
Initial considerations on the relationship between the optical absorption and the thermal

conductivity in dielectrics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys. D: Appl. Phys. 43 255403

(http://iopscience.iop.org/0022-3727/43/25/255403)

Download details:

IP Address: 132.248.12.224

The article was downloaded on 27/01/2011 at 20:47

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3727/43/25
http://iopscience.iop.org/0022-3727
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS

J. Phys. D: Appl. Phys. 43 (2010) 255403 (7pp) doi:10.1088/0022-3727/43/25/255403

Initial considerations on the relationship
between the optical absorption and the
thermal conductivity in dielectrics
C Garcı́a-Segundo1, M Villagrán-Muniz1, S Muhl2 and J-P Connerade3

1 CCADET, Universidad Nacional Autónoma de México (UNAM). Circuito Exterior,
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Abstract
The absorption of modulated or pulsed light leads to non-radiative processes that generate a
photoacoustic (PA) wave. The standard model assumes that the amplitude of the PA wave is
proportional to the optical absorption. In previous reports we have demonstrated
experimentally and theoretically that from this proportionality: (1) one can obtain quantitative
measurements of the optical properties of dielectric thin films and (2) that there may exist a
relationship between the amplitude of the PA wave and the thermal conductivity of a given
sample. Here we present analytic results that clearly show that the optical absorption and the
thermal conductivity are coupled to the amplitude of the PA wave in the modulated regime and
that this correlation holds for any type of macroscopic optical and thermal transparency. In
particular, the present analysis shows that the product of the optical absorption and the thermal
conductivity is related to the PA amplitude via a partition function.

1. Introduction

Photoacoustic (PA) absorption spectroscopy is extensively
used in several scientific and technical fields. These range
from applications in gases, condensed matter, laser control,
colloidal materials and the so-called soft matter [1–6]. Most
of the applications related to spectroscopic analysis are focused
on either the study of optical properties or the determination of
thermodynamic properties. Notably, over the last few years,
PA-imaging applications have become of interest. The core of
the PA phenomenon is the generation of wideband acoustic-
like waves as a consequence of a process of absorption of
radiation; the acoustic oscillation is induced in the sample by
the interaction with a pulsed or modulated external light source.
The range of frequencies of these waves can be from sound
to ultrasound with this depending on the time frame of the
excitation and on the thermoelastic properties of the medium.
As long as the absorption of light is below the saturation limit,
the amplitude of the induced sound-like wave is proportional
to the amount of absorbed radiant energy. This is an empirical

result that has been experimentally verified and accepted by
all present PA models [1–3, 5, 7–9]. However, as Haisch [10]
pointed out, the extraction of quantitative information from the
PA signals is a non-trivial task, with this being true for almost
any PA application, and is particularly so for PA spectroscopy.
In the PA field, the problem of extracting information has
been solved on a case-by-case basis and this is a considerable
limitation for the potential impact of the PA techniques. One of
the main obstacles to achieving quantitative PA measurements
is related to the lack of knowledge of the specific amount of
energy that is transferred from the optical absorption process
into measurable amounts of heat or work. In other words,
we do not know the explicit analytic relationship between the
optical absorption (optical resistance) and thermal conductivity
(thermal resistance). The best we have is the experimental
evidence that there exists a rule of proportionality between
these resistances; see [11] and references above. Therefore,
this implies the existence of a specific expression that relates
the optical absorption (α) and the thermal conductivity (κ)
with terms associated with a local change in temperature or
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Figure 1. Schematics of the type of layered system we discuss in the
main text. In (b) we picture the type of experimental detection we
assume for our analysis, and (a) is the equivalent optical detection,
and is displayed for the purpose of explanatory comparison alone.

pressure. Thus, this is an open problem which has yet to be
solved.

