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a b s t r a c t

In this work, the rectilinear flow of a complex liquid under a pulsating, time-dependent pressure
gradient is analyzed. The fluctuating component of the pressure gradient is assumed to be of small
amplitude and can be adequately represented by a weakly stochastic process, for which a quasi-static
perturbation solution scheme is suggested. The pulsating pressure-gradient flow is analyzed with the
Bautista–Manero–Puig model (BMP) constitutive equation, consisting in the upper convected Maxwell
equation coupled to a kinetic equation to account for the breakdown and reformation of the fluid struc-
eywords:
omplex liquids
ulsatile flow
tochastic solution
MP model

ture. According to the BMP model, thixotropy was found to have a negative effect on the energy associated
to the maximum flow enhancement and reflects the relationship among the kinetic, viscous and struc-
tural mechanisms in the system. The flow enhancement is a function of the square of the amplitude of
the oscillations, the Reynolds and Weissenberg numbers, and it is also dependent on the dimensionless
numbers representing the viscoelastic, kinetic and structural mechanisms. Finally, flow enhancement is
predicted in an aqueous worm-like micellar solution of cetyltrimethyl ammonium tosilate (CTAT) for

various concentrations.

. Introduction

The analysis of the oscillating pressure gradient flow of New-
onian and non-Newtonian fluids has attracted ample interest due
o several applications, among them, in bio-fluid mechanics [1–3],
iorheology, enhanced oil recovery and others. In biorheology,
xamples are the flow of blood in veins which is forced by a periodic
ressure gradient [4–10] and interesting manifestations of biologi-
al fluid flow such as the flow of spider silk [11–13]. From a practical
oint of view, pulsatile flow of complex liquids (worm-like micellar
ystems and lyotropic liquid crystals) has applications in enhanced
il recovery. Likewise, pulsating and oscillating flows are impor-
ant in the industrial applications such as polymer extrusion using
scillatory dies. The effect of the oscillations on the heat transfer
nd their interplay with inertia and viscous dissipation in non-
ewtonian fluids, such as the dependency of the bulk temperature
n frequency and amplitude of the oscillations, has been reported
14–21]. In addition, the use of pulsations has also been of interest
n connection with heat, turbulent heat, mass transfer and coating

rocesses [22–24].

Constitutive equations that take into account build-up and
reak-down kinetics of a complex fluid structure have been used
o model several complex systems [25]. Complex fluids include

∗ Corresponding author. Tel.: +52 55 55585517; fax: +52 55 56224602.
E-mail address: almotasim@hotmail.com (F. Calderas).

377-0257/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.jnnfm.2009.11.001
© 2009 Elsevier B.V. All rights reserved.

biological fluids such as polypeptides, cellulose, and composites,
that often exhibit crystalline order, anisotropy and viscoelastic-
ity. They incorporate sequences of self-assembly, structural, kinetic
processes under flow and mass transfer [26]. The characterization
of these phenomena has been studied at length by several authors
[27–31].

Likewise, viscoelastic surfactants have been used as rheologi-
cal modifiers in coating process and also in enhanced oil recovery
operations, especially those related to underground formations.
The extraction of additional amounts of oil can be achieved by
hydraulically inducting fractures in the rock formations [32]. Vis-
coelastic surfactants are characterized by entangled network of
large worm-like micelle structures. These structures break and
reform during flow, exhibiting a rich rheological behavior. Predic-
tions of the flow behavior of viscoelastic surfactants by constitutive
equations have been a challenging issue [33,34]. These systems
exhibit Maxwell type behavior in small-amplitude oscillatory shear
flow and saturation of the shear stress in steady simple shear, which
leads to thixotropy and shear banding flow [35–37]. In the non-
linear viscoelastic regime, elongated micellar solutions also exhibit
remarkable features, such as the presence of a stress plateau in
steady shear flow past a critical shear rate accompanied by slow

transients to reach steady state [38,39].

Theoretical predictions using perturbation and numerical meth-
ods on viscometric flows (or nearly viscometric flows) of the flow
enhancement as a function of frequency and amplitude of oscilla-
tions have been reported [39–71], using viscous and viscoelastic

http://www.sciencedirect.com/science/journal/03770257
http://www.elsevier.com/locate/jnnfm
mailto:almotasim@hotmail.com
dx.doi.org/10.1016/j.jnnfm.2009.11.001
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3.1.2. Non-dimensional groups
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quations of state [39–41,49,50,54,55,57–60,67–71]. In most anal-
ses, it is shown that shear-thinning causes the flow enhancement
nd that this enhancement is proportional to the square of the
elative amplitude of the oscillating pressure gradient and its mag-
itude depends strongly on the shape of the viscosity function.
he maximum in the resonance curves reported by several authors
an be explained by a coupling of the viscoelastic properties with
he macroscopic perturbed motion. Among the important quanti-
ies are the shape of the viscosity curve and the inter-relation of
he characteristic material properties of the system [54–60]. Other
mportant factors are the wave-form (triangular, sinusoidal, and
quare type) that has a strong effect on flow enhancement and
ower requirements [64,65,68–70].

Notwithstanding, there is still open questions and lack of the-
retical and experimental studies dealing with complex fluids
nd complex behaviors such as thixotropy, rheopexy and shear-
anding in pulsating and oscillating flows. They represent a test to
ew constitutive equations and this aspect motivates the present

nvestigation. In this regard, the main objectives of this work
re:

. Predictions of the flow enhancement and power requirement by
a pulsating time pressure gradient of a complex kinetic liquid
modelled by the Bautista–Manero–Puig (BMP) equation of state
[72–75].

. Analysis of the thixotropy and the inter-play with the kinetic,
structural and viscoelastic properties of the fluid, through
dimensionless groups associated to each mechanism.

. Study the effect of the surfactant concentration on thixotropy
using rheometric data of an aqueous worm-like micel-
lar solution (cetyl trimethyl ammonium tosilate) to predict
the flow enhancement for various micellar concentrations
[76].

