The $\mathbf{S c}_{2}$ dimer revisited

Apostolos Kalemos, ${ }^{1, \mathrm{a})}$ llya G. Kaplan, ${ }^{2, b)}$ and Aristides Mavridis ${ }^{1, c)}$
${ }^{1}$ Department of Chemistry, Laboratory of Physical Chemistry, National and Kapodistrian University of Athens, P.O. Box 64004, Zografou, Athens 157 10, Greece
${ }^{2}$ Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, México 04510, Distrito Federal, Mexico

(Received 30 October 2009; accepted 17 December 2009; published online 13 January 2010; publisher error corrected 15 January 2010)

Abstract

Thirty two states of the homonuclear neutral diatomic Sc_{2} molecule have been studied by multireference methods using basis sets of quadruple quality. For all 30 states resulting from the ground state Sc atoms, $\operatorname{Sc}\left({ }^{2} \mathrm{D}_{g}\right)+\operatorname{Sc}\left({ }^{2} \mathrm{D}_{g}\right)$, and two out of $80, X^{5} \Sigma_{u}^{-}$and $1^{3} \Sigma_{u}^{-}$, issued from the first excited channel $\operatorname{Sc}\left({ }^{2} \mathrm{D}_{g}\right)+\operatorname{Sc}\left(a^{4} \mathrm{~F}_{g}\right)$, we have constructed full potential energy curves and extracted the standard spectroscopic parameters. With the exception of $X^{5} \Sigma_{u}^{-}$and $1^{3} \Sigma_{u}^{-}$which are covalently bound, the 30 states related to the ground state Sc atoms are of van der Waals nature with interaction energies of $3-5 \mathrm{kcal} / \mathrm{mol}$ at distances of $7-7.5 \mathrm{bohr}$. For the $X^{5} \Sigma_{u}^{-}$state the proposed D_{e} value is $48 \mathrm{kcal} / \mathrm{mol}$, with respect to the adiabatic fragments and with the $1^{3} \Sigma_{u}^{-}$state just $380 \mathrm{~cm}^{-1}$ above it. © 2010 American Institute of Physics. [doi:10.1063/1.3290951]

I. INTRODUCTION

The scandium molecule Sc_{2} is the simplest of all first row transition metal neutral diatomics being a six "valence" electron system. This simplicity, however, is rather deceiving given the fact that after a time period of 45 years of both experimental and theoretical work, even its ground state is not known with certainty (vide infra).

The heart of the problem is the very large number of molecular $\left.\left.\right|^{2 S+1} \Lambda_{g, u}^{ \pm}\right\rangle$states, the result of low-lying high spin and orbital angular momentum atomic Sc terms. ${ }^{1}$ For instance, upon the interaction of $\mathrm{Sc}\left({ }^{2} \mathrm{D}_{g} ; 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}\right)$ $+\mathrm{Sc}\left[{ }^{2} \mathrm{D}_{g}\left(4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}\right), \quad a^{4} \mathrm{~F}_{g}\left(4 \mathrm{~s}^{1} 3 \mathrm{~d}^{2}\right), \quad a^{2} \mathrm{~F}_{g}\left(4 \mathrm{~s}^{1} 3 \mathrm{~d}^{2}\right)\right.$, $\left.z^{4} \mathrm{~F}_{u}\left(4 \mathrm{~s}^{1} 4 \mathrm{p}^{1} 3 \mathrm{~d}^{1}\right)\right]$, where $a^{4} \mathrm{~F}_{g}, a^{2} \mathrm{~F}_{g}$, and $z^{4} \mathrm{~F}_{u}$ are the first three excited states of Sc located at 1.427, 1.846, and 1.956 $\mathrm{eV}\left(\mathrm{M}_{J}\right.$ averaged) above the ${ }^{2} \mathrm{D}_{g}$ term, ${ }^{1}$ respectively, a total of 270 molecular states are realizable,

$$
\begin{aligned}
& \mathrm{Sc}\left({ }^{2} \mathrm{D}_{g} ; 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}\right)+\mathrm{Sc}\left({ }^{2} \mathrm{D}_{g} ; 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}\right) \rightarrow \\
& \left({ }^{1} \Sigma_{g}^{+}[3],{ }^{1} \Sigma_{u}^{-}[2],{ }^{1} \Pi_{g}[2],{ }^{1} \Pi_{u}[2],{ }^{1} \Delta_{g}[2],{ }^{1} \Delta_{u},{ }^{1} \Phi_{g},\right. \\
& { }^{1} \Phi_{u},{ }^{1} \Gamma_{g},{ }^{3} \Sigma_{u}^{+}[3],{ }^{3} \Sigma_{g}^{-}[2],{ }^{3} \Pi_{u}[2], \\
& \left.{ }^{3} \Pi_{g}[2],{ }^{3} \Delta_{u}[2],{ }^{1} \Delta_{g},{ }^{3} \Phi_{u},{ }^{3} \Phi_{g},{ }^{3} \Gamma_{u}\right) \quad(30 \text { states }), \\
& \mathrm{Sc}\left({ }^{2} \mathrm{D}_{g} ; 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}\right)+\mathrm{Sc}\left(a^{4} \mathrm{~F}_{g} ; 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{2}\right) \rightarrow \\
& \left({ }^{3,5} \Sigma_{g, 4}^{+}[2],{ }^{3,5} \Sigma_{g, 4}^{-}[3],{ }^{3,5} \Pi_{g, 4}[5],{ }^{3,5} \Delta_{g}[4],\right. \\
& { }^{3,5} \Phi_{g, u}[3],{ }^{3,5} \Gamma_{g, u}[2],{ }^{3,5} \mathrm{H}_{g, u} \text {) (80 states), }
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& \operatorname{Sc}\left({ }^{2} \mathrm{D}_{g} ; 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}\right)+\operatorname{Sc}\left(a^{2} \mathrm{~F}_{g} ; 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{2}\right) \rightarrow \\
& \\
& \quad\left({ }^{1,3} \Sigma_{g, u}^{+}[2],{ }^{1,3} \Sigma_{g, u}^{-}[3],{ }^{1,3} \Pi_{g, u}[5],{ }^{1,3} \Delta_{g, u}[4],\right. \\
& \left.{ }^{1,3} \Phi_{g, u}[3],{ }^{1,3} \Gamma_{g, u}[2],{ }^{1,3} \mathrm{H}_{g, u}\right) \quad(80 \text { states }), \\
& \operatorname{Sc}\left({ }^{2} \mathrm{D}_{g} ; 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1}\right)+\operatorname{Sc}\left(z^{4} \mathrm{~F}_{u} ; 4 \mathrm{~s}^{1} 4 \mathrm{p}^{1} 3 \mathrm{~d}^{1}\right) \rightarrow \\
& \\
& \quad\left({ }^{3,5} \Sigma_{g, u}^{+}[3],,{ }^{3,5} \Sigma_{g, u}^{-}[2],{ }^{3,5} \Pi_{g, u}[5],{ }^{3,5} \Delta_{g, u}[4],\right. \\
& \left.{ }^{3,5} \Phi_{g, u}[3],{ }^{3,5} \Gamma_{g, u}[2],{ }^{3,5} \mathrm{H}_{g, u}\right) \quad(80 \text { states }) .
\end{aligned}
$$
\]

Considering as well the spin-orbit interaction we would be enmeshed in a computational nightmare. This is the reason that even our best $a b$ initio state-of-the-art quantum mechanical methods combined with current computer technology are not powerful enough to tackle satisfactorily this kind of problems.

The electronic configuration of the ground state of $\mathrm{Sc}\left({ }^{2} \mathrm{D}_{g}\right)$ precludes any strong bonding interaction other than van der Waals (vdW) (vide infra), therefore well bound states should stem from the next dissociation channels, e.g., $\operatorname{Sc}\left({ }^{2} \mathrm{D}_{g}\right)+\operatorname{Sc}\left(a^{4} \mathrm{~F}_{g}\right)$.