In the present contribution we focus our attention on
setting up conditions for finding a relationship of the type
noted above. We start from a consideration of the analysis
of solid dielectrics illuminated by low frequency modulated
continuous light. Finally, we arrive at results from where
one can infer the viability of the quantitative analysis. To
do this, we analyse the product of the optical absorption
and the thermal conductivity against all physically possible
combinations between the macroscopic optical transparency
and the thermal transparency. This product appears explicitly
in almost the same functional form, in almost all the PA models.
The actual meaning of this product embraces implications
beyond the field of PA alone. We then discuss some aspects
of such findings, with the starting point being the general
expression used to represent a PA signal for CW-modulated
illumination within the visible range.

For the present case, the modulation frequency is assumed
to be in the range of 5 Hz to <100 Hz. Then we proceed to
analyse, in a case by case manner, the corresponding particular
boundary conditions and the material properties. From this
we consider the optical absorption and its relationship with the
thermal conductivity. The final step is to show the relationship
between the rise in temperature within the interaction volume
as a function of, among other parameters, the optical absorption
and the thermal conductivity.

2. PA theory for modulated illumination

For simplicity and to aid with the analysis and the presentation
of the results, we start from the analysis of a layered solid
dielectric. See figure 1 for schematic guidance. The sample
is a solid that is isotropic, homogeneous and in thermal
equilibrium, as required by the standard experimental and
theoretical PA model. This model refers to the measurement
and analysis of sound-like signals induced in the sample as a
result of the optical absorption of pulsed or modulated light,
whose power is below the saturation limit. Since a fraction of
this absorbed optical energy is transferred into the sample via
non-radiative processes, there is a local increase in temperature
together with a temporary pressure gradient. It should be noted

that these non-radiative processes are modulated by the spatial
and temporal distribution of the illumination source. The time
evolution of this gradient or burst of energy is expressed in
terms of sound-like waves: the PA signals. These signals are
recorded using a microphone or transducer directly attached
to the sample (see figure 1). Experimentally, the amplitude of
these PA signals is observed to be proportional to the optical
absorption, and thus to the intensity of the radiant source.

In the standard PA model [3, 11, 12] the PA-amplitude
output, which we call H0, is expressed in a general way
through a master equation; which can be modified depending
on the boundary conditions. This master expression includes
the material properties and the instrumental and experimental
set-up contributions (such as the frequency of modulation
of the illumination, temperature, humidity and instrumental
response). Once the experiment is set these contributions
remain constant during the experimental process, thus there
is no restriction to represent these contributions through a
constant G0. We also recall that the general model assumes
that, within a specific spectral distribution, the amplitude of
the PA output is proportional to the intensity of illumination
I0. Thus, the net PA-amplitude output is proportional to the
product of these parameters, e.g. H0 ∝ G0I0. Similarly, once
the experimental conditions have been decided, the intensity
of illumination at a given wavelength can be assumed constant.
Therefore, one can obtain a normalized PA output, say H, by
simply taking H ∝ H0/(G0I0). In the rest of our analysis,
for any reference to the PA output we mean the normalized H
amplitude, expressed as

H = r

r2 − 1

2r − e−αz0
[
(r + 1)eσz0 + (r − 1)e−σz0

]
σκ(eσz0 − e−σz0)

. (1)

The details for the derivation of (1) can be found in the
literature [2, 3, 11, 12]. This equation is presented in terms of
the thickness of the sample z0 (which is also constant for a given
experiment; shown as d in figure 1), the thermal conductivity
κ and a parameter r, which is the ratio of the optical absorption
and the thermal diffusion coefficient, σ = √

πf/a; where f is
the frequency of modulation of the illumination and a is the
thermal diffusivity, a = κ/ρc. Here, ρ is the sample density
and c is the specific heat at constant pressure [2, 6]. Then H has
units of temperature divided by the flux of power per unit area,
K (W m−2)−1. Thus, physically H represents the rate of change
in the local temperature as a result of the flux of energy from
the non-radiative processes; these triggered within a volume
of area A and length z0. Interestingly, these units are due to the
product σκ in the denominator of (1). Whilst the remaining
terms in (1) produce a dimensionless number that we label
as ξ0. Therefore, (1) is rewritten as H = ξ0/(σκ). In the
next step we multiply both sides of this expression by α. The
result is that on the right-hand side we have the product rξ0,
divided by the product of the optical absorption and the thermal
conductivity. Therefore, by defining ξ = rξ0, which is also a
dimensionless number, and after re-arranging terms we get

κα = ξ

H
; (2)
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where

ξ = r2

r2 − 1

2r − e−αz0 [(r + 1)eσz0 + (r − 1)e−σz0 ]

(eσz0 − e−σz0)
.