This paper is organized as follows: Section 1 contains the intro-
uction to the problem and previous work. Section 2 discusses the
MP model. The formulation to the problem is presented in Section
, with the non-dimensional variables and the stochastic properties
f the random function n(t) used to describe the pulsating pres-
ure gradient. In Section 4, the perturbation solution is proposed
nd analytical results are shown in Section 5. Theoretical predic-
ions of the flow enhancement using worm-like solutions data are
escribed in Section 6. Concluding remarks and future work are
entioned in the last two sections.

. Constitutive equation (the BMP model)

The BMP model [72–75] couples a time dependent equation for
he structure changes with the upper-convected Maxwell consti-
utive equation. The evolution equation for the structural changes
as conceived to account for the kinetic process of breakage and

eformation of complex liquid and is defined by the following set
f equations:

+
�(IID)

G0

∇
� = 2�(IID)D (1)

d

dt
ln �(IID)� = 1 −

�(IID)

�0
+ k�

(
1 −

�(IID)

�∞

)
� : D (2)

∇

n Eq. (1) the stress � is a viscoelastic stress, � is the upper-
onvected derivative of the stress tensor, � is the viscosity function,
is the rate of deformation tensor, IID is the second invariant of D

nd G0 is the elastic modulus. In Eq. (2) �0 and �∞ are the vis-
osities at zero and very high shear rates, respectively, � is the
luid Mech. 165 (2010) 174–183 175

structural relaxation time and k can be interpreted as a kinetic con-
stant for the structure breakdown; all five parameters of the model
(�0, �∞, G0, �, and k) are related to the fluid properties and can
be estimated from independent rheological experiments in steady
and unsteady flows. The viscosity at lower and upper shear rates
(�0, �∞) can be estimated through experiments in steady shear
flow. The structural time and elastic modulus (G0, �) can be cal-
culated by using linear oscillatory flow. The parameter (k) can be
evaluated in stress relaxation experiments after steady shear flow
[76,77].

The BMP model was selected for this study due to its ability
to predict the thixotropic behavior of structured fluids (such as
worm-like micellar solutions, dispersions of lamellar liquid crys-
tals, bentonite suspensions and associative polymers) [72–78]. It
reproduces the flow curve of shear-thinning fluids, i.e. a Newtonian
plateau at low and high shear rates and the intermediate power law
region. Due to its simplicity, analytical solutions for complex flow
situations can be explored, as compared to other more complex
models [79–84].

3. Problem formulation

The isothermal rectilinear flow of an incompressible complex
liquid under a pulsating time-dependent pressure gradient is ana-
lyzed in a circular pipe of radius r = a and axial length z = L. Entry
and exit effects and gravitational forces are neglected. In this sys-
tem, all physical quantities in cylindrical coordinates (r, �, z) are
defined with respect to an origin at the pipe center. The axial
fluid velocity is a function of (r, t) and both the non-slip condition
(Vz(r = a, t) = 0) and symmetry of the velocity field are applied. The
pulsating pressure gradient here is represented by ∂zp(1 + εn(t)),
where n(t) is a pressure gradient noise and ε � 1 is a small
parameter.

3.1. Dimensionless variables, groups and equations

3.1.1. Non-dimensional variables
Herrera et al. [71,85] proposed the following dimensionless vari-

ables for the axial velocity, pressure gradient, time, shear-stress,
shear-rate, radial coordinate, viscosity function and frequency,
respectively

V∗
z = Vz

ωa
; p = dP/dz

�0/a�
; t∗ = t

�
; 	 = �rz

�0/�
;

N∗
(1) = N1

�0/�
= �rr − ���

�0/�

N∗
(2) = N2

�0/�
= ��� − �zz

�0/�
; 
̇∗ = �
̇rz;

r∗ = r

a
; �∗ = �

�0
; ω∗ = ω� (3)

Here, the characteristic time is � (structural build-up time). This
election of the non-dimensional variables enables the compari-
son with other characteristic times associated to a given physical
mechanism (e.g. viscoelastic, �0 = �0G−1

0 , �∞ = �∞G−1
0 and rupture

�r = k�0 times).
Using the above expressions, the dimensionless components
of the momentum equation, constitutive equations and the
flow enhancement are obtained. In addition, the following non-
dimensional groups are defined, as discussed previously by Herrera
et al. [71,85]
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[54,55,57,60,71]

	̇0 = d	(
̇∗)
d
̇∗

∣∣∣

̇∗→
̇∗

; 	̈0 = d2	(
̇∗)
d
̇∗2

∣∣∣∣

̇∗→
̇∗

;
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e = �(ωa)a
�0

; De = �0G−1
0

�
; A = k�0

�
; B = �0

�∞
;

= (AB)1/2 =
(

k�0

�

�0

�∞

)1/2

; We = ω∗De = �0

G0
ω;

eWe = �(ωa)2

G0
(4)

The pulsating Reynolds number (Re) [53] relates the inertial
nd viscous forces in the fluid. The second group is the Deborah
umber (De), which represents the relation between two character-

stic times, the Maxwell relaxation time (which is associated to the
iscoelastic properties of the fluid �0 = �0G−1

0 ) and the structure
elaxation time (which is a structure buildup time �). The third non-
imensional number (A) is a relationship between the kinetic and
iscous processes for structure breakdown (destruction function)
nd the structural recovery time �. The fourth group (B) is the ratio
f the viscosities at low and high shear rates. This group is a measure
f the shear-thinning (B > 1) and shear-thickening (B < 1) behavior.
inally the last group is a product of the dimensionless numbers
and B. This group can be interpreted as the square ratio of two

eometrical mean relaxation times (defined as �r = k�0, �0 = �0G−1
0 ,

∞ = �∞G−1
0 ), so the dimensionless number C can be rewritten as

=
√

AB = �I
G/�II

G =
√

�r�0/
√

��∞ =
√

�r(�0/��∞). The time �I
G

s associated to the structure rupture and Maxwell time and �II
G is

elated to the structural and high shear-rate characteristic times. As
articular cases, when �r = k�0 = ��0�−1∞ , C reduces to the dimen-
ional B, i.e. C = B, which is a measure of the shear-thinning (B > 1) or
hear-thickening (B < 1) properties of the system. Similarly, when
r = k�0 = �∞�0�−1, C = De is obtained. It is important to note that

f C > 1, the rupture and viscoelastic relaxation times dominate
ver the structural and characteristic time at high shear rates. In
ontrast, if C < 1, the effects of the structural and high shear-rate
imes are the dominant mechanisms. Moreover, the effects of the
hixotropy are included as a particular case of the kinetics, viscous
nd structural mechanism when the kinetic constant is identified
s normalized constant for shear stress, i.e. k = G−1

