density-dependent blueshift in the
absorption spectrum does not imply the presence of a
condensate as it is a result of the energies gained by the
parallel-spin particles in avoiding each other, plus the
weakening the Coulomb attraction between the excitonic
electron and hole due to the exclusion principle. The
existence of the secondary peak, i.e., of a non-trivial mode
vðQ ¼ 0Þ ¼ v0, could be related to the singularity in
the joint density of states of the quasiparticles due to the
formation of a gap [4] so that this peak could imply the
formation of a condensed phase. If we ignore the wavevector
dependence of the gap function, the energy separation
between the secondary peak and the exciton peak is exactly
twice the average value of the gap function. The presence (or
absence) of the secondary peak should be verified exper-
imentally, but the lack of incentives on the experimental side
force one to test the excitonic BSE approach by applying it to
the collective-mode dispersion in a one-dimensional (1D)
superconductor where it is possible to obtain analytical
results. Since the BE-condensed excitons and the supercon-
ductivity due to the formation of Cooper pairs are
manifestations of the same effect, namely spontaneous
symmetry-breaking, the phenomenon of the double-peak
optical response in semiconductors should be similar to the
existence of two modes (a Goldstone or trivial mode and a
non-trivial mode) in superconductors. If the numerical
calculations by Chu and Chang are correct, then one can
expect that the separation between theGoldstone and the non-
trivial mode at Q ¼ 0 should be twice the value of the gap.

Collective excitations in superconductors at T ¼ 0 were
studied decades ago within the GRPA [7–9]. It was later
pointed out that theGRPA is able to describe the evolution of
the system from a large-Cooper-pair (CP) regime to a small,
well-separated-CP regime in the attractive Hubbard model
[10, 11] and in the attractive d interaction Fermi gas [12].
Unfortunately, the determinants used to obtain the collec-
tive-mode dispersion in Refs. [11, 12] are only 3� 3 while
the correct determinant obtained by linearizing the
Anderson–Rickayzen (AR) equations must be 4� 4. The
GRPA equations in Ref. [10] are equivalent to our BSE (1)
below, where the screened Coulomb interaction VsðkÞ is
replaced by the strength U of the attractive interaction in the
Hubbard model, but the expressions for gk;k0;q and dk;k0;q (see
Eq. 9a and b inRef. [10]) are incorrect and thus cast doubts on
all numerical calculations for the collective-mode energies
in Ref. [10]. The correct expressions for gk;k0;q and dk;k0;q can
be obtained from (1) below. More recently, the spectrum of
the collective excitations in superconductors has been
examined by applying the BCS mean-field theory combined
with the BSE for the two-particle bound states [13, 14]. The
BSE approach used in Ref. [13] does not represent correctly
the physics involved because it does not take into account the
BSE amplitudes for electron–hole Ceh, hole–electron Che,
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
and hole–hole Chh CPs. These amplitudes have been taken
into account in Ref. [14], but the diagrammatic perturbation
theory used to analyze the form of the BSE kernel provided
incorrect expressions for the BSE so that conclusions about
the collective-excitation spectrum are in doubt.

Here we use the BSE approach to calculate the
collective-excitation spectra in superconductors assuming
that the attractive interaction responsible for the formation of
CPs is constant in momentum space. The main results are
that: (i) the BSE and the GRPA give the same equations for
collective modes; (ii) the energy separation between the
Goldstone and the non-trivial mode atQ ¼ 0 is exactly twice
the superconducting gap; (iii) contrary to previous calcu-
lations [11, 12] our approach provides an equation for the
collective-mode dispersion that depends on all four coher-
ence factors and is given by setting the associated 4� 4
determinant to 0, while in previous calculations [11, 12]
collective-mode spectra does not depend on the fourth
coherence factor ukþQvk � ukvkþQ so that the corresponding
determinant is only 3� 3.