For given boundary conditions of a given sample, this ξ factor is
a constant. Conversely, any change in the material or boundary
conditions would imply a change in the value of ξ .

Thus, once the amplitude of the waves is normalized as
indicated before, the PA amplitude will be expressed according
to the many ways as (1) can be reduced; see section 3 for details.
An important condition of H is that the optical properties of
the sample, such as the reflectance, the optical scattering,
the absorbance and the transmittance, are linear functions
of the illumination wavelength. We recall that we assume
we have a homogeneous and isotropic sample. For means
of sensing the information, we assume that the sensor is a
membrane microphone, such as that of the open photoacoustic
cell (OPC) type [4, 13]. Since the absorbed radiant energy
induces diffusive phenomena within the sample, then the
modulation frequency of the incident illumination must be
sufficiently low; this frequency would depend on the material
properties. The specific details of these considerations can be
found in [3, 13–15].

Note that in [11], we reported a relationship of the type
represented by (2), along with the experimental support for
this description. These results were obtained for only one
specific set of boundary conditions. For this work we further
investigate the relationship for the general case.

3. Different physical conditions

The various cases covered by the standard PA models are
related to the different material properties and the boundary
conditions associated with α and σ . This follows from the fact
that they define the characteristic optical thickness (otherwise
known as optical attenuation or optical length, µα = 1/α) and
the characteristic thermal thickness (the thermal attenuation or
thermal diffusion length, µσ = 1/σ ), respectively. Therefore,
the next stage is to describe the many possibilities in terms
of the corresponding boundary conditions along with the
respective expressions that are obtained from applying these
conditions to equation (1). The analytic details can be found
in [3, 5, 9, 12].

3.1. Optically thick (opaque) materials

A given material can be optically opaque (optically thick,
µα < 1), implying that its transmittance is T = exp(−αz0) =
0; and yet it can also be the following.

3.1.1. Thermally thin. This implies that µσ � z0 and
µσ � µα or that | r |� 1 and thus exp(±σz0) � 1 ± σz0; in
this case (1) reduces to

H = 1

σκ

1

sinh(σz0)
. (3)

After multiplying both sides of (3) by α, and recalling the
definition of r, the terms can be reorganized to give

ακ = 1

H

r

sinh(σz0)
. (4)

Since r and the sinh are dimensionless, then as expected (4)
has units of (W (m2 K)−1).

3.1.2. Thermally thick. In this case µσ < z0 (or 1 < σz0),
having |r| > 1. Here we note that the hyperbolic ratio
1/(ex − e−x) is csch(x); which can be represented in terms
of an asymptotic series expansion. Using such representation
and the respective boundary conditions, (1) becomes

H = r

(r2 − 1)σκ
e−αz0 . (5)

After repeating the same procedure used for deriving (4) from
(3), we get

ακ = r2

r2 − 1

e−αz0

H
. (6)

3.1.3. Thermally very thick. This is where µσ � z0 (or
more appropriately 1 � σz0) and then |r| < 1. In this case,
the argument of the hyperbolic function can be assumed to
tend to infinite. With the help of the asymptotic representation
introduced above, then (1) is reduced to

H = 1

r

e−σz0

σκ
. (7)

Again after multiplying both sides of equation (7) by α and
reorganizing terms, we get

ακ = e−αz0

H
. (8)

It should be noted that (1) the general model only takes
into account the thickness of the sample, (2) for the cases
considered above, the optical absorption occurs within a
volume of area A times a thickness zl, which may or may not
be the same as the actual sample thickness, z0.

3.2. Optically thin (transparent) materials

Another set of possibilities arise for samples that are optically
thin (µα � 1). This means that its transmittance is T =
exp(−αz0) �= 0, and therefore, H depends on both the sample’s
optical properties and on the thermal properties. Again, an
optically thin material can also be the following.