0 . In general the
on-dimensional number satisfies the inequality: De ⊃ A ≤ C ≤ B.
he next group is the pulsating Weissenberg number, which is a
roduct between Deborah number and non-dimensional frequency
*. As We = �0G−1

0 ω → 0, the BMP model reduces to the inelastic
ase. In contrast, as We = �0G−1

0 ω → ∞, the elastic effects are domi-
ant. The last group is the product of the Reynolds and Weissenberg
umbers. If ReWe 
 1, inertial effects dominate over elastic prop-
rties. In contrast, if ReWe � 1, the opposite effect is manifested.

.1.3. Non-dimensional momentum equation

e
∂V∗

z

∂t∗ = −p(1 + εn(t∗)) + 1
r∗

∂

∂r∗ (r∗	) (5)

nd non-dimensional boundary conditions

∗
z (r∗ = 1, t∗) = 0 And 
̇∗(0, t∗) = ∂

∂r∗ V∗
z (r∗, t∗)|r∗=0 = 0 (6)

Notice that in Eq. (5), n(t*) is a stochastic dimensionless function.

.1.4. Non-dimensional BMP equation
The relevant components of the BMP model are:

1 + De �∗(
̇∗)
∂

∂t∗

)
	 − De �∗(
̇∗)N∗

(2) = �∗(
̇∗)
̇∗ (7)
d

dt∗ ln �∗(
̇∗) = 1 − �∗(
̇∗) + A(1 − B�∗(
̇∗))	
̇∗ (8)

In the rest of the paper, the evolution equations of the first and
econd normal stress differences are not considered since they are
luid Mech. 165 (2010) 174–183

not relevant for the calculation of the flow enhancement.

3.1.5. Non-dimensional flow enhancement

I (%) = 100

∫ 1
0

(〈
̇∗〉 − 
̇∗
0)r∗2 dr∗∫ 1

0

̇∗

0r∗2 dr∗
, 〈
̇∗〉 =

∫ 2�/ω∗

0

̇∗dt∗∫ 2�/ω∗

0
dt∗

(9)

Experimentally, the Reynolds number given in Eq. (4) is suf-
ficiently small [40,41,48,53–57,59,60] hence this term in Eq. (5)
is neglected, i.e. Re ∂V∗

z /∂t∗∼0. Similarly, experiments in micellar
solutions, such as CTAT and EHAC [72–76], showed that the contri-
bution of the second stress difference is small, so the third term in
Eq. (7) can be neglected, i.e. De �∗(
̇∗)N∗

(2)
∼= 0.

3.1.6. Stochastic non-dimensional function
Analytical progress is possible if n(t*) is considered as a station-

ary random function of time, with correlation function R(s) [86]

n(t∗) =
∫ +∞

−∞
ei˛t∗

dZ(˛) R(s) =
〈

n(t∗)n(t∗ + s)
〉

=
∫ +∞

−∞
ei˛s˝(˛)d˛ (10)

where dZ(˛) is an interval random function of ˛ with zero mean
and uncorrelated increments

〈dZ(˛)〉 = 0 〈dZ(˛i)dZ̄(˛j)〉 = ıij˝(˛i)d˛j

˝(˛) = 1
2�

∫ +∞

−∞
e−i˛sR(s)ds (11)

In (10) and (11), 〈 〉 denotes an ensemble average and the over-
bar a complex conjugate quantity, ıij is the Kronecker delta and
˝(˛) is the spectral density of n(t*). In Eqs. (10) and (11) it is
assumed that |R(s)| tends to zero fast enough as |s| tends to infinity,
a condition met by most, if not all physically realizable processes
[54,55,57–60,71].

4. Perturbation scheme

Analytical expressions for the flow enhancement and power
requirement require a quasi-static perturbation solution in terms of
the small parameter ε [40,47–52,54–57,59,60,71]. The shear-rate,
viscosity and shear stress can be expressed in power series of ε
(provided ε � 1):


̇∗(r∗, t∗) = 
̇∗
0(r∗)ε0 + 
̇∗

1(r∗, t∗)ε1 + 
̇∗
2(r∗, t∗)ε2 + · · ·

�∗(r∗, t∗) = �∗
0(r∗)ε0 + (
̇∗

1 �̇∗
0)ε1 +

(

̇∗

2 �̇∗
0 + 1

2

̇∗

1 �̈∗
0

)
ε2 + · · ·

	(r∗, t∗) = 	0(r∗)ε0 + (
̇∗
1 	̇0)ε1

(

̇∗

2 	̇0 + 1
2


̇∗2
1 	̈0

)
ε2 + · · ·

(12)

In (12), the Taylor theorem allows expressing 	j(r*, t*) and �∗
j
(r∗, t∗)

(j ∈ I = {0, 1, 2, . . .}) in terms of the derivatives of 	0(r*) and
�∗

0(r∗), where the following shorthand notation has been used
0 0

�̇∗
0 = d�∗

d
̇∗

∣∣∣

̇∗→
̇∗

0

; �̈∗
0 = d2�∗

d
̇∗2

∣∣∣∣

̇∗→
̇∗

0

(13)
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It is important to note that the particular perturbation expan-
ions for the viscosity and the shear stress are different from other
ariable expansions, because it allows for the decoupling of the
pper-convected Maxwell model from the kinetic equation of the
MP model. In addition, the flow enhancement can be expressed

n terms of the higher derivatives of the shear stress and viscosity
unctions to zeroth order [54,55,57,60,71].