2 Collective excitations in semiconductors
2.1 Bethe–Salpeter approach We consider a

direct-gap semiconductor with non-degenerate and isotropic
bands. For simplicity, we assume equal electron and hole
masses, i.e., me ¼ mh � m. In this case the electron- and
hole-dispersion relations relative to the corresponding
chemical potential me;h ¼ ðEg � mÞ=2 are (�h ¼ 1):
eeðkÞ ¼ k2=2mþ Eg � me and ehðkÞ ¼ �ðk2=2mþ mhÞ,
respectively. Here m ¼ me � mh is the exciton chemical
potential, Eg is the semiconductor gap. The chemical
potential m is determined self-consistently as a non-trivial
function of the electron number density n. In the presence of
a BE-condensate, one can write the BSE for the exciton
energy vnðQÞ and corresponding wave functions G�

n ðq;QÞ
(for details, see, e.g., Ref. [6]):

½vnðQÞ � eðk;QÞ�Gþ
n ðk;QÞ

¼ � 1

2

X
q

Vsðk� qÞ
�
gk;Qgq;Q þ lk;Qlq;Q

þ egk;Qegq;Q þ mk;Qmq;Q

�
Gþ

n ðq;QÞ

� 1

2

X
q

Vsðk� qÞ
�
gk;Qgq;Q � lk;Qlq;Q

þ egk;Qegq;Q � mk;Qmq;Q

�
G�

n ðq;QÞ;

½vnðQÞ þ eðk;QÞ�G�
n ðk;QÞ

¼ 1

2

X
q

Vsðk� qÞ
�
gk;Qgq;Q þ lk;Qlq;Q

þ egk;Qegq;Q þ mk;Qmq;Q

�
G�

n ðq;QÞ

þ 1

2

X
q

Vsðk� qÞ
�
gk;Qgq;Q � lk;Qlq;Q

þ egk;Qegq;Q � mk;Qmq;Q

�
Gþ

n ðq;QÞ; ð
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where eðk;QÞ � Eðkþ QÞ þ EðkÞ. The coherent factors are
gk;Q � ukukþQ þ vkvkþQ; lk;Q � ukukþQ � vkvkþQ; egk;Q �
ukvkþQ � ukþQvk; and mk;Q � ukvkþQ þ ukþQvk. Here, up
and vp are the usual BCS coherence factors:
H

www
u2p ¼
1

2
1þ eðpÞ

EðpÞ

� �
; v2p ¼

1

2
1� eðpÞ

EðpÞ

� �
;

EðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ðpÞ þ D2ðpÞ

q
:

(2)
C
ð0
k;

C
ð0
k;
The Goldstone mode solution of the above BSE
corresponds to Gþðq; 0Þ ¼ G�ðq; 0Þ. The presence of the
excitonic BEC would be revealed by the non-trivial solution
vðQ ¼ 0Þ � v0 > 0 of Eq. (1). This solutionmanifests itself
as a secondary peak in the absorption spectrum.

2.2 Vertex-equation method This method leads to
an expression for the absorption coefficient which depends
linearly on a function GðkÞ which in turn is a solution of the
following inhomogeneous equation [4]:
C
ð3
k;

C
ð3
k;
v2Gk �
X
q

Hk;qGq

¼
X
q

½2EðkÞdk;q � Vsðk� qÞ�F0
q � vG0

2ðkÞ; (3)
where v is the energy difference between the photon energy
and the chemical potential, F0

q � lq;Q¼0G
0
1ðqÞ, and G0

i ðqÞ
(where i ¼ 1; . . . ; 4) denotes the bare vertex functions. The
Hamiltonian in (3) is:
k;q ¼
X
p

½2EðkÞdðk� pÞ � Vsðk� pÞ�½2EðqÞdðp� qÞ

� Vsðp� qÞðlplq þ mpmqÞ�:
(4)
The solution of (3) may be obtained by expressing the
left-hand side of (3) in its eigenspectrum representation:
Gk ¼
X
n

X
q

Sk;nS
�
q;n

v2 � v2
n

�
X
p

½2EðqÞdðq� pÞ � Vsðq� pÞ�F0
p � vG0

2ðqÞ
 !