3.2.1. Thermally very thin. This is for µσ � z0 (with
|r| > 1), then equation (1) reduces to

H = r

r2 − 1

αz0

σκsinh(σz0)
. (9)

After using the same procedure as in the previous subsection
and noting that at this scale sinh(σz0) ≈ σz0 + . . ., we get

ακ = r4

(r2 − 1)H
. (10)
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3.2.2. Thermally thin. In this case µσ > z0, and |r| < 1.
Therefore, (1) is reduced to

H ∼= r
e−αz0

σκ
; (11)

and correspondingly

ακ ∼= r2 e−αz0

H
. (12)

3.2.3. Thermally thick. This case refers to µσ < z0 and
|r| � 1, thus from (1) we get

H = r
e−αz0

σκ
; (13)

from where we obtain

ακ = r2 e−αz0

H
. (14)

In this way we verify that regardless of how the optical and
thermal transparency combine, for each case one can derive an
expression which equates with the product ακ , and in general
this is in terms of a dimensionless-type number, ξ , divided by
the normalized PA amplitude H. This procedure describes in a
fundamental way a new approach to the interpretation of the PA
experimental data. Moreover, it provides a way to extend the
theory, thus making more viable the quantitative analysis. As
indicated above, in [11] we presented results related to this ακ

product. At that time we considered that there was a possibility
that this relationship could lead one to a Widenmann–Franz
type law for dielectrics. The present results further support
such an idea.

4. The product ακ

In physical terms, the optical absorption coefficient can be
seen as a measure of the coupling of each wavelength of the
external field with the sample [16]. While within a solid, the
transference (coupling) of this optical absorption to thermal
energy depends on the sample’s ability to conduct heat; and
this can be quantified in terms of a flux of free energy [17].
This is explained in more detail in the rest of this section. The
process of optical to thermal energy transference involves the
generation of collective quanta of mechanical vibrations that
are defined by the modes of lattice oscillation or lattice waves
and can be observed as a spectrum of phononic oscillations;
which at the low limit are sound waves [18, 19]. In this context,
for dielectrics, it has been established that the efficiency of
transference of the energy from optical to thermal is indicative
of the strength of the interaction of the natural transverse
lattice oscillation modes with each wavelength of the external
illumination field (this is different from the case for metals
where longitudinal waves are involved) [17, 18, 20]. This type
of interaction signifies that for each illumination wavelength
there exists a specific phonon spectral distribution response
(or lattice wave distribution response). In other words, the
non-radiative processes, in the sense we discuss here, will

occur when at a given wavelength the coupling of the external
field with the solid results in inducing specific lattice-vibration
modes. These vibrations are responsible for the transport of
the energy flux represented by H, and thus is what determines
the form of the non-radiative absorption spectra; as reported
in [5, 11].

On the other hand, we recall that the thermal conductivity
is directly related to the phonon mean free path (heat-carriers-
free-path) which is determined by phonon–phonon scattering.
At room temperature, an isotropic regular solid (crystalline)
will have the highest thermal conductivity value when it is
pure. Conversely, the thermal conductivity decreases with an
increase in the impurities and/or the lattice defect density.

Thus, the product ακ can be seen as the measure of
coherency between the external field and the induced thermal
field as a result of the matching of the optical frequencies with
the phonon mean-free-path distribution; or rather, the coupling
between what can be described as the optical impedance to
the thermal impedance. We recall that this product has units
of (W (m2K)−1). Therefore, this represents a flux of energy
per unit time and unit of area, rated by the change in local
temperature which only occurs during the presence of the
external field (period of illumination). Therefore this flux,
as described by this dimensional analysis, helps us to define
ακ = zlρw/T , where ρw is the volumetric power density,
W/(Azl); T is the temperature within the interaction volume.
That is defined by the illumination area A and the interaction
depth, zl, that is perpendicular to the surface where the external
field is incident. Note that for an optical transmittance Topt =
0, zl �= z0; while for Topt �= 0, zl = z0 with consequences
as described in section 3. Therefore, this volumetric power
density can also be written in terms of the time variation of the
volumetric energy density as