In what follows we outline in chronological order the existing literature on Sc_{2}. The very first study published in 1964 was a mass spectrometric absolute entropy method determination of the dissociation energy, D_{0}^{0} $=25.9 \pm 5 \mathrm{kcal} / \mathrm{mol}$, with respect to ground state atoms. ${ }^{2} \mathrm{As}$ to the experimental dissociation energy of Sc_{2}, however, the situation is more complex. In the Huber-Herzberg compilation of 1979 (Ref. 3), a D_{0}^{0} value of $1.65 \pm 0.10 \mathrm{eV}$ ($=38.0 \pm 2.3 \mathrm{kcal} / \mathrm{mol}$) is cited referring to Verhaegen's Ph.D. thesis as quoted by Drowart. ${ }^{4}$ Obviously, the question naturally arises as to which number is correct. In a personal communication with Professor Verhaegen we have been advised to consider the higher value as the most appropriate, the reason being an "overestimation of the Sc_{2} vapor pressure in the original experiments, probably up to a factor of
10." Nevertheless the absolute entropy formula used to deduce D_{0}^{0} (Ref. 2), in addition to the measured parameters pertaining to this spectroscopic thermochemical method, requires the bond length and the logarithms of the electronic and vibrational partition functions $\left(\ln Q_{e}, \ln Q_{v}\right)$ of the diatomic species at the temperature of the experiment; see, for instance, Ref. 5. For Sc_{2}, in particular, Verhaegen et al. ${ }^{2}$ assumed a vibrational frequency of $230 \mathrm{~cm}^{-1}$ from which a $\mathrm{r}_{e}=2.70 \AA$ was inferred through Badger's rule, ${ }^{6}$ turned out to be very reasonable (see below). On the contrary, the adopted "effective quantum weight of 5 " for the partition functions ${ }^{2}$ should be significantly larger considering that the experiment was done at 2000 K . Because the partition functions enter the D_{0} formula with a negative sign, an error by +1 in the $\ln Q_{e}$ function reduces the binding energy by RT $\approx 4 \mathrm{kcal} / \mathrm{mol}$. This means that the binding energy of Sc_{2} (with respect to the ground state atoms) should be significantly smaller than $38.0 \mathrm{kcal} / \mathrm{mol}$. In an analysis along the lines above of the Verhaegen et al. ${ }^{2}$ data by Das, ${ }^{7}$ who performed ab initio calculations on Sc_{2}, he suggests a correction to the binding energy of about $-24 \mathrm{kcal} / \mathrm{mol}$ which would bring the $\mathrm{D}_{0}^{0}=38.0 \mathrm{kcal} / \mathrm{mol}$ to about $14 \mathrm{kcal} / \mathrm{mol}$. The upshot of the above discussion is that the experimental binding energy of Sc_{2} is, at least, disputable.

Eight years later Cooper et al. ${ }^{8}$ based on extended Hückel calculations predicted a ${ }^{1} \Sigma_{g}^{+}$ground state with $\mathrm{D}_{e}=1.25 \mathrm{eV}(=28.8 \mathrm{kcal} / \mathrm{mol})$ at $\mathrm{r}_{e}=2.20 \AA$ and $\omega_{e}=250 \mathrm{~cm}^{-1}$.

In 1976 the first optical spectrum of Sc_{2} in frozen Ar matrices was observed, interpreted by the help of extended Hückel calculations and alluding to a ground state of ${ }^{5} \Delta_{g}$ symmetry. ${ }^{9}$

In the first density functional theory (DFT)-local spin density approximation (LSDA) study of Sc_{2} (and all 3d transition metal homonuclear diatomics), Harris and Jones ${ }^{10}$ calculated two states of ${ }^{5} \Sigma_{u}^{-}\left(\mathrm{D}_{e}=1.80 \mathrm{eV}, \quad \mathrm{r}_{e}=2.70 \AA, \quad \omega_{e}\right.$ $\left.=200 \mathrm{~cm}^{-1}\right)$ and ${ }^{3} \Sigma_{g}^{-}\left(\mathrm{D}_{e}=1.00 \mathrm{eV}, \quad \mathrm{r}_{e}=3.25 \AA, \quad \omega_{e}\right.$ $=235 \mathrm{~cm}^{-1}$) symmetry. They obtained ${ }^{5} \Sigma_{u}^{-}$as the lowest state but finally proposed that the ground state is rather ${ }^{3} \Sigma_{g}^{-}$ because of a possible overestimation of the binding energy of the ${ }^{5} \Sigma_{u}^{-}$state.

On the basis of multiconfiguration self-consistent field (MCSCF) $/[6 \mathrm{~s} 3 \mathrm{p} 2 \mathrm{~d}]$ ab initio calculations, the first on Sc_{2}, Wood et al. ${ }^{11}$ reported a ${ }^{5} \Sigma_{u}^{-}$ground state with D_{e} $=6.9 \mathrm{kcal} / \mathrm{mol}$ with respect to $\mathrm{Sc}\left({ }^{2} \mathrm{D}_{g}\right)+\operatorname{Sc}\left(a^{4} \mathrm{~F}_{g}\right)$ and r_{e} $=2.57 \AA$. Additional correlation energy obtained by a limited CI gave $\mathrm{D}_{e}=26.1$ (12.7) $\mathrm{kcal} / \mathrm{mol}$ with respect to ${ }^{2} \mathrm{D}_{g}$ $+a^{4} \mathrm{~F}_{g}\left({ }^{2} \mathrm{D}_{g}+{ }^{2} \mathrm{D}_{g}\right)$ at $\mathrm{r}_{e}=2.6 \AA$. In the same issue of Faraday Symposia, Gingerich, ${ }^{12}$ in a review article on diatomic metals and metallic clusters, cites a binding energy $\mathrm{D}_{0}^{0}=38.0 \pm 5.0 \mathrm{kcal} / \mathrm{mol}$, quite different from that of Ref. 2. However, this D_{0}^{0} value does not seem to be a new experimental result; it has been taken from the Gurvich et al. compilation published in 1974 (see Ref. 12), and it is perhaps the D_{0}^{0} number given in Verhaegen's Ph.D. thesis of 1965 (vide supra).

Within the restricted Hartree-Fock (HF) methodology, Wolf and Schmidtke ${ }^{13}$ studied the lowest closed-shell states of the M_{2} series, $M=S c$ to $C u$. For $S c_{2}$, in particular, they
reported bond lengths and frequencies for two ${ }^{1} \Sigma_{g}^{+}$states, namely, $\mathrm{r}_{e}=3.05$ and $2.22 \AA$, and $\omega_{e}=210$ and $360 \mathrm{~cm}^{-1}$.

In a limited pseudopotential MCSCF+CI study, Das ${ }^{7}$ constructed potential energy curves (PEC) for 27 states of Sc_{2} of ${ }^{1,3} \Sigma_{g, u}^{+}{ }^{1,3} \Sigma_{g, u}^{-}$, and ${ }^{1,3} \Pi_{g, u}$ symmetries dissociating to $\mathrm{Sc}\left({ }^{2} \mathrm{D}_{g}\right)+\mathrm{Sc}\left({ }^{2} \mathrm{D}_{g}, \quad a{ }^{4} \mathrm{~F}_{g}, \quad a^{2} \mathrm{~F}_{g}\right)$. As was already discussed, Das questions the "experimental" dissociation energy of Verhaegen et al., ${ }^{2,4}$ as well as the $X^{5} \Sigma_{u}^{-}$state suggested by Wood et al. ${ }^{11}$ He concludes that the ground state is a vdW ${ }^{1} \Sigma_{g}^{+}$state with $\mathrm{D} \approx 4 \mathrm{kcal} / \mathrm{mol}, \mathrm{r}_{e} \approx 5 \AA$, and ω_{e} $\approx \stackrel{g}{\mathrm{~cm}^{-1}}$.