:

(5)
Here the vn are the eigenvalues of Hk;q; and Sk;n are the
eigenvectors of:
v2
nSk;n �

X
q

HkqSq;n ¼ 0: (6)
Obviously, the absorption coefficient will exhibit peaks
at the same energies as those obtained by the BSE approach
because Eq. (6) for Sk;n follows from the BSE (1) with
Sk;n � Gþ

n ðk;QÞ
��
Q¼0

�G�
n ðk;QÞ

��
Q¼0

.

.pss-b.com
2.3 General random phase approximation The
semiconductor AR equations [2, 3] provide the following
BSE for the retarded Green function bGQðq; p;vÞ:
½vt0 þ eðk;QÞt3� bGQðk; p;vÞ

�
X
q

Vsðk� qÞ
h
C
ð0Þ
k;qC

ð0Þ
kþQ;qþQt2

þC
ð3Þ
k;qC

ð3Þ
kþQ;qþQit1

i bGQðq; p;vÞ ¼ dk;pðt0 þ t2Þ:

(7)
Here ti ði ¼ 1; 2; 3Þ are the Pauli spin matrices, and t0 is
the 2� 2 unit matrix. In Eq. (7) we have neglected the
collective fluctuation term that appears, for example, in Eq.
(27) of Ref. [3] since it will not modify the eigenvalues vn

(see below). The coherence factors are:
Þ
q � ukuq þ vkvq;

Þ
qC

ð0Þ
kþQ;qþQ � gk;Qgq;Q þ lk;Qlq;Q þ egk;Qegq;Q þ mk;Qmq;Q;

Þ
q � ukvq � vkuq;

Þ
qC

ð3Þ
kþQ;qþQ � gk;Qgq;Q � lk;Qlq;Q þ egk;Qegq;Q � mk;Qmq;Q:

(8)
The retardedGreen function is thenobtainedby inverting
the matrix:
bHQ
k;q ¼ ½vt0 þ eðk;QÞt3�dk;q � Vsðk� qÞ

� C
ð0Þ
k;qC

ð0Þ
kþQ;qþQt2 þ C

ð3Þ
k;qC

ð3Þ
kþQ;qþQit1

h i
:

(9)
Writing the inverse of matrix bHQ
k;q asP

n
bS Q
k;n
bS Qy
q;n ðv� vnðQÞÞ�1

, we find:
bGQðk; q;vÞ ¼
X
n

bS Q
k;n
bS Qy
q;n

v� vnðQÞ þ i0þ
ðt0 þ t2Þ: (10)
Here vnðQÞ are the eigenvalues of bH Q
k;q while the

elements of the two-component vector bS Q
k;n ¼

 
’
Q
k;n

f
Q
k;n

!
are its

eigenfunctions. From Eq. (7) it is clear that the second term
is:
C
ð0Þ
k;qC

ð0Þ
kþQ;qþQt2 þ C

ð3Þ
k;qC

ð3Þ
kþQ;qþQit1 ¼

0 �2i lk;Qlq;Q þ mk;Qmq;Q

� �
2i gk;Qgq;Q þ egk;Qegq;Q

� �
0

 !
:

(11)
Upon substitution in Eq (7), the components of bS Q
k;n

satisfy the following eigenproblem:
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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n¼

� 20
v2
nðQÞ � e2ðk;QÞ

� �
f
Q
k;n

¼ �
X
q

Vsðk� qÞeðk;QÞ gk;Qgq;Q þ egk;Qegq;Q

� �
fQ
q;n

�
X
q

Vsðk� qÞvnðQÞ lk;Qlq;Q þ mk;Qmq;Q

� �
’Q
q;n;

v2
nðQÞ � e2ðk;QÞ

� �
’
Q
k;n

¼ �
X
q

Vsðk� qÞeðk;QÞ lk;Qlq;Q þ mk;Qmq;Q

� �
’Q
q;n

�
X
q

Vsðk� qÞvnðQÞ gk;Qgq;Q þ egk;Qegq;Q

� �
fQ
q;n:

(12)
M

1þ V0Iðe; g; gÞ V0Iðv; g; lÞ 2V0Iðv; g;mÞ V0Iðe; g; egÞ
V0Iðv; g; lÞ 1þ V0Iðe; l; lÞ 2V0Iðe; l;mÞ V0Iðv; l; egÞ
1