ρw = dρe

dt
. (15)

After considering the ακ product, as expressed in the above
paragraph, from (15) it is clear that

dρe

dt
= ακT

zl
. (16)

The study of the type of interactions we describe here, related
to the optical–thermal association and its significance, is not
new; as can be seen in Frölich’s theory of dielectrics [17].
The action of the external field on a dielectric, assuming one
modulation period, is understood to be the amount of external
work done on a constant volume, V = Azl, of the solid.
Since this work, on average, is periodic then it is applied in
a cyclic reversible and isothermal way. It is of interest that
the Fröhlich interpretation matches with the PA experimental
and theoretical descriptions. In PA we assume that the sample
is in thermal equilibrium with the environment and interacts
with the external field in a reversible way. Therefore, it can be
seen that ρe is the Helmhotlz free energy density, F/V , with
F being the Helmholtz free energy and V the volume within
which the amount of work is done [17]. To the best of our
knowledge, this is the first time this interpretation has been
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proposed. Furthermore, we observe that this energy density is
related to the partition function (Z) as

ρe = −kBT log(Z), (17)

where kB is Boltzmann’s constant. Here T is the change in
temperature within the interacting volume. The relevance of
this formalism is that (1) we have a way to directly connect
the description of the PA phenomenon with the statistical
physics theory; (2) and therefore, we can connect the various
microscopic phenomena with macroscopic observations; (3)
additionally, once we know the partition function for a
given sample one can obtain almost all the thermodynamic
parameters and therefore a quantitative analysis is potentially
available [1–3, 5, 7–9].

Once we have (17), the sample’s internal temperature is
the first parameter we can calculate,

T = zl

κα

dρe

dt
. (18)

In our description, Z is related to the spectral distribution
of the lattice-vibration modes produced by the absorption of
radiation at a specific wavelength. Thus, because the optical
absorption is a function of the wavelength one expects to get
a different Z for each wavelength and therefore there will
be a change in the thermal conductivity. The corresponding
analytic description is complex and for the development of this
study we use only the phenomenon seen in the experimental
evidence [11]. In any case, it can be expected that the optical
absorption, expressed as induced external work, would cause a
change in the local temperature within the interaction volume
and that this change is specific for each wavelength. This
means that in the interaction of an external field with a solid, the
amount of energy that is transferred from optical to thermal is
characterized for each wavelength of illumination by a specific
phonon distribution (the response to the illumination); and that
response is an attribute of the material at that wavelength.

Now, by combining (15) and (17), we get

dρe

dt
= −kB

[
log(Z)

dT

dt
+ T

d log(Z)

dt

]
= καT

zl
. (19)

On solving (19) two possible physical conditions become
apparent: (1) when Z is time independent and (2) when Z is
time dependent. We will now consider the significance of
these cases. We recall that we assume a homogeneous and
isotropic material, and that the frequency of modulation of
the illumination is low. Thus, for the time dependent Z, we
observe that if at the beginning of a period of illumination
we consider an ‘instant picture’ of the phonon distribution
(e.g. lattice-vibration modes) triggered by an external field, we
would observe a Zo distribution of states. Then if at an arbitrary
instant of time later we took a second picture we would observe
that the distribution of states was essentially the same. This is
because the interaction time scale is very short compared with
the time scale for the transport and displacement of the phonon
processes. This, combined with the condition that the number
of oscillatory components involved is very large, implies that
any effective change in the distribution of states will be within

the noise range of the average energy distribution due to the
ambient temperature and thus undetectable [11, 17, 19]. Since
in the right-hand side term within square brackets in (19),
d log(Z) can be written as dZ/Z , then after substituting this,
the resulting term will be zero. Thus, after arranging terms,
we get

dT

T
= − κα

zlkB log(Z)
dt. (20)