In 1983 Walch and Bauschlicher ${ }^{14}$ examined by multireference $\mathrm{CI}(\mathrm{MRCI}=\mathrm{MCSCF}+1+2) /[8 \mathrm{~s} 6 \mathrm{p} 4 \mathrm{~d}]$ methods the ${ }^{3} \Sigma_{g}^{-},{ }^{1} \Sigma_{g}^{+},{ }^{3} \Sigma_{u}^{+}$, and ${ }^{5} \Delta_{u}$ states of Sc_{2}. The first three states, stemming out from the ${ }^{2} \mathrm{D}_{g}+{ }^{2} \mathrm{D}_{g}$ channel, show as expected a weak interaction $\left(\approx 1.4 \mathrm{kcal} / \mathrm{mol}, \mathrm{r}_{e} \approx 4.2 \AA\right.$). According to these authors the ${ }^{5} \Delta_{u}$ state correlates to the ${ }^{2} \mathrm{D}_{g}$ $+z^{4} \mathrm{~F}_{u}\left(4 \mathrm{~s}^{1} 4 \mathrm{p}^{1} 3 \mathrm{~d}^{1}\right)$ fragments displaying a binding energy of about $18 \mathrm{kcal} / \mathrm{mol}$ with respect to ${ }^{2} \mathrm{D}_{g}+z{ }^{4} \mathrm{~F}_{u}$ at $\mathrm{r}_{e} \approx 3.7 \AA$; no ground state was proposed.

On a back-to-back article with that of Ref. 14, Knight et al. ${ }^{15}$ reported the ESR spectrum of Sc_{2} in Ne and Ar matrices at 4 K . The observed ESR constant A is consistent with an electronic configuration " $\cdots \sigma_{5}^{1} \sigma_{d}^{1} \pi_{d}^{2}$ with $\mathrm{S}=2$," thus the X-state should be a ${ }^{5} \Sigma .{ }^{15}$ Assuming a $4 s \sigma_{g}^{2} 4 s \sigma_{u}^{1} 3 d_{z}{ }^{2} \sigma_{g}^{1} 3 d_{x z} \pi_{u}^{1} 3 d_{y z} \pi_{u}^{1}$ configuration (vide infra and Ref. 11) it should be of negative parity and of u symmetry, that is ${ }^{5} \Sigma_{u}^{-}$.

Prompted by the ESR results of Ref. 15, Walch and Bauschlicher calculated a ${ }^{5} \Sigma_{u}^{-}$state arising from $\operatorname{Sc}\left({ }^{2} \mathrm{D}_{g}\right)$ $+\operatorname{Sc}\left(a^{4} \mathrm{~F}_{g}\right)$ at the MRCI/[8s6p4d, 8s7p4d2f] level of theory. ${ }^{16}{ }^{g}$ It was found that the ${ }^{5} \Sigma_{u}^{-}$is bound with respect to ${ }^{2} \mathrm{D}_{g}+{ }^{2} \mathrm{D}_{g}$ channel by $\mathrm{D}_{e}^{0}=0.44 \mathrm{eV}(=10.1 \mathrm{kcal} / \mathrm{mol})$ at r_{e} $=2.79 \AA$, and $\omega_{e}=184 \mathrm{~cm}^{-1}$. The given D_{e}^{0} value includes a small differential Davidson correction (-0.03 eV), a correction for the error in the asymptotic separation $(+0.26 \mathrm{eV})$, and a correction for the energy improvement due to the extended basis set $(+0.09 \mathrm{eV}) .{ }^{16}$

A Raman study of Sc_{2} in Ar matrices by Moskovits et al. ${ }^{17}$ revealed the vibrational parameters ω_{e} $=238.91 \mathrm{~cm}^{-1}$ and $\omega_{e} \mathrm{X}_{e}=0.93 \mathrm{~cm}^{-1}$.

In a SCF discrete variational X_{a} study of Sc_{2}, Fursova et al. ${ }^{18}$ proposed a ${ }^{1} \Sigma_{g}^{+}$ground state at $\mathrm{r}_{e}=2.21 \AA$ A. In 1986 Jeung reported MRDCI (Ref. 19) HF pseudopotential calculations of the ${ }^{5} \Sigma_{u}^{-}$and ${ }^{1} \Sigma_{g}^{+}$states of $\mathrm{Sc}_{2} .{ }^{20}$ The following spectroscopic constants are given at the $\operatorname{MRDCI}(+\mathrm{Q})$ level. ${ }^{5} \Sigma_{u}^{-}: \mathrm{D}_{e}=1.15$ (1.47) eV with respect to ${ }^{2} \mathrm{D}_{g}+a^{4} \mathrm{~F}_{g}, \mathrm{r}_{e}$ $=2.688(2.704) \AA, \omega_{e}=222(209) \mathrm{cm}^{-1} ;{ }^{1} \Sigma_{g}^{+}: \mathrm{D}_{e}=1.25$ (1.99) eV with respect to $a^{4} \mathrm{~F}_{g}+a^{4} \mathrm{~F}_{g}, \mathrm{r}_{e}=2.281(2.360) \AA$, ω_{e} $=340(291) \mathrm{cm}^{-1}$, and $\Delta \mathrm{E}\left({ }^{1} \Sigma_{g}^{+} \leftarrow{ }^{5} \Sigma_{u}^{-}\right)=11500(8100) \mathrm{cm}^{-1}$.

An analysis of the magnetic circular dichroism spectrum and magnetization properties of Sc_{2} (Ref. 21) supports the ESR findings (Ref. 15) that the ground state is of ${ }^{5} \Sigma\left({ }^{5} \Sigma_{u}^{-}\right)$ symmetry.

Haslett et al. ${ }^{22}$ recalculated the dissociation energies of $\mathrm{Fe}_{2}, \mathrm{Sc}_{2}, \mathrm{Ti}_{2}$, and Mn_{2} from previously reported mass spectrometric data and available molecular parameters using, in addition to two other methods, a LeRoy-Bernstein approach. ${ }^{23}$ Through the latter they established a
lower bound to the dissociation energy of Sc_{2}, $\mathrm{D}_{e}^{0}=0.79 \mathrm{eV} \quad(=18.2 \mathrm{kcal} / \mathrm{mol})$, adopting the $25.9 \pm 5 \mathrm{kcal} / \mathrm{mol}$ of Ref. 2 as an upper bound.

In 1992 Åkeby et al. ${ }^{24}$ published averaged coupled fair functional (ACPF) internally contracted multireference calculations for the ${ }^{5} \Sigma_{u}^{-}$state employing a [8s7p5d3f] basis set. Their best results are $\mathrm{D}_{e}^{0}=0.77 \mathrm{eV}(=17.8 \mathrm{kcal} / \mathrm{mol}), \mathrm{r}_{e}$ $=2.673 \AA$, and $\omega_{e}=197 \mathrm{~cm}^{-1}$; with respect to $\operatorname{Sc}\left({ }^{2} \mathrm{D}_{g}\right)$ $+\operatorname{Sc}\left(a^{4} \mathrm{~F}_{g}\right), \mathrm{D}_{e}=2.118 \mathrm{eV}$. These numbers, however, are obtained after a series of corrections of doubtful validity.

Four years later Suzuki et al. ${ }^{25}$ calculated three states of ${ }^{5} \Sigma_{u}^{-}$symmetry at the MRCI/DZ-Slater level. For the lowest of the three ${ }^{5} \Sigma_{u}^{-}$states they report $\mathrm{D}_{e}^{0}=0.60 \mathrm{eV}$ $(=13.8 \mathrm{kcal} / \mathrm{mol}), \mathrm{r}_{e}=2.715 \AA$, and $\omega_{e}=230 \mathrm{~cm}^{-1}$. Curiously enough their complete active space self-consistent field (CASSCF) results are in essence identical to the MRCI ones.