2
V0Iðv; g;mÞ 1

2
V0Iðe; l;mÞ 1þ V0Iðe;m;mÞ 1

2
V0Iðv;m; egÞ

V0Iðe; g; egÞ V0Iðv; l; egÞ 2V0Iðv;m; egÞ 1þ V0Iðe; eg; egÞ

0BBB@
1CCCA

G

L

MeG
0BB@

1CCA ¼ 0: (14)
It is easy to check that both the BSE approach and the
GRPA provide the same collective-mode energies vnðQÞ.
To prove this we introduced the two functions
Z�
n ðq;QÞ � Gþ

n ðq;QÞ � G�
n ðq;QÞ. Multiplying first of

Eq. (1) by vn þ eðk;QÞ½ � and the second one by
vn � eðk;QÞ½ � and adding them we again obtain Eq. (12)
with ’

Q
k;n � Z�

n ðq;QÞ and f
Q
k;n � Zþ

n ðq;QÞ. Thus, we
conclude that the BSE approach, the vertex equation
method and the GRPA provide the same collective
excitations vnðQÞ. The collective excitation spectrum at
point Q ¼ 0 is the same, but it is still unknown, in principle,
whether the secondary peaks in the paper by Chu and
Chang [4] are due to their singularity-removal method.
Thus, we have to check the BSE approach using a
simple interaction where exact results can be obtained.
A possible choice is a superconductor with a contact
interaction.

3 Collective excitations in superconductors We
start from the excitonic GRPA Eq. (12). The model
allowing us to obtain analytical results assumes an
interfermion interaction in a 1D superconductor that is
an attractive contact interaction, i.e., its Fourier transform
is a negative constant �V0 for all momenta. This in
turn leaves a wavevector independent gap function,
i.e., DðkÞ � D0. This leads to the number and gap
1þ V0Iðe; g; gÞ V0Iðv; g; lÞ 2V0I
V0Iðv; g; lÞ 1þ V0Iðe; l; lÞ 2V0I
1

2
V0Iðv; g;mÞ 1

2
V0Iðe; l;mÞ 1þ

V0Iðe; g; egÞ V0Iðv; l; egÞ 2V0I

���������
10 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
equations:
ðv;
ðe; l
V0Ið
ðv;
Z
ddq

d
1� eðqÞ

EðqÞ

� �
; 1¼1

2
V0

Z
ddq

d

1

EðqÞ ; (13)

ð2pÞ ð2pÞ

where eðkÞ � k2=2m� m and EðkÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ðkÞ þ D2

0

q
. Start-

ing from Eq. (12) where Vsðk� qÞ ¼ �V0, and after
some straightforward algebra we arrive at a set of four
coupled homogeneous equations for GðQÞ;LðQÞ;MðQÞ,
and eGðQÞ:
Here, we have introduced the following notations:
GðQÞ ¼ �
Z

ddk

ð2pÞd
gk;Q½Gþðk;QÞ � G�ðk;QÞ�; (15)
Z d
LðQÞ ¼ � d k

ð2pÞd
lk;Q½Gþðk;QÞ þ G�ðk;QÞ�; (16)
Z d
ðQÞ ¼ � 1

2

d k

ð2pÞd
mk;Q½Gþðk;QÞ þ G�ðk;QÞ�; (17)
Z d
eGðQÞ ¼ � d k

ð2pÞd
egk;Q½Gþðk;QÞ � G�ðk;QÞ�: (18)
The quantities Iðe; b; cÞ and Iðv; b; cÞ in the notation of
Ref. [11] are defined as:
Iðe; a; bÞ ¼
Z

ddk

ð2pÞd
eðk;QÞaðk;QÞbðk;QÞ
v2ðQÞ � e2ðk;QÞ ;

Iðv; a; bÞ ¼
Z

ddk

ð2pÞd
vðQÞaðk;QÞbðk;QÞ
v2ðQÞ � e2ðk;QÞ ;
with the factors faðk;QÞ; bðk;QÞg denoting any of the four
coherence factors lk;Q;mk;Q; gk;Q; egk;Q