. Asymptotic analyses

.1. Zeroth-order theory

Substitution of Eqs. (12) and (13) into (5)–(9) and equating terms
f the same order in the ε parameter, leads to the zeroth solution,
.e. O(ε0):

0 = �∗
0
̇∗

0 =
A
̇∗2

0 − 1 +
√

(A
̇∗2
0 − 1)

2 + 4AB
̇∗2
0

2AB
̇∗2
0


̇∗
0 = 	wr∗ (14)

n Eq. (14), 	w = 	0(r* = 1) is the wall stress and the boundary con-
ition 	0 = 0 at r* = 0 has been used. The first and second normal
tress differences were calculated by Herrera et al. [71] (N∗

(1)0 =
De	2

0 , N∗
(2)0 = 0). According to (9), no flow enhancement to zeroth-

rder is predicted, i.e. I (%) = 0.

.2. First-order theory

To first order in ε, i.e. O(ε1):

1(r∗, t∗) = 	0n(t∗) (15)

˙ ∗
1(r∗, t∗) = 	0


̇0
(n(t∗) + De �∗

0ṅ(t∗)); 	̇0 /= 0 (16)

(%) = 100ε

∫ 1
0

〈
̇∗
1(r∗, t∗)〉r∗2

dr∗∫ 1
0


̇∗
0(r∗)r∗2 dr∗

(17)

n Eqs. (15) and (16) the boundary conditions 	1(r∗, t∗) =
˙ ∗
1(r∗, t∗) = 0 at r* = 0 were used. On the other hand, the average
f Eq. (16) is zero, i.e. 〈
̇∗

1(r∗, t∗)〉 = 0. As a consequence, the flow
nhancement (Eq. (17)) to first order is again zero.

.3. Second-order theory

To second order in ε, i.e. O(ε2) the shear stress is zero, i.e.
2(r*, t*) = 0 and the shear strain and flow enhancement are given
y the following equations:

˙ ∗
2(r∗, t∗) = −1

2
	̈0

	̇0

̇∗2

1 (r∗, t∗) + De �̇∗
0

	0

	̇0
ṅ(t∗)
̇∗

1(r∗, t∗); 	̇0 /= 0

(18)

I (%)
ε2

= 100

∫ 1
0

〈
̇∗
2(r∗, t∗)〉r∗2

dr∗∫ 1
0


̇∗
0(r∗)r∗2 dr∗

(19)

n Eq. (18) the boundary condition 
̇∗
2(r∗, t∗) = 0 at r* = 0 was used.

o calculate the flow enhancement, the average value of Eq. (18) is
aken. Substitution of Eq. (16) into Eq. (18) and using the random
tochastic definitions (10) and (11), the average shear rate to second

rder is obtained:


̇∗
2(r∗, t∗)〉 = 1

2
	2

0

{
	̈0

	̇3
0

(R0(0) + De2�∗2

0 R1(0)) + De2 �̇∗2

0

	̇2
0

R0(0)

}
(20)
luid Mech. 165 (2010) 174–183 177

where

R0(0) =
∫ +∞

−∞
˝(˛)d˛; R1(0) =

∫ +∞

−∞
˛2˝(˛)d˛ (21)

5.4. Particular stochastic random functions

5.4.1. Harmonic random function (sinusoidal pressure wave
form)

The simplest harmonic random function is given by a sinusoidal
function with frequency ω* = �ω and amplitude M and its respec-
tively spectral density ˝(˛), i.e.

n(t∗) = M sin(ω∗t∗) ˝(˛) = 1
4

(ı(˛ − ω∗) + ı(˛ + ω∗)) (22)

the corresponding correlation functions R0(0) and R1(0) are given
by:

R1(0) = ω∗2
R0(0) and R0(0) = 〈n(t∗)n(t∗ + 0)〉 = 1

2
M2 (23)

The simplest election of a sinusoidal pressure wave
enables the comparison with representative theoretical works
[40,41,47,49–52,54–60,71]. Notice that the particular harmonic
random function used here can be obtained in the limiting case of a
Fourier-time series [64,65]. Phan-Thien [54] showed that the non-
harmonic effects can increase or decrease the flow enhancement
depending on the particular random function n(t*).

Next, Eq. (23) is substituted into Eq. (20), and then in Eq. (19) to
give

I(%)
ε2

= 25M2

∫ 
̇∗
w

0
	4

0 (−	̈0/	̇2
0 (1 + ω∗2

De2�∗2

0 ) + ω∗2
De2 �̇∗2

0 /	̇0)d
̇∗
0∫ 
̇∗

w
0


̇∗
0d(1/3 	3

0 )
(24)

It is important to note that when elastic effects dominate, the
flow enhancement is negative and this can be attributed to the
mathematical properties of the constitutive curve. Constitutive
equations that contain a variable relaxation time depending on
the second invariant of the rate of deformation tensor, i.e. trel =
�(IID)G−1

0 , such as (i) White–Metzner. BMP and modify BMP models,
may predict negative flow enhancement [47,72,75]. Experimen-
tally, the negative flow enhancement can be attributed to a flow
transition. For example, in complex liquids (liquid crystals) the vis-
cosity depends on position and oscillating orientation. This gives
rise to flow enhancement under shear-thinning conditions and flow
reduction under shear-thickening and backflow (or flow-induced
re-orientation) [27–31,68–70].

Notwithstanding, experiments are necessary to validate the pre-
dictions of negative flow enhancement in complex liquids such as
worm-like micellar solutions, dispersions of lamellar liquid crys-
tals, bentonite suspensions or associative polymers [72–78].