From 1997 on until 2006 a series of DFT papers appeared in the literature employing a plethora of functionals. ${ }^{26}$ As expected, DFT results vary wildly depending on the functional used. We believe that even qualitative results are questionable, at least for the time being, for this kind of molecular systems at the DFT level; see also Ref. 27 on the Mn_{2} molecule and the general analysis ${ }^{28}$ of the problems arising in DFT for the states with definite total spin. For instance, Furche and Perdew, ${ }^{26(\mathrm{~g})}$ and Zhao and Truhlar ${ }^{26(\mathrm{~h})}$ investigated six (LSD, BP86, PBE, TPSS, B3LYP, and TPSSh) and seven (TPSS, B3LYP, TPSSh, M05, BLYP, MPWLYP1M, and BP97-2) functionals, respectively. For the ${ }^{5} \Sigma_{u}^{-}$state of Sc_{2} calculated D_{e}^{0} values range from 0.50 (B 3 LYP) to 2.37 [Ref. $26(\mathrm{~g})$] and 0.50 (B3LYP) to 1.40 (TPSS) eV [Ref. 26(h)].

Finally the most recent work on Sc_{2} published in 2008 is that of Matxain et al. ${ }^{29}$ These workers examined ten states singlets, triplets, quintets, and septets $\left({ }^{1} \Sigma_{g},{ }^{1} \Pi_{g} ;{ }^{3} \Sigma_{u},{ }^{3} \Sigma_{g}\right.$; ${ }^{5} \Sigma_{u},{ }^{5} \Sigma_{g},{ }^{5} \Delta_{u},{ }^{5} \Delta_{g} ;{ }^{7} \Sigma_{g},{ }^{7} \Delta_{u}$), reporting r_{e} and ω_{e} values at the $\mathrm{DFT}(\mathrm{B} 3 \mathrm{LYP}) / \mathrm{TZVP}+\mathrm{G}(3 \mathrm{df}, 2 \mathrm{p})$ level; for some reason parities of the Σ states are not given. At the DFT equilibrium distances diffusion Monte Carlo (DMC) single point calculations were performed using the relativistic Stuttgart pseudopotentials and basis sets (ECP10MDF), thus obtaining T_{e} values for the above states. According to DMC the ground state is of ${ }^{3} \Sigma_{u}$ symmetry with the ${ }^{5} \Sigma_{u}$ lying at 0.17 eV $(=3.9 \mathrm{kcal} / \mathrm{mol})$ higher. ${ }^{29}$ In addition, $\mathrm{DMC} \mathrm{D}_{e}$ values are given for the $X^{3} \Sigma_{u}(1.10 \mathrm{eV})$ and ${ }^{5} \Sigma_{u}(0.93 \mathrm{eV})$ states, but without clarification as to the asymptotic channels. This particular ordering of the ${ }^{3} \Sigma_{u}$ and ${ }^{5} \Sigma_{u}$ states has been corroborated by CASPT2/TZVP+G(3df,2p) calculations. At this level of theory $\mathrm{T}_{e}\left({ }^{5} \Sigma_{u} \leftarrow X^{3} \Sigma_{u}\right)=0.16 \mathrm{eV}, \quad \mathrm{r}_{e}\left({ }^{5} \Sigma_{u}\right)$ $\approx 2.55 \AA, \mathrm{r}_{e}\left({ }^{3} \Sigma_{u}\right) \approx 2.67 \AA$, and $\mathrm{E}\left({ }^{5} \Sigma_{u}\right)=-1519.490 \mathrm{E}_{h}$, as deduced from Fig. 2 of Ref. 29. No dissociation energies of the ${ }^{5} \Sigma_{u}$ and ${ }^{3} \Sigma_{u}$ states are given at the CASPT2 level. ${ }^{29}$

The question arises now as to what we really know for the Sc_{2} molecule since 1964 when the first experimental work was published. ${ }^{2}$ According to the previous exposition the theoretical results are conflicting, nevertheless it appears to favor a ${ }^{5} \Sigma_{u}^{-}$symmetry for the ground state, disputed, however, by the recent theoretical work of Matxain et al. ${ }^{29}$ Recall, however, that the ${ }^{5} \Sigma_{u}^{-}$state which correlates to $\operatorname{Sc}\left({ }^{2} \mathrm{D}_{g}\right)+\operatorname{Sc}\left(a^{4} \mathrm{~F}_{g}\right)$ is one of 80 possible $\left.\left.\right|^{2 S+1} \Lambda_{g, u}^{ \pm}\right\rangle$states
sprouting out from this channel (vide supra). Our most solid information right now is only a ${ }^{5} \Sigma\left({ }^{5} \Sigma_{u}^{-}\right)$symmetry for the ground state as inferred from ESR spectra ${ }^{15}$ and magnetic measurements, ${ }^{21}$ and two frequencies $\omega_{e}=238.91 \mathrm{~cm}^{-1}$, $\omega_{e} \mathrm{x}_{e}=0.93 \mathrm{~cm}^{-1}$ from Raman vibrational spectroscopy. ${ }^{17}$ From these frequencies an approximate dissociation energy can be obtained through the relation $\mathrm{D}_{e} \approx \omega_{e}^{2} / 4 \omega_{e} \mathrm{X}_{e}$ $=44 \mathrm{kcal} / \mathrm{mol}$ with respect to $\mathrm{Sc}\left({ }^{2} \mathrm{D}_{g}\right)+\mathrm{Sc}\left(a^{4} \mathrm{~F}_{g}\right)$, or $\quad \mathrm{D}_{e}^{0} \approx 44-\Delta \mathrm{E}\left[\operatorname{Sc}\left(a^{4} \mathrm{~F}_{g}\right) \leftarrow \operatorname{Sc}\left({ }^{2} \mathrm{D}_{g}\right)\right]=44-32.9^{1}, \quad$ or $\quad \mathrm{D}_{e}^{0}$ $\approx 11 \mathrm{kcal} / \mathrm{mol}$ with respect to $\mathrm{Sc}\left({ }^{2} \mathrm{D}_{g}\right)+\mathrm{Sc}\left({ }^{2} \mathrm{D}_{g}\right)$.

From the above analysis on the status of Sc_{2}, it is clear that a more systematic and appropriate theoretical approach is needed with the hope to obtain some definitive answers. To this end, we have performed mainly MRCI calculations on 32 states of Sc_{2} using large correlation consistent basis sets. Section II gives some technical details followed by Sec. III, on results and discussion, whereas a short summary is presented in Sec. IV.

II. COMPUTATIONAL APPROACH

For all calculated states and corresponding PECs, the correlation consistent basis set of quadruple cardinality was used, cc-pVQZ $(=4 \mathrm{Z})$, generally contracted to [8s7p5d3f2g1h] (Ref. 30) comprising 208 spherical Gaussians. For two states, ${ }^{5} \Sigma_{u}^{-}$and ${ }^{3} \Sigma_{u}^{-}$, the quintuple cc-pV5Z($=5 \mathrm{Z}$) basis similarly contracted to [9s8p6d4f3g2h1i] was employed as well. ${ }^{30}$