We solve this for a time, t , set within the time frame of
illumination in a modulation period, t0. During this period,
within the volume of interaction, the temperature changes from
the initial value T0 to a maximum δT +T0. Thus, we solve (20)
to get

log

(
δT + T0

T0

)
= − κα

kBzl log(Z)
t0. (21)

From here we obtain that the change in local temperature can
be expressed as

δT = T0

{
−1 + exp

[
− κα

kBzl log(Z)
t0

]}
. (22)

This is the burst of temperature that is ultimately the engine for
the wave that travels within the sample as a sound-like wave;
i.e. the PA signal. Empirically, from the PA experimental
evidence, we know that the local change in temperature is
very small compared with the initial temperature: T0 � δT .
However, the caused effects are clearly measurable; as is done
for the PA burst. Note that except for the partition function,
all the other aspects contained in the PA models are discussed
elsewhere in the PA literature (22) [5, 9, 11]. Thus, we explore
some consequences of the introduction of this function. In this
sense, if instead one chooses to solve (20) for Z, we start from
(21) and take a series expansion of the exponential function
and then we approximate this to first order since this is the
most important contributing term at the T0 � δT regime. As
a result we obtain that

δT

T0
= − κα

kBzl log(Z)
t0; (23)

and after reorganizing terms and solving for Z, we get

Z = exp

(
− T0κα

δT kBzl
t0

)
. (24)

Let us define β = 1/(δT kB), and from (16) we find that, at
each illumination wavelength, the term T0καt0/zl represents
the volumetric density of free energy within a single period of
illumination. Thus, one can rewrite (24) as

Z = e−βρe; (25)

recovering (17); which is the definition of Z at the δT → 0
limit. This result implies that the temperature distribution is
described by the canonical ensemble.

Now using equation (2) and substituting ακ in
equation (24) by the ratio ξ/H we get an expression that is
of the same analytic form as (25), albeit this corresponding
to the PA phenomena. This function can be associated
with a particular sample via the boundary conditions as

5
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described in section 3. Hence, once we know the partition
function associated with a sample, then in principle one
knows everything about the sample; and one can derive all
the observable physical quantities including, as we describe,
the optical absorption. It should be noted that the inverse is
also true for an optically thin sample: given the absorption
spectrum, one can reconstruct the part of the partition function
on which the optical absorption depends. However, if the
sample is optically thick, then this inverse relationship is no
longer unique: it is quite possible that two systems with
different partition functions could possess the same optical
absorption spectrum. As far as the current analysis goes, this is
one of the possible limitations for the present results. However
that is the subject of future analysis.

Let us assume we know all the terms in ρe, including
the initial temperature and the amount of induced change
in this temperature. Thus, in principle, as referred above,
experimentally one can achieve a quantitative reconstruction
of the portion of the partition function on which the optical
absorption depends; i.e. the amount for which we can
normalize the distribution of states at time to calculate e.g.
the mean energy, the specific heat or other thermodynamic
parameters.

The other variant that one can obtain from (19) is that
for the partition function being time dependent. This situation
arises when conditions are such that the interaction time and the
decay times are similar, and the discreteness of the phase space
is taken into account [21]. Such a possibility emerges e.g. for
nano-samples (such as nano-particles, nano-films, and so on).
The general feature is that the number of states contributing
to the statistical distribution may become somehow limited
and varying with time. Thus, we reorganize terms in (19)
and correspondingly distribute log(Z), T , kB and the time
differential to obtain

dT

T
+

d log(Z)

log(Z)
= − κα

kBzl log(Z)
dt. (26)

The PA experimental evidence indicates that if we illuminate
the sample for a period of time, say t0, then within
the interacting volume we will induce a change in local
temperature. Going from initial T0 to a final value T = T0+δT .
Thus, we integrate (26) to get

log

(
δT + T0

T0

)
= −

[
κα

kBzl log(Z)
t0 +

∫
d log(Z)

log(Z)

]
. (27)

Since we want to solve for the temporal change in temperature,
from (27) we obtain that

δT = T0

{
−1 + exp

[
− κα

kBzl log(Z)
t0

∫
d log(Z)

log(Z)

]}
. (28)

Here (28) is somewhat similar to (22), except for the
extra term

∫
d log(Z)/log(Z). Therefore, in this case

any macroscopic temperature measurement would produce a
noticeable bias temperature field resulting from the variations
in the distribution of microstates. In this case, one
is immediately tempted to ask: how measurable is the
temperature variation? In fact, this will depend on how this

temperature variation compares with the fluctuation of the
microstates. Further, recalling that Z is a quantity of statistical
nature, the comparison should also be in statistical terms.