Integrating by parts (24), the following expression for the flow
enhancement is obtained

I(%)
ε2

= 75M2

	4
w − 4	̇w

∫ 
̇∗
w

0
	3

0 d
̇∗
0

+ We2
(

	4
w�∗2

w − 4	̇w

∫ 
̇∗
w

0
�∗2

0 	3
0 d
̇∗

0

)
	̇w

(

̇∗

w	4
w −

∫ 
̇∗
w

0
	3

0 d
̇∗
0

) (25)
In Eq. (25) �∗
w = �∗

0(
̇∗
w), 	w = 	0(
̇∗

w) are the viscosity function
and stress at the wall, respectively. Bird et al. [47] used the
White–Metzner model with an alternative perturbation technique
and obtained a similar expression. Phan-Thien [50,54,55] obtained
similar results for four different constitutive equations.
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increases rapidly and reaches a maximum for moderate shear-
rates, and for a critical shear-rate, it decreases monotonically to
zero. Physically, the structure of the fluid undergoes a transition
from an isotropic structure into an ordered-anisotropic structure
under flow (first plateau and shear-thinning regions).
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To solve the integrals given in (25), the following relationship
etween the wall shear-stress and the wall shear-rate in Eq. (14) is
sed:

˙ ∗
w(	w) =

AB	2
w − 1 +

√
(AB	2

w − 1)
2 + 4A	2

w

2A	w
(26)

.5. Time average power

The non-dimensional time-average power 〈P〉 = 〈Q�zp(1 +
n(t*))〉 (where Q is the volumetric flow, �zp(1 + εn(t*)) is the axial
omponent of the pulsating pressure gradient) required to pump
he fluid and the fractional increase in power Ipot(%) are given by
pot(%)=100(〈P〉 − P0/P0), where P0 is the non-dimensional power
equired to pump the fluid without pulsatile pressure and 〈P〉 is
he average power with pulsatile flow. Upon substitution of the
eries given in (12) into Ipot(%) = 100(〈P〉 − P0)P−1

0 and proceeding
s before (Eqs. (14)–(25)), the power requirement is obtained:

Ipot(%)
ε2

= 75M2

	4
w − 2	̇w

∫ 
̇∗
w

0
	3

0 d
̇∗
0

+ We2
(

	4
w�∗2

w − 4	̇w

∫ 
̇∗
w

0
�∗2

0 	3
0 d
̇∗

0

)
	̇w

(

̇∗

w	3
w −

∫ 
̇∗
w

0
	3

0 d
̇∗
0

) (27)

The power requirement by the BMP model (Eq. (27)) has two
ontributions: inelastic and elastic and contain particular cases
escribed in the literature (Tanner and Generalized Newtonian)
49,50,54]. Elasticity does not represent an advantage to pumping
ecause the extra power required for the pulsating flow is always
ositive. This conclusion agrees with several previous works which
sed different constitutive equations [45,60].

.6. Flow enhancement of the BMP as a function of dimensionless
requency

In the particular case where the pulsating Reynolds num-
er is of the order of the small parameter ε, i.e. Re = O(ε)
47,49,50,51,54–60,71] the flow enhancement is dependent on the
imensionless frequency, according to Eq. (25), which may be cast

n the following form:

(%) = 75M2ˇ2{ı1 + ı2ω∗2
De2}ω∗2

(28)

nd ı1, ı2 are given by:

1(A, B) =
	4

w − 4	∗
w

∫ 
̇∗
w

0
	3

0 d
̇∗
0

	̇w

(

̇∗

w	3
w −

∫ 
̇∗
w

0
	3

0 d
̇∗
0

) ;

2(A, B) =
	2

w�∗2
w − 4	̇w

∫ 
̇∗
w

0
�∗2

0 	3
0 d
̇∗

0

	̇w

(

̇∗

w	3
w −

∫ 
̇∗
w

0
	3

0 d
̇∗
0

) (29)

here ˇ = (a2/�)/(�0/�). Eq. (29) describes the flow enhancement
s a function of the non-dimensional frequency when ı1 and ı2 are
xed. It is important to note that ˇ can be interpreted as a ratio
etween two diffusion coefficients. Proceeding as Herrera et al.
71], it is possible to obtain an analytical solution for the maximum
ow as a function of the kinetic, structural, viscoelastic and inertial
ontributions through the non-dimensional numbers (A, B, De, ˇ)
nd the square of the amplitude of the oscillations.( )
Max(%) = 2.34M2 ı2
1

(−ı2)
ˇ

De

2

; (−˛) > 0 (30)

q. (30) is valid only in the limit of sufficiently low pulsat-
ng Reynolds number (Re � 1) and satisfies the inequality: 0 ≤
luid Mech. 165 (2010) 174–183

ˇω∗ � 1 ⇒ 0 ≤ ω∗ � ω∗
C = ˇ−1; consequently, the critical non-

dimensional frequency (ω∗
C = ˇ−1) is determined according to the

ratio between structural and momentum diffusivities.

5.6.1. Inelastic and elastic effects
Eq. (28) contains an asymptotic case for negligible small elastic

and high effects, i.e. ı1 
 ω∗2
De2ı2 and ı1 � ω∗2

De2ı2

I1 (%)
I0 (%)

∼=
(

ω∗
1

ω∗
0

)2

and
I1 (%)
I0 (%)

∼=
(

ω∗
1

ω∗
0

)4

(31)

I0 (%) and I1 (%) are the flow enhancements for dimensional fre-
quencies ω∗

0 and ω∗
1, respectively. If ω∗

1 = Nω∗
0; (N ∈ R+) equations

given in (31) take the form:

I1(%) ∼= (N)2I0(%) and I1(%) ∼= (N)4I0(%) (32)

6. Results

6.1. BMP theoretical predictions

The flow enhancement integral equation (25) was solved
numerically by using a quadrature Gaussian method combined
with a Lagrange method to extrapolate to zero mesh size. Without
loss of generality, in all calculations the amplitude of the oscilla-
tions is set to one (M = 1). Predictions of the flow curve under steady
shear flow have been reported elsewhere, Herrera et al. [71]. First
and second Newtonian plateaus are predicted as well as an inter-
mediate shear-thinning region. It is important to note that the shear
stress function is a monotonically increasing function of the shear-
rate and its derivative 	̇0 /= 0 is always positive. Nevertheless, the
second derivative changes sign due to the convexity and concavity
of the shear stress function.