� �
. The spectrum of

the collective excitations vðQÞ could be obtained assuming
the vanishing of the determinant:
g;mÞ V0Iðe; g; egÞ
;mÞ V0Iðv; l; egÞ
e;m;mÞ 1

2
V0Iðv;m; egÞ

m; egÞ 1þ V0Iðe; eg; egÞ

��������� ¼ 0: (19)
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The 3� 3 determinant of Refs. [11, 12] coincides with
the corresponding cofactor of the element in the fourth row
and the fourth column of our determinant (19). Only atQ ¼ 0
does the 3� 3 determinant coincide with the determinant
(19) since eg ¼ 0whenQ ¼ 0 and Iðe; eg; egÞ ! Iðe; 0; 0Þ ¼ 0.

3.1 Goldstone mode in the weak-coupling
limit In what follows we use a 1D superconductor to
calculate the dispersion of the collective modes using
Eq. (19). In the weak coupling limit the chemical potential
tends to the Fermi energy eF ¼ k2F=2m, and therefore, the
integrals are peaked at eF. The gap equation assumes the
form:
www
1 ¼ l

2

Z1
�1

dk

2p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 � 1Þ2 þ D2

q
¼ l

2

Z
dE

NðEÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ D2

p : (20)
Here the integration is over the dimensionless variables k
andE, andNðEÞ ¼

R1
�1

dk
2p
dðE � ðk2 � 1ÞÞ is the dimension-

less density of states. In what follows, we introduce the
following dimensionless variables: l ¼ V0kF=ð2peFÞ,
q ¼ Q=kF, and D ¼ D0=eF. Since the above integrals are
peaked about the Fermi level, we assume that values of the
integrals may be estimated by: (i) keeping only a thin shell of
thickness 2VD, where VD is the Debye energy, and
(ii) assuming a constant density of states N(0) inside this
thin shell. In this approximation the gap equation is replaced
by:
1 ¼ lNð0Þ
2

Z VD=eF

�VD=eF
dE

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ D2

p
¼ lNð0Þ ln

VD þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

D þ D2
0

q
D0

0@ 1A: (21)
In week-coupling limit (VD >> D0) the gap is:
D0 ¼ 2VD exp � 1

lNð0Þ

	 

: (22)
We are looking for the Goldstone collective mode with a
dispersionVðQÞ ¼ c�hQ, where c is the speed of sound. In the
weak-coupling case we use a small-Q, small-D0, and small-v
expansions of the terms in the determinant (19). Solving for
v ¼ VðQÞ=eF we obtain the following speed of sound:
c ¼ ½1� lNð0Þ�1=2�hkF=m. Thus, the BSE approach confirms
the result obtained by theGRPA that theGoldstonemode in a
weak-coupling is a phonon-like excitation, and its speed of
sound does not depend on the gap [11].

3.2 Non-trivial mode in the weak-coupling
limit The coherence factors lk;Q and egk;Q are odd under
change of the sign of eðkÞ, while the other two coherence
.pss-b.com
factors are even. This means that Iðv; g; lÞ, Iðe; l;mÞ,
Iðe; g; egÞ, Iðv;m; egÞ are vanishing integrals, and (19)
assumes the form:
ð½1þ V0Iðe; l; lÞ�½1þ V0Iðe; eg; egÞ� � ½V0Iðv; l; egÞ�2Þ
�

1þ V0Iðe; g; gÞ 2V0Iðv; g;mÞ
1

2
V0Iðv;m; gÞ 1þ V0Iðe;m;mÞ

������
������ ¼ 0:

(23)
The non-trivial collective mode has a dispersion
vðQÞ ¼ v0 þ v�hQ, where v is the speed of sound and
v0 > 0. In week-coupling limit we repeat the small-Q and
small-D0 expansions of the terms in the above 2� 2
determinant. First, we shall check about the existence of a
non-trivial solution with 0 < v0 < 2D0 at point Q ¼ 0. In
this interval we have:
1þ V0Iðe; g; gÞ