The internally contracted variant of multireference configuration interaction approach, complete active space selfconsistent field (CASSCF) + single+double replacements (CASSCF $+1+2=\mathrm{MRCI})$, as implemented in the MOLPRO 2006.1 and 2008.1 codes, was used for all calculations. ${ }^{31}$ The CASSCF wave functions were constructed by allotting the six valence electrons $\left(4 s^{2} 3 d^{1} \times 2\right)$ to 18 orbitals [$1(4 \mathrm{~s})$ $+5(3 \mathrm{~d})+3(4 \mathrm{p})] \times 2$ under $\mathrm{D}_{2 h}$ symmetry constraints. Reference wave functions comprise $17000-40000$ configuration functions (CFs) with corresponding valence MRCI expansions ranging from 34 to 67×10^{6} CFs internally contracted to about $1.8-3.1 \times 10^{6} \mathrm{CFs}$. For the ${ }^{5} \Sigma_{u}^{-}$symmetry only, restricted coupled-cluster + singles + doubles + quasiperturbative connected triples $[\operatorname{RCCSD}(\mathrm{T})]$ (Ref. 32) calculations were performed at both valence and core-valence level. In the latter calculations the $3 s^{2} 3 p^{6}$ semi-core electrons were taken into account in conjunction with an appropriately enlarged cc-pwCVQZ $(=\mathrm{C} 4 Z)$ basis set contracted to [10s9p7d4f3g2h]. ${ }^{33}$ The purpose of the CC calculations was to assess the effect of the $3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$ electrons on D_{e} and r_{e} values in the ${ }^{5} \Sigma_{u}^{-}$state. In addition, the effect of scalar relativistic effects on the ${ }^{5} \Sigma_{u}^{-}$and ${ }^{3} \Sigma_{u}^{-}$states was examined at the valence MRCI level through the second order Douglas-Kroll-Hess approach ${ }^{34,35}$ coupled with the appropriately recontracted 4 Z basis set. ${ }^{33,36}$

III. RESULTS AND DISCUSSION

Table I presents the numerical data for $30+2$ states with corresponding PECs displayed in Figs. 1 and 2. Thirty states

TABLE I. Total energies $\mathrm{E}_{e}\left(\mathrm{E}_{h}\right)$, dissociation energies $\mathrm{D}_{e}(\mathrm{kcal} / \mathrm{mol})$, equilibrium distances $\mathrm{r}_{e}(\AA)$, harmonic and anharmonic frequencies $\omega_{e}, \omega_{e} \mathrm{x}_{e}\left(\mathrm{~cm}^{-1}\right)$, zero point energies $\mathrm{ZPE}\left(\mathrm{cm}^{-1}\right)$, and $\mathrm{T}_{e}\left(\mathrm{~cm}^{-1}\right)$ of 32 states of Sc_{2} calculated at the MRCI(MRCI+Q)/cc-pVQZ level of theory.

State	$-\mathrm{E}_{e}{ }^{\text {a }}$	$\mathrm{D}_{e}{ }^{\text {a }}$	$\mathrm{r}_{e}{ }^{\text {a }}$	ω_{e}	$\omega_{e} \mathrm{X}_{e}$	ZPE	T_{e}
$X^{5} \Sigma_{u}^{-}$	$\begin{aligned} & 1519.57061 \\ & (1519.5722) \end{aligned}$	$\begin{gathered} 49.2[49.6] \\ (49.7)[50.1] \end{gathered}$	$\begin{gathered} \text { annel Sc }\left({ }^{2} \mathrm{D}_{g}\right) \\ 2.749[2.748] \\ (2.75)[2.75] \end{gathered}$	$\begin{aligned} & \text {) }]^{\mathrm{b}} \\ & 224.8 \\ & (224) \end{aligned}$	$\begin{aligned} & 0.69 \\ & (0.8) \end{aligned}$	$\begin{aligned} & 112.2 \\ & (112) \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$
$\begin{aligned} & \text { Expt. }^{\mathrm{c}} \\ & 1^{3} \Sigma_{u}^{-} \end{aligned}$	$\begin{aligned} & 1519.56888 \\ & (1519.5706) \end{aligned}$	$\begin{gathered} 48.3[48.5] \\ (48.7)[49.1] \end{gathered}$	$\begin{aligned} & 2.737[2.737] \\ & (2.744)[2.74] \end{aligned}$	$\begin{gathered} 238.91 \\ 234.8 \\ (234) \end{gathered}$	$\begin{array}{r} 0.93 \\ -0.29 \\ (0.6) \end{array}$	$\begin{aligned} & 118.1 \\ & (117) \end{aligned}$	$\begin{gathered} 380 \\ (351) \end{gathered}$

			nnel S				
$2{ }^{3} \Sigma_{g}^{-}$	1519.56633	5.40	3.450	93.4	3.72	45.6	939
$3{ }^{3} \Pi_{u}$	1519.56557	5.08	3.467	81.3	1.68	40.2	1106
$4{ }^{1} \Delta_{g}$	1519.56512	4.87	3.609	76.2	0.61	37.9	1205
$5{ }^{3} \Gamma_{u}$	1519.56474	4.29	3.931	81.7	1.09	40.7	1288
$6{ }^{1} \Sigma_{u}^{-}$	1519.56463	4.26	3.935	79.8	0.80	39.6	1312
$7{ }^{1} \Pi_{u}$	1519.56457	4.40	3.709	61.7	-0.16	32.3	1326
$8{ }^{3} \Sigma_{g}^{-}$	1519.56456	4.63	3.872	94.9	1.54	47.0	1328
$9{ }^{3} \Sigma_{u}^{+}$	1519.56456	4.29	3.935	82.9	1.24	41.1	1328
$10^{1} \Sigma_{g}^{+}$	1519.56441	4.42	3.703	69.2	0.54	36.6	1361
$11{ }^{3} \Phi_{u}$	1519.56435	4.22	3.821	77.3	0.96	38.4	1374
$12{ }^{3} \Pi_{u}$	1519.56433	4.30	3.817	82.3	1.00	40.8	1378
$13^{1} \Phi_{u}$	1519.56425	4.23	3.858	79.1	0.99	39.3	1396
$14{ }^{1} \Pi_{g}$	1519.56414	4.13	3.875	79.7	1.14	39.8	1420
$15{ }^{1} \Phi_{g}$	1519.56410	4.14	3.886	81.3	2.74	39.8	1429
$16^{3} \Phi_{g}$	1519.56410	4.17	3.874	79.0	1.11	39.2	1429
$17{ }^{1} \Gamma_{g}$	1519.56408	4.20	3.950	73.2	0.34	36.9	1433
$18{ }^{1} \Pi_{u}$	1519.56404	4.10	3.804	93.6	5.54	44.2	1442
$19^{3} \Pi_{g}$	1519.56403	4.00	3.884	78.5	1.13	38.7	1444
$20{ }^{1} \Sigma_{g}^{+}$	1519.56391	4.11	3.935	69.9	0.90	34.7	1470
$21{ }^{3} \Delta_{g}$	1519.56385	3.89	3.862	76.6	1.18	37.9	1484
$22{ }^{1} \Sigma_{g}^{+}$	1519.56354	3.88	3.828	100.8	2.72	49.4	1552
$23{ }^{1} \Sigma_{u}^{-}$	1519.56347	3.98	3.849	76.4	1.10	37.9	1567
$24{ }^{3} \Delta_{u}$	1519.56340	3.61	3.934	73.5	1.08	36.5	1582
$25{ }^{3} \Delta_{u}$	1519.56336	3.87	3.934	74.0	1.24	36.6	1591
$26{ }^{1} \Delta_{u}$	1519.56335	3.82	3.943	74.7	1.32	37.0	1593
$27{ }^{1} \Delta_{g}$	1519.56314	3.62	3.914	69.9	0.27	35.3	1639
$28{ }^{3} \Sigma_{u}^{+}$	1519.56295	3.36	3.905	74.8	1.06	37.1	1681
$29{ }^{1} \Pi_{g}$	1519.56276	3.30	3.953	70.5	2.98	34.2	1723
$30{ }^{3} \Pi_{g}$	1519.56262	3.24	3.953	70.0	1.36	34.6	1754
$31{ }^{3} \Sigma_{u}^{+}$	1519.56176	2.87	4.044	59.8	1.20	29.6	1942

${ }^{\overline{\mathrm{a}}}$ Numbers in square brackets have been obtained with the 5 Z basis set.
${ }^{\mathrm{b}}$ For final (corrected) D_{e} and r_{e} values, see text.
${ }^{\mathrm{c}}$ Reference 17.
correlate to the ground state fragments $\operatorname{Sc}\left({ }^{2} \mathrm{D}_{g}\right)+\mathrm{Sc}\left({ }^{2} \mathrm{D}_{g}\right)$, Fig. 1, while $X^{5} \Sigma_{u}^{-}$and $1{ }^{3} \Sigma_{u}^{-}$correlate to $\operatorname{Sc}\left({ }^{2} \mathrm{D}_{g}\right)$ $+\mathrm{Sc}\left({ }^{4} \mathrm{~F}_{g}\right)$; see Fig. 2.