In Fig. 1, the first and second derivatives of the flow curve
are plotted. The parameters used in the simulation are A = 1 and
B = 1000. At low shear-rates 10−3 ≤ 
̇∗

0(r∗) < 10−2 the first deriva-
tive of the shear-stress is almost constant. For moderate values of

̇∗

0(r∗)(10−1 ≤ 
̇∗
0(r∗) < 2) it decreases monotonically. For 
̇∗

0(r∗) >

2 the first derivative increases again and the flow enhancement
decreases. Notice that the minimum corresponds to the shear-
thinning region, where the system undergoes drastic structural
changes. In contrast, the second derivative of the shear stress
Fig. 1. First derivative of the shear-stress versus shear rate. Inset: second deriva-
tive of the shear-stress versus shear-rate. Non-dimensional numbers used in the
simulation are: A = 1, B = 1000.
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ig. 2. Flow enhancement versus dimensionless wall stress for various values of B:
i) 1000, (ii) 1500, (iii) 2000, and (iv) 2500. The dimensionless groups employed in
he simulation are: We = 10 and A = 0.2.

The wall shear-rate versus wall stress for various values of the
on-dimensional number B (representing various CTAT concentra-
ions) follows the same tendency predicted previously by Herrera
t al. [71] and for this reason is not shown. At low wall stresses an
lmost constant value is predicted and past a critical wall stress,
he wall shear rate increases rapidly. For high wall stresses, the
ehavior of the wall shear-rate is constant throughout. Moreover,
he asymptotic value increases as the fluid becomes more shear-
hinning.

In Fig. 2, the flow enhancement Iε−2 for a viscoelastic liquid ver-
us the wall stress for various non-dimensional numbers B is shown
We = 10, A = 0.2). Resonance behavior consisting in a maximum in
he flow enhancement is observed at a critical wall stress, and the

agnitude of this maximum increases as the shear-thinning char-
cter of the fluid becomes more predominant. A large minimum
n the curves is also observed; the absolute magnitude of the min-
ma depends on the shear thinning characteristics of the liquid. For
arge wall stresses, all curves asymptote to zero flow enhancement.
nset in Fig. 2 shows a zoom in the x-axis to highlight the shifting
f the curves to low stresses and the increase in the maxima as B
ncreases. Up to the maximum of the curve, the flow enhancement
s a monotonically increasing function of the wall stress and the

agnitude of the maximum is entirely determined by a coupling
etween the structural and kinetics processes. After reaching the

aximum, the flow enhancement decays to zero very fast.
In Fig. 3, the flow enhancement (Iε−2) versus wall stress for var-

ous pulsating Weissenberg numbers is plotted. The parameters
sed in the simulation are A = 0.2 and B = 7. The line with trian-

ig. 3. Flow enhancement versus dimensionless wall stress as a function of the
eissenberg number (We): (i) 0, (ii) 4, (iii) 7; (iv) 10. Inset: inelastic liquid. The

imensionless numbers used in the simulation are: A = 0.2 and B = 7.
Fig. 4. Dimensionless shear stress versus shear-rate for B = 7 and various values of
A: (i) 0.01, (ii) 0.1, (iii) 1, and (iv) 10. Inset: viscosity versus shear rate.

gle symbols shows the inelastic case where for any value of the
shear-stress the flow enhancement is always positive, and tends to
zero for 	w > 1. Nevertheless, when the elasticity is present, namely,
We > 0, the maximum in the curves increases with We, and shifts to
lower wall stresses as We increases. A crossover point at a crit-
ical shear-stress is observed after which the flow enhancement
becomes negative, and the minima of this reduction becomes more
predominant as We increases. However, in the experimental results
for polymer solutions only positive values are observed. For exam-
ple, several research works reported only positive values, with I (%)
sometimes increasing and sometimes decreasing with frequency
[50,54–57,60]. Inset in Fig. 3 shows the inelastic case with a zoom
in the low stress region.

It should be noted that the existence of both lower and upper
viscosity plateaus causes that at a given wall stress, a maximum
(Iε−2) occurs. The value of the maximum in I (%) is directly related
to the ratio of these viscosities, and same results can be obtained
with different constitutive equations [50,54–57,60,71].

However, Phan-Thien, Manero and Walters [50,54–60] showed
that the flow enhancement is always positive even if elasticity
is included. In contrast, the BMP model predicts a region where
the flow enhancement is negative due to the convexity of the
flow curve. Similar behavior has been found in the White–Metzner
model when a Carreau–Yasuda expression is used to represent the
viscosity function as reported by Bird et al. [49].

Fig. 4 shows the zeroth-order flow curve for several values of
the non-dimensional number A (which accounts for the ratio of
kinetics of rupture and structure time) at a fixed value of the non-
dimensional number B. All curves are monotonically increasing
functions of the shear rate. For low values of A (<1) the curves show
an extended constant viscosity region, whereas higher values of A
cause the extent of the Newtonian region to decrease. The slope of
the shear thinning region is the same for all curves as can be seen
in the inset of this figure.

In Fig. 5, the flow enhancement (Iε−2) versus wall stress for
different values of the parameter A is shown. The other parame-
ters employed in the simulation are We = 10 and B = 7. To analyze
systematically the effect of the thixotropy, the value of the
kinetic constant is changed to k = G−1

0 , enabling A to be the ratio
A = �0/G0/�. When the value of A lies in the range 0 ≤ A < 1, the struc-
ture does not recover during the deformation period and hence
the resonance curves are dramatically shifted due to the evolution
of the system structure. Nevertheless, the magnitude of the max-

ima and minima is the same for all curves. The shifting implies
that for a thixotropic fluid, the system needs more energy to obtain
the same flow enhancement. In contrast, when the value of A lies
in the range of 1 ≤ A ≤ 10, the structure recovers quickly and the
curves are shifted to lower wall stresses. It is important to note
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Fig. 5. Flow enhancement versus dimensionless wall stress for various values of
the parameter A:(i) 0.01, (ii) 0.1, (iii) 1, and (iv) 10. Inset: Flow enhancement in the
region of small wall stresses. We = 10 and B = 7.