What is of interest is that in both regimes covered by (19),
a flux of external energy in a confined volume of the sample
provokes a local increase in temperature and that this is via
non-radiative processes. This phenomenon is the engine that
triggers an elasto-mechanical wave which travels within the
sample as a sound-like wave; i.e. the photo-induced PA signal.
The analysis for the short-time scale, τL, regime has not been
included since it requires a specific and detailed analysis, in
view of the fact that the theoretical set-up is different from the
current one, τM. This is τM � τL, and different conditions
arise.

5. Discussion of results

To date, neither experimentally nor theoretically is it possible
to truly perform quantitative real-time PA measurements. The
best we have is the deterministic process of backtracking the
temporal evolution of a process such as the burst of energy
occurring in the PA phenomenon. This study displays some
aspects of this backtracking. In particular, this is related to
describing how the absorbed and thermal energy evolve in time;
this is made in terms of the PA-signal representations. From
the set of expressions we obtain here, there seems to exist a
way to perform an effective quantification of the transference
of energy, from optical to thermal processes. As we describe,
in the modulated illumination regime, the standard model
provides us with conditions to obtain the product ακ , which
appears to be a consistent result for each case covered by such a
model. Furthermore, this interpretation bring us to understand
that once a dielectric sample is set to interact with a radiation
external field, the sample’s response to the field is in terms
of how this field is coupled to local vibrational modes. If
one takes into account the product ακ , then one can estimate
that a measure of such coupling is somehow proportional to
the thermal conductivity. Then these conditions permit us to
define a flux of energy in a similar way to that in fluids theory
or to that described by an electric current. We recall that
the current results correspond to the case for low frequency
of modulation for the external field. However, the current
results are hinting that a similar type of relationship for the
short-time scale τL could exist, such as with the case for short
laser pulses (>20 ns). Therefore, it would be very necessary
to study and understand the implications on the existence
of a more general relationship between α and κ , especially
if we want to know which are the necessary and sufficient
conditions for this relationship to exist. By now we consider
that regardless of the time regime for the PA phenomena to
occur, it is required to set up these common features: (1) a flux
of external optical energy interacting within a portion of the
local volume that provokes a local increase in temperature; (2)
the so induced non-radiative processes would trigger an elasto-
mechanical wave which travels within the sample as a sound-
like wave [1, 9, 11]. This brings us to set the definition and
actual physical meaning of the product we analyse in section 4.
On the one hand, it is constructed from its interpretation as
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proportional to a flux of radiative energy, which is the work
that is made on a solid [17]. As a result we establish that the
relationship between the optical absorption and the thermal
conductivity is via a partition function.

6. Conclusions

So far the experimental and theoretical interpretations of the
PA phenomenon have been well satisfied by a qualitative
approach. For general applications one starts by defining the
spatial volume within which the optical absorption takes place,
and assumes this volume as a heat source q, regardless of
the nature of the source. For practical applications related
to condensed matter and gases, this is good enough. The
existence of different models is a consequence of the many
possible dynamics that the non-radiative process can follow
due to many possibilities for boundary conditions and material
properties. It should be noted that we have considered
all the physically valid combinations between optical and
thermal transparency, which occur for illumination at the low
frequency modulation regime. There is evidence that at short-
time scales similar types of results would be obtained. In
itself this calls for defining a new set of phase space that
equates with the Hamiltonian type of phase space derived
from Liouville’s theorem (conservation of energy [18, 19]).
Our results demonstrate that for any type of sample the PA
technique at low-modulation illumination mode, by now, can
be used to obtain a complete set of the optical and thermal
characteristics of the dielectric sample.
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