The $S c^{2} D_{g}$ term with a $4 s^{2} 3 d^{1}$ configuration and with mean radii of the 3 d and 4 s shells of 1.68 and 3.96 bohr, respectively, ${ }^{37}$ or $\left\langle r_{4 s}\right\rangle /\left\langle r_{3 d}\right\rangle \approx 2.4$, cannot possibly form covalent bonds with another $\mathrm{Sc}^{2} \mathrm{D}_{g}$ atom. A covalent interaction would be completely strangled by a repulsive Pauli wall between the $4 \mathrm{~s}^{2}$ distributions long before the 3 d electrons have any chance to interact covalently; see also Ref. 27. Therefore it is expected that all $\left.\left.30\right|^{2 S+1} \Lambda_{g, u}^{ \pm}\right\rangle$states related to the ground state channel will be, at the most, of vdW type and this is exactly what is observed at the (valence) MRCI/4Z level. Irrespective of any symmetry and spin coupling, all states show a rather strong vdW interaction of
$\sim 3-5 \mathrm{kcal} / \mathrm{mol}$ at internuclear distances of 3.7-4.0 \AA, lying within an energy window $\Delta \mathrm{E} \approx 3.5 \mathrm{mE}_{h}$. In summary, from the ${ }^{2} \mathrm{D}_{g}+{ }^{2} \mathrm{D}_{g}$ asymptote a bundle of 30 quasidegenerate vdW states emanate, located a few $\mathrm{kcal} / \mathrm{mol}$ above the ${ }^{5} \Sigma_{u}^{-}$ and ${ }^{3} \Sigma_{u}^{-}$states; see Table I. At interatomic distances shorter than 6 bohr, local minima are developed due to numerous avoided crossings coming in from higher dissociation channels; see Fig. 1.

The next channel, ${ }^{2} \mathrm{D}_{g}+a{ }^{4} \mathrm{~F}_{g}$, gives rise to 80 triplet and quintet states (280 if the spin-orbit interaction is considered), and an accurate energy location of the lower bound states is not an easy task. The experimental results, however, point to a ${ }^{5} \Sigma_{u}^{-}$ground state, ${ }^{15,21}$ whereas published theoretical DFT results ${ }^{26(\mathrm{a}), 26(\mathrm{~d})}$ suggest that a ${ }^{3} \Sigma_{u}^{-}$state is located about 0.2 eV above the ${ }^{5} \Sigma_{u}^{-}$, or even the ground state by 0.16 eV with

FIG. 1. MRCI/4Z PECs of all 30 vdW states issued from $\mathrm{Sc}\left({ }^{2} \mathrm{D}_{g}\right)$ $+\operatorname{Sc}\left({ }^{2} \mathrm{D}_{g}\right)$. Starting with $2^{3} \Sigma_{g}^{-}$, the ordering of the PECs follows strictly the one given in Table I. Energies have been shifted by $+1519.0 \mathrm{E}_{h}$.
respect to the ${ }^{5} \Sigma_{u}^{-}$according to DMC and CASPT2 calculations. ${ }^{29}$ This is the reason of selecting, in addition to the obvious choice of the ${ }^{5} \Sigma_{u}^{-}$state, the ${ }^{3} \Sigma_{u}^{-}$to be investigated presently.
${ }^{5} \boldsymbol{\Sigma}_{\mathbf{u}}^{-}$. The leading MRCI equilibrium configurations and corresponding Mulliken atomic populations per Sc atom are

$$
\begin{aligned}
&\left|{ }^{5} \Sigma_{u}^{-}\right\rangle \approx 0.83\left|1 \sigma_{g}^{2} 2 \sigma_{g}^{1} 1 \sigma_{u}^{1} 1 \pi_{x, u}^{1} 1 \pi_{y, u}^{1}\right\rangle \\
&+0.24\left(\left|1 \sigma_{g}^{2} 1 \pi_{x, u}^{1} 1 \sigma_{u}^{1} 2 \sigma_{u}^{1} 1 \pi_{y, g}^{1}\right\rangle\right. \\
&\left.-\left|1 \sigma_{g}^{2} 1 \pi_{y, u}^{1} 1 \sigma_{u}^{1} 2 \sigma_{u}^{1} 1 \pi_{x, g}^{1}\right\rangle\right) \\
& 4 s^{1.22} 4 p_{z}^{0.25} 3 d_{z^{2}}^{0.50} 3 d_{x z}^{0.40} 3 d_{y z}^{0.40} 4 p_{x}^{0.12} 4 p_{y}^{0.12} .
\end{aligned}
$$

Note that the 36 inner electrons have been suppressed.
A valence-bond-Lewis (vbL) diagram outlining the bonding is shown below.

The strong attractive interaction between the ${ }^{2} \mathrm{D}_{g}$ and $a^{4} \mathrm{~F}_{g}$ states of Sc atoms (about $50 \mathrm{kcal} / \mathrm{mol}$; see below) is caused by a sigma bond ($1 \sigma_{g}$ orbital), whereas one electron is moving to a $1 \sigma_{u}$ orbital, a case of a $n \mathrm{~s}^{2}-n \mathrm{~s}^{1}$ interaction, with $n=4$ in the present case. Obviously the $3 \mathrm{~d}_{\pi}^{2} 3 \mathrm{~d}_{\sigma}^{1}$ elec-

FIG. 2. MRCI/4Z PECs of all 32 states studied in the present work. Energies have been shifted by $+1519.0 \mathrm{E}_{h}$.
trons play a rather minor role to the bonding, being screened by the $4 s^{2}-4 s^{1}$ electron distribution. The situation is very similar to the Mn_{2} molecule: ${ }^{27}$ the ground and the first excited terms of the Mn atom are ${ }^{6} \mathrm{~S}\left(4 \mathrm{~s}^{2} 3 \mathrm{~d}^{5}\right)$ and ${ }^{6} \mathrm{D}\left(4 \mathrm{~s}^{1} 3 \mathrm{~d}^{6}\right)$, respectively, ${ }^{6} \mathrm{D}$ being located 2.145 eV higher. ${ }^{1} \mathrm{~A}$ total of six ${ }^{1,3,5,7,9,11} \Sigma^{+}$of g or u alternating symmetries of vdW nature are related to the $\mathrm{Mn}\left({ }^{6} \mathrm{~S}\right)+\mathrm{Mn}\left({ }^{6} \mathrm{~S}\right)$ channel, completely analogous to the $30 \mathrm{vdW} \mathrm{Sc} 2_{2}$ states. On the other hand the ${ }^{6} \mathrm{~S}+{ }^{6} \mathrm{D}$ channel gives rise to 36 states "covalently" bound, six of which $\left({ }^{11} \Sigma_{g, u}^{+},{ }^{11} \Pi_{g, u},{ }^{11} \Delta_{g, u}\right)$ had been studied in Ref. 27. The lowest of those states, ${ }^{11} \Pi_{u}$, is bound by $\sim 30 \mathrm{kcal} / \mathrm{mol}$ at the $\operatorname{MRCI}(+\mathrm{Q}) /$ aug-cc-pVQZ level, "isovalent" to Sc_{2} as to the $4 \mathrm{~s}^{2}-4 \mathrm{~s}^{1}$ distributions.