Table 1
Values of the parameters used in the model as a function of CTAT concentration [33].

CCTAT (wt.%) �−1
0 (Pa s)−1 �−1

∞ (Pa s)−1 k × 10−6 (Pa)−1 � (s) G0 (Pa)

5 0.0275 19.8 250.0 0.12 41.5
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Table 3
Values of the dimensionless numbers used in the model for several frequencies.
The values of the ratio of the pipe and the density of the complex liquid are: M = 1;
a = 5 × 10−2 m; � = 1000 kg/m3.

10 wt.% ˇ A B De IMaxε−2 	w (IMax)

ω∗
1 = 0.12 0.573 0.076 720 7.30 10.82 1.4

ω∗
2 = 0.24 0.573 0.076 720 7.30 43,25 1.4

ω∗ = 0.36 0.573 0.076 720 7.30 97.20 1.4

tural changes that the fluid undergoes, as B is quite high in strong
shear thinning fluids (see Table 2). The value of the maximum is
determined by the coupling among the kinetic, viscous and struc-
tural properties of the BMP model. Furthermore, it is important to
10 0.0061 15.0 30.3 0.33 176.0
15 0.0050 12.6 10.5 0.38 380.0
20 0.0042 12.0 4.2 0.42 620.0

hat Figs. 2, 3 and 5 show regions where the flow enhancement is
non-monotonically function of the wall stress. The maximum in

he curves has been reported by several authors employing differ-
nt constitutive equations. However, the minimum in the curves
as not been reported experimentally and it is only reported in
heoretical works. Constitutive equations that include a relaxation
ime that depends on the second invariant of the strain-rate ten-
or (e.g. White–Metzner, BMP and modify BMP models) predict
his negative enhancement which is caused by the convexity of
he constitutive curve [47,72,75]. Equations that contain second
erivatives of the viscosity function and/or the shear stress (Eq.
25)), present negative enhancement due to the change in convex-
ty of the flow curve (see Fig. 2). Nevertheless, an equation of lower
rder derivatives presents a similar behavior due to elastic effects
ssociated to the material (Eq. (25)). In contrast, when elastic effects
re negligible (see We number value in Tables 2 and 3), the nega-
ive region tends to disappear (see insets in Figs. 5 and 8). For these
easons, it is clear that the effect of the negative flow enhancement
an be attributed to the mathematical properties of the constitutive
quation and flow curve.
.2. Predictions of the flow enhancement using worm-like
olutions data

In Fig. 6, predictions of the flow enhancement (Iε−2) versus wall
tress using viscometric data of CTAT at different concentrations

able 2
alues of the dimensionless numbers used in the model as a function of CTAT con-
entration. The parameters employed in the simulation are: M = 1; ω = 1.0 rad/s;
= 5 × 10−2 m; � = 1000 kg/m3.

wt.% Re ω* We A B IMaxε−2 	w (IMax)

5 0.0690 0.12 0.876 0.0760 720 43.25 1.4
10 0.0153 0.33 0.931 0.0150 2459 7.44 5.2
15 0.0125 0.38 0.526 0.0055 2520 4.24 2.8
20 0.0105 0.42 0.384 0.0024 2857 4.45 12.2

e = �ωa2

�0
; ω∗ = ω�; We = �0

G0
ω; A = k�0

�
; B = �0

�∞ .
3

ˇ = a2/�

�0/�
; De = �0/G0

�
; A = k�0

�
; B = �0

�∞
;

ω1 = 1 rad/s; ω2 = 2 rad/s; ω3 = 3 rad/s.

(T = 30 ◦C), reported by Soltero et al. [76], are plotted. Parameters
employed in the model as functions of CTAT concentration are
given in Table 1 and the corresponding dimensionless groups are
disclosed in Table 2.

For the solution with 5 wt.% CTAT (see inset) the flow enhance-
ment increases and for 1.2 < 	w < 1.5 a drastic enhancement is
observed with a maximum in the resonance curve of Iε−2 = 43.25 at
	w = 1.4. In this region, the fluid experiences a pronounced shear-
thinning behavior. The maximum flow enhancement is found for
the 5 wt.% CTAT content, it has been reported by several authors that
the shear thinning effect is responsible of the flow enhancement as
reported in the literature [40–71].

Nevertheless, the 5 wt.% solution has the minimum shear thin-
ning effect, related to the value of the dimensionless B number
(see Table 2). Thixotropy was found to have a negative effect on
the flow enhancement, thus the maximum concentration of CTAT
shares the maximum thixotropy value (thixotropy is related to the
dimensionless number A, see Table 2) and so the flow enhancement
decreases due to high thixotropy. This is believed to be the cause of
the maximum flow enhancement at the minimum CTAT content.

For a CTAT content of 10 wt.%, the maximum in the curve is
Iε−2 = 7.44 at 	w = 5.2. For the 15 wt.% solution, the maximum in the
curve is Iε−2 = 4.24 at 	w = 2.8, lower than that at 10 wt.%. Finally, for
a CTAT content of 20 wt.%, the maximum in the curve is Iε−2 = 4.45
at 	w = 12.2. Despite that the solution is structured (A = 0.0024),
this structure is destroyed by flow exhibited by the pronounced
shear thinning. Furthermore, the maximum is shifted to larger wall
stresses, implying a larger energy requirement for flow enhance-
ment.

There is a characteristic wall stress for the maximum flow
enhancement in the curves; this maximum is related to the struc-
Fig. 6. Flow enhancement versus dimensionless wall stress for a 5 wt.% CTAT solu-
tion at T = 30 ◦C. In the inset, (i) 10 wt.%, (ii) 15 wt.%, (iii) 20 wt.%. Non-dimensional
numbers used in the simulation are given in Table 2.
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Fig. 7. Flow enhancement versus dimensionless wall stress for a 5 wt.% CTAT solu-
tion at T = 30 ◦C as a function of the dimensionless frequency. Parameters employed
in the simulation are given in Table 3.