! �

v0lNð0Þ arctan
v0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2
0 � v2

0

q
0B@

1CA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D2

0 � v2
0

q ; (24)
V0Iðv; g;mÞ

! �

2D0lNð0Þ arctan
v0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2
0 � v2

0

q
0B@

1CA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D2

0 � v2
0

q ; (25)
1þ V0Iðe;m;mÞ

! 1�

4D2
0lNð0Þ arctan

v0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D2

0 � v2
0

q
0B@

1CA
v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D2

0 � v2
0

q ; (26)
1þ V0Iðe; l; lÞ

! 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D2

0 � v2
0

q
lNð0Þ arctan v0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4D2
0 � v2

0

q
0B@

1CA
v0

:

(27)
Thus, in the interval 0 < v0 < 2D0, there are no
solutions of Eq. (23). The only possible solution for
fv0;D0g << VD is v0 ¼ 2D0. In this case the 2� 2
determinant in (23) is not 0, but according to the gap
Eq. (21) the factor 1þ V0Iðe; l; lÞ ¼ 1� lNð0Þ lnðVD þ
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

D þ D2
0

q
=D0Þ is 0. To obtain the speed of sound v we

expand Iðe; l; lÞ around point 2D and for smallQ, andwe keep
only small-Q2 and small-ðv� 2DÞ2 terms. Thus, we find
v ¼ 2

ffiffiffiffiffiffiffiffi
3=5

p
ð�hkF=mÞ, i.e., the speed of sound in the weak-

coupling limit does not depend on the gap.

3.3 Strong-coupling limit In strong-coupling limit
m < 0. To solve the gap and the number equations one can
use the fact that the gap D0 is small, and therefore, we can
expand the number and the gap equations in terms ofD0 and
keep the D2

0 terms only. Thus, we find the gap D0

and the density n in terms of the coupling constant
l ¼ V0kF=ð2pjmjÞ and chemical potential jmj ¼ �h2k2F=ð2mÞ:
� 20
1 ¼ lp

2
1� 3

16

D2
0

jmj2

 !
;

D2
0

jmj2
¼ 8n

kF
: (28)
The next step is to expand the elements of the
determinant (19) for small Q and keeping only D2

0 terms.
Using Eqs. (28) and (19) we obtain the energy of the
Goldstone collective mode vðQÞ and the sound velocity c:
vðQÞ ¼ c�hQ;

c ¼ D0

2�hkF
¼ vF

ffiffiffiffiffiffiffi
n

2kF

r
¼ �hV0n

4m

	 
1=2

:
(29)
Note that the same analytical result can be obtained using
the 3� 3 determinant from Ref. [12], because for small Q
the contributions due to the eg-terms are of order QD2

0 and
higher.

The second, non-trivial mode in the strong-coupling
limit with dispersion vðQÞ ¼ v0 þ v�hQ results in v0 very
close to 2jmj. Specifically, if V0kF=2peF ¼ 0:639 and
D0 ¼ 0:145jmj numerical solution gives v0 ¼ 1:989jmj.
Our perturbative result for the sound velocity c in strong-
coupling differs from the exact velocity because the BCS
approximation for the ground-state energy in strong coupling
is different when compared to the exact BCS–Bose
‘‘crossover’’ theory solution [16].

4 Conclusion Since (i) superconductivity due to the
formation of Cooper pairs and the corresponding analogous
10 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
phenomenon of BE-condensed excitons in semiconductors
are described by the same equations, and (ii) the existence of
a non-trivial solution of the BSE is similar to the existence of
a non-trivial linearly-dispersive ‘‘moving Cooper pair’’
collective mode that can condense in superconductors, it is
natural to suggest that the presence of a secondary peak in the
semiconductor absorption spectrum would constitute a
signature for the existence of an excitonic BEC.

An important difference between the non-trivial modes
in superconductors and in semiconductors is that in the
former case both Goldstone as well as the non-trivial mode
are raised well above the energy gap when the bare
Coulomb exchange interaction is added (Anderson mech-
anism), while in the latter case the exchange interaction
only contributes to excitonic fine structure of excitons so
that the energy shift between the non-trivial mode and the
exciton peak must be roughly twice the average value of
the gap function.
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