In the present case the populations suggest that the $3 \mathrm{~d}_{z^{2}}$ electron is localized $(0.5+0.5$ on each atom due to the inversion symmetry), the $\left(4 \mathrm{~s} 4 \mathrm{p}_{z}\right)^{1.5}$ polarization facilitates the σ interaction, whereas a small electron $3 \mathrm{~d}_{\pi}-4 \mathrm{p}_{\pi}$ delocalization strengthens the bond formation.

At the $\mathrm{MRCI}(+\mathrm{Q}) / 4 \mathrm{Z}$ the binding energy of Sc_{2} with respect to $\operatorname{Sc}\left({ }^{2} \mathrm{D}_{g}\right)+\operatorname{Sc}\left(z^{4} \mathrm{~F}_{u}\right)$ is $\mathrm{D}_{e}=49.2(49.7) \mathrm{kcal} / \mathrm{mol}$; see Table I. Observe that the $z^{4} \mathrm{~F}_{u}\left(4 \mathrm{~s}^{1} 4 \mathrm{p}^{1} 3 \mathrm{~d}^{1}\right)$ term is the wrong asymptote, the correct one being $a^{4} \mathrm{~F}_{g}\left(4 \mathrm{~s}^{1} 3 \mathrm{~d}^{2}\right)$. This is happening because the $z^{4} \mathrm{~F}_{u}\left(4 \mathrm{~s}^{1} 4 \mathrm{p}^{1} 3 \mathrm{~d}^{1}\right)$ is calculated lower at the HF level than the $a^{4} \mathrm{~F}_{g}\left(4 \mathrm{~s}^{1} 3 \mathrm{~d}^{2}\right)$ term, and this is preserved at the $\mathrm{MRCI}(+\mathrm{Q})$ due to its HF memory. Correcting by the $\operatorname{MRCI}(+\mathrm{Q}) / 4 \mathrm{Z} \quad \Delta \mathrm{E}\left(z^{4} \mathrm{~F}_{u}-a{ }^{4} \mathrm{~F}_{g}\right)$ $=3.44(3.60) \mathrm{kcal} / \mathrm{mol}$ energy difference, we obtain D_{e}
$=45.8(46.1) \mathrm{kcal} / \mathrm{mol}$ with respect to the correct asymptote, $\mathrm{Sc}\left({ }^{2} \mathrm{D}_{g}\right)+\mathrm{Sc}\left(a^{4} \mathrm{~F}_{g}\right)$. Increasing the basis set to $5 \mathrm{Z}, \mathrm{D}_{e}$ hardly changes; see also Table I.

With respect to ground state Sc atoms, the above given D_{e} should be reduced by the $\mathrm{MRCI}(+\mathrm{Q}) / 4 \mathrm{Z}$ $\Delta \mathrm{E}\left(a^{4} \mathrm{~F}_{g}-a^{2} \mathrm{D}_{g}\right)=1.627(1.619) \mathrm{eV}$, thus $\mathrm{D}_{e}^{0}=45.8(46.1)$ $-37.5(37.3)=8.3(8.8) \mathrm{kcal} / \mathrm{mol}$. Had the experimental $\Delta \mathrm{E}$ $=1.427 \mathrm{eV}$ value has been used, $\mathrm{D}_{e}^{0^{\prime}}=12.9(13.2) \mathrm{kcal} / \mathrm{mol}$ would have been obtained.

The question now arises as to the effect of core $\left(3 s^{2} 3 p^{6}\right)$ correlation and scalar relativistic effects to the r_{e} and D_{e} values of the ${ }^{5} \Sigma_{u}^{-}$state. It was proved technically impossible, however, to perform multireference ACPF calculations (to minimize severe size nonextensivity problems) including $22 \mathrm{e}^{-}$in the CI. Therefore, to monitor the $3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$ effect we performed valence $[\operatorname{RCCSD}(\mathrm{T}) / 4 \mathrm{Z}]$ and core-valence [C-RCCSD(T)/C4Z] coupled-cluster calculations, notwithstanding the multireference character of the ${ }^{5} \Sigma_{u}^{-}$state. At the $\operatorname{RCCSD}(\mathrm{T})[\mathrm{C}-\operatorname{RCCSD}(\mathrm{T})]$ level, $\mathrm{r}_{e}=2.715(2.619) \AA$ and $\mathrm{D}_{e}=39.7(39.3) \mathrm{kcal} / \mathrm{mol}$. With respect to the ground state atoms, $\mathrm{D}_{e}^{0}=2.7(8.4)$, or $\mathrm{D}_{e}^{0^{\prime}}=4.7(10.4) \mathrm{kcal} / \mathrm{mol}$ by adding to the D_{e}^{0} the difference between the calculated and experimental $\Delta \mathrm{E}\left(a^{4} \mathrm{~F}_{g}-{ }^{2} \mathrm{D}_{g}\right)=0.085 \mathrm{eV}[\mathrm{C}-\operatorname{RCCSD}(\mathrm{T})]$. The CC results suggest that the $3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$ correlation energy is of no importance to the D_{e}; it reduces, however, significantly the bond length by $\delta r_{e}=0.096 \AA$ or $0.05 \AA$ per Sc atom. Assuming transferability between MRCI and CC results, r_{e} $=2.75(\mathrm{MRCI})-0.10=2.65 \AA$. Valence scalar relativistic effects (MRCI $+\mathrm{DKH} 2(+\mathrm{Q}) / 4 \mathrm{Z}$) leave the bond distance practically invariant, but affect slightly the dissociation energy, namely (in $\mathrm{kcal} / \mathrm{mol}$), $\mathrm{D}_{e}=47.5(48.0), \mathrm{D}_{e}^{0}=7.3(8.0)$, and $\mathrm{D}_{e}^{0^{\prime}}=14.6$ (15.1).

We now turn to the ${ }^{3} \Sigma_{u}^{-}$state. The leading MRCI configurations are in essence identical to those of the ${ }^{5} \Sigma_{u}^{-}$state after a spin flip of the $1 \sigma_{u}$ electron $\left(1 \sigma_{u} \rightarrow 1 \bar{\sigma}_{u}\right)$. The bonding is represented as well by the vbL diagram of the ${ }^{5} \Sigma_{u}^{-}$state (vide supra). Analogously, r_{e} and $\mathrm{T}_{e}\left({ }^{3} \Sigma_{u}^{-} \leftarrow{ }^{5} \Sigma_{u}^{-}\right)$values of the ${ }^{3} \Sigma_{u}^{-}$state are as follows:

$$
\mathrm{r}_{e}=\mathrm{r}_{e}(\mathrm{MRCI} / 4 \mathrm{Z}, 5 \mathrm{Z}, \text { or } \mathrm{MRCI}+\mathrm{DKH} 2 / 4 \mathrm{Z})
$$

$$
-\delta r_{e}(\text { core valence effects })=2.74-0.10=2.64 \AA,
$$

$\mathrm{T}_{e}=380(372)[396] \mathrm{cm}^{-1}$ at the $\mathrm{MRCI} / 4 \mathrm{Z}(\mathrm{MRCI} / 5 \mathrm{Z})$
[MRCI + DKH2/4Z] level,
corresponding values at the +Q level are 351(341)[365] cm^{-1}.

Assuming that the ground state is of ${ }^{5} \Sigma_{u}^{-}$symmetry according to the experimental evidence, our calculations imply that the $1^{3} \Sigma_{u}^{-}$state is located a mere $1 \mathrm{kcal} / \mathrm{mol}$ higher.

IV. SYNOPSIS

For the first time MRCI calculations have been performed for a total of 32 states of the Sc_{2} molecule. All 30 states correlating to the ground state atoms, $\operatorname{Sc}\left({ }^{2} \mathrm{D}_{g}\right)$ $+\mathrm{Sc}\left({ }^{2} \mathrm{D}_{g}\right)$, are of vdW type with interaction energies of about $3-5 \mathrm{kcal} / \mathrm{mol}$ at $7-7.5 \mathrm{bohr}$, and within an energy range of no more than $3 \mathrm{kcal} / \mathrm{mol}$.