Table 4
Values of the dimensionless numbers used in the model as a function of CTAT con-
centration. The parameters employed in the simulation are: M = 1; a = 5 × 10−2 m;
� = 1000 kg/m3.

wt.% ˇ A B De 	w ω∗
crit

5 0.573 0.076 720 7.30 0.23 1.7
10 0.046 0.015 2459 2.82 0.23 21.5

ˇ

n
o
a
t
o

a
t
i
I
o
t
f
f
i
m
i

i

F
t
D

15 0.033 0.0055 2520 1.39 0.23 30
20 0.025 0.0024 2857 0.914 0.23 40

= a2/�
�0/�

; De = �0/G0
�

; A = k�0
�

; B = �0
�∞ .

ote that negative flow enhancement is very small and cannot be
bserved due to the scale of the figure. This small negative value is
ssociated to small We as determined experimentally, since nega-
ive flow enhancement is evident to disappear for very small values
f the Weissenberg number (see Fig. 3).

In Fig. 7, the flow enhancement (Iε−2) versus wall stress for
5 wt.% solution with varying frequency is shown. To quantify

he flow enhancement dependence on the frequency, the follow-
ng ratios are calculated: Iω∗=0.12/Iω∗=0.06 = 43.25/10.82 ∼= 22 and
ω∗=0.18/Iω∗=0.06 = 97.20/10.82 ∼= 32. The frequency dependence
f the maxima is clearly depicted, contrasting with other results
hat predict that the flow enhancement is a decreasing function of
requency [41,47,57]. A relationship between the non-dimensional
requency and the flow enhancement follows the form suggested
n (31), namely, I /I ∼= (ω∗/ω∗)2, where I is the flow enhance-
1 0 1 0 0

ent calculated at the dimensional frequency ω∗
0 and ω∗

1 = N2ω∗
0

s a factor of ω∗
0 (N ∈ R+).

In Fig. 8, the flow enhancement (Iε−2) versus frequency for var-
ous CTAT solutions is larger in the more dilute solutions. The flow

ig. 8. Flow enhancement versus dimensionless frequency for a 5 wt.% CTAT solu-
ion at T = 30 ◦C (	w = 0.23). In the inset (i) 10 wt.%, (ii) 15 wt.%, and (iii) 20 wt.%.
imensionless numbers used in the simulation are given in Table 3.
Fig. 9. Flow enhancement versus dimensionless frequency for a 5 wt.% CTAT solu-
tion at T = 30 ◦C (	w = 0.15). In the insets 	w= (i) 0.20, (ii) 0.23. Parameters used in the
simulation are given in Table 4.

enhancement is predicted to increase with frequency up to a max-
imum and thereafter it decreases.

Likewise, Fig. 9 shows the flow enhancement (Iε−2) versus non-
dimensional frequency for a 5 wt.% solution and for various wall
stresses. It is clear that the flow enhancement is an increasing func-
tion of the wall stress and frequency, but in all cases a maximum is
predicted.

7. Conclusions

In this work, a perturbation solution to a pulsating pressure
gradient flow of a complex liquid using the BMP model is pre-
sented for a general class of pressure gradient noises. The structural
liquid was characterized by the BMP equation which couples a
time-dependent equation for the structure changes with the upper-
convected Maxwell constitutive equation. The evolution equation
for the structural changes was conceived to account for the kinetic
process of breakage and reformation of the micelles under flow.

The following conclusions are highlighted:

• The flow enhancement and power requirement for the BMP
model (Eqs. (25) and (27) can be separated into two contribu-
tions, inelastic and elastic and is a function of the amplitude of
the oscillations, perturbation parameter and We (all squared), and
the dimensionless numbers A and B (representing viscoelastic,
kinetic and structural effects).

• A necessary condition to obtain a positive flow enhancement in a
structural liquid is that the fluid experiments undergoes transi-
tion from a high structured state to a less structured one induced
by flow, i.e. B = �0�−1∞ 
 1.

• The viscoelastic, kinetic and structural mechanisms in
the BMP model were characterized by associating non-
dimensional numbers to each mechanism: (i) A = k�0

� , (ii) B =
�0�−1∞ and (iii) We = ω�0G−1

0 . The first one is associated to
the kinetic, viscous, and structural process and the second one
to the level of the structure in the liquid. The third group is the
pulsating Weissenberg number which is a measure of the system
viscoelasticity.

• In a complex liquid, thixotropy can be interpreted as a particular
case of the rupture and structural mechanisms in the system, i.e.

−1 −1
De = �0� ⊂ A = k�0� , when the kinetic constant is identified
as a normalized constant for the shear stress, i.e. k = G−1

0 .
• The flow enhancement is a function of the concentration of the

solution, in this case CTAT. In most cases, the flow enhance-
ment decreases when the concentration of the solution increases,
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because the structural process dominates over the viscoelastic
contribution and this is related to thixotropy.
Qualitatively, the flow enhancement for CTAT solution
increases with the non-dimensional frequency according to
I1 ∼= (ω∗

1/ω∗
0)2I0 (when the elastic effects are neglected). On

the other hand, when the elastic force dominates, the flow
enhancement follows the relationship I1 ∼= (ω∗

1/ω∗
0)4I0, where

I0, I1 are the flow enhancements calculated at frequency ω∗
0 and

ω∗
1 = Nω∗

0 (N ∈ R+).

. Future work

It would be worthwhile to compare the theoretical predictions
of the effect of thixotropy with experimental observations. For
example, by using viscoelastic surfactants such as CTAT, EHAC,
liquid crystalline suspensions or associative polymers.
One of the most interest effects of complex fluids is the shear-
banding flow, where due to mechanical and thermodynamic
instabilities the system separates in regions of different viscosi-
ties. The drastic shear-thinning behavior may produce a very high
enhancement in the context of pulsating flows.
Analysis on the effect of longitudinal and transversal oscillating
flow on the viscous dissipation and inertial effects in polymer
extrusion.
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