Prompted by the ESR experimental results indicating a ${ }^{5} \Sigma\left({ }^{5} \Sigma_{u}^{-}\right)$ground state, ${ }^{15}$ and the recent theoretical work by Matxain et al. ${ }^{29}$ who suggested a ${ }^{3} \Sigma_{u}$ ground state, we calculated the ${ }^{5} \Sigma_{u}^{-}$and ${ }^{3} \Sigma_{u}^{-}$states, two out of 80 states related to the $\operatorname{Sc}\left({ }^{2} \mathrm{D}_{g}\right)+\operatorname{Sc}\left(a^{4} \mathrm{~F}_{g}\right)$ channel. Our findings are summarized in the following numbers.
${ }^{5} \Sigma_{u}^{-}: \quad \mathrm{r}_{e}=2.65 \AA, \quad \mathrm{D}_{e}=48.0 \mathrm{kcal} / \mathrm{mol}, \quad$ and $\quad \mathrm{D}_{e}^{0}$ $=8.0 \mathrm{kcal} / \mathrm{mol}$, or $\mathrm{D}_{e}^{0^{\prime}}=15.0 \mathrm{kcal} / \mathrm{mol}$ by conforming to the experimental $a{ }^{4} \mathrm{~F}_{g}-{ }^{2} \mathrm{D}_{g}$ splitting.

$$
{ }^{3} \Sigma_{u}^{-}: \mathrm{r}_{e}=2.64 \AA, \quad \mathrm{~T}_{e}\left({ }^{3} \Sigma_{u}^{-} \leftarrow{ }^{5} \Sigma_{u}^{-}\right) \approx 1.0 \mathrm{kcal} / \mathrm{mol}
$$

It is rather certain that these 80 states correlating to the $\mathrm{Sc}\left({ }^{2} \mathrm{D}_{g}\right)+\mathrm{Sc}\left(a^{4} \mathrm{~F}_{g}\right)$ end atoms will be crowded to a relatively narrow energy range, hence creating a very challenging molecular system either theoretically or experimentally. Finally, our numbers are in disagreement with the ones of Ref. 29 where a lower $X^{3} \Sigma_{u}$ state is predicted with respect to ${ }^{5} \Sigma_{u}$ by $3.7 \mathrm{kcal} / \mathrm{mol}, \mathrm{r}_{e}\left({ }^{5} \Sigma_{u} /{ }^{3} \Sigma_{u}\right)=2.55 / 2.67 \AA$ at the CASPT2 level, and $\mathrm{D}_{e}^{0}=25.4 \mathrm{kcal} / \mathrm{mol}$ at the DMC level.

ACKNOWLEDGMENTS

A.M. wishes to thank Professor G. Verhaegen for elucidating the experimental binding energies and A.K. thanks Professor M. D. Morse for insightful discussions and for a critical reading of the manuscript. The present study was partly supported by the UNAM (Mexico) (Grant No. IN102909).

[^1]${ }^{21}$ R. J. Singer and R. Grinter, Chem. Phys. 113, 99 (1987).
${ }^{22}$ T. L. Haslett, M. Moskovits, and A. L. Weitzman, J. Mol. Spectrosc. 135, 259 (1989).
${ }^{23}$ R. J. LeRoy and R. B. Bernstein, J. Chem. Phys. 52, 3869 (1970).
${ }^{24}$ H. Åkeby, L. G. Pettersson, and P. E. M. Siegbahn, J. Chem. Phys. 97, 1850 (1992); see also H. Åkeby and L. G. Pettersson, J. Mol. Spectrosc. 159, 17 (1993).
${ }^{25}$ Y. Suzuki, S. Asai, K. Kobagashi, T. Noro, F. Sasaki, and H. Tatewaki, Chem. Phys. Lett. 268, 213 (1997).
${ }^{26}$ I. Pápai and M. Castro, Chem. Phys. Lett. 267, 551 (1997); S. Yanagisawa, T. Tsuneda, and K. Hirao, J. Chem. Phys. 112, 545 (2000); C. J. Barden, J. C. Rienstra-Kiracofe, and H. F. Schaefer III, ibid. 113, 690 (2000); G. L. Gutsev, P. Jena, B. K. Rao, and S. N. Khanna, ibid. 114, 10738 (2001); G. L. Gutsev and C. W. Bausclicher, Jr., J. Phys. Chem. A 107, 4755 (2003); M. Valiev, E. J. Bylaska, and J. H. Weare, J. Chem. Phys. 119, 5955 (2003); F. Furche and J. P. Perdew, ibid. 124, 044103 (2006); Y. Zhao and D. G. Truhlar, ibid. 124, 224105 (2006).
${ }^{27}$ D. Tzeli, U. Miranda, I. G. Kaplan, and A. Mavridis, J. Chem. Phys. 129, 154310 (2008).
${ }^{28}$ I. G. Kaplan, Int. J. Quantum Chem. 107, 2595 (2007).
${ }^{29}$ J. M. Matxain, E. Rezadal, X. Lopez, J. M. Ugalde, and L. Gagliardi, J. Chem. Phys. 128, 194315 (2008).
${ }^{30}$ N. B. Balabanov and K. A. Peterson, J. Chem. Phys. 123, 064107 (2005).
${ }^{31}$ molpro, a package of ab initio programs designed by H.-J. Werner and P. J. Knowles, Version 2006.1, R. D. Amos, A. Bernhardsson, A. Berning et al.
${ }^{32}$ K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989); R. J. Bartlett, J. D. Watts, S. A. Kucharski and J. Noga, ibid. 165, 513 (1990); 167, 609(E) (1990); P. J. Knowles, C. Humpel, and H.-J. Werner, J. Chem. Phys. 99, 5219 (1993); 112, 3106(E) (2000).
${ }^{33}$ N. B. Balabanov and K. A. Peterson, J. Chem. Phys. 125, 074110 (2006).
${ }^{34}$ M. Douglas and N. M. Kroll, Ann. Phys. (N.Y.) 82, 89 (1974).
${ }^{35}$ B. A. Hess, Phys. Rev. A 32, 756 (1985); 33, 3742 (1986).
${ }^{36}$ W. A. de Jong, R. J. Harrison, and D. A. Dixon, J. Chem. Phys. 114, 48 (2001).
${ }^{37}$ C. E. Bunge, J. A. Barrientos, and A. V. Bunge, At. Data Nucl. Data Tables 53, 113 (1993).

[^0]: ${ }^{\text {a) }}$ Electronic mail: kalemos@chem.uoa.gr.
 ${ }^{\text {b) }}$ Electronic mail: kaplan@iim.unam.mx.
 ${ }^{\text {c) }}$ Electronic mail: mavridis@chem.uoa.gr.

[^1]: ${ }^{1}$ Y. Ralchenko, A. E. Kramida, J. Reader, and NIST ASD Team (2008). NIST Atomic Spectra Database (version 3.1.5). Available online at http:// physics.nist.gov/asd3 (3 September 2009). National Institute of Standards and Technology, Gaithersburg, MD.
 ${ }^{2}$ G. Verhaegen, S. Smoes, and J. Drowart, J. Chem. Phys. 40, 239 (1964). ${ }^{3}$ K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).
 ${ }^{4}$ G. Verhaegen, Ph.D. thesis, University of Brussels, 1965; [given by Drowart in Phase Stability in Metals and Alloys, edited by Rudman, Stringer, and Jaffee (McGraw-Hill, New York, 1967); (see Ref. 3)].
 ${ }^{5}$ J. Drowart and R. E. Honig, J. Phys. Chem. 61, 980 (1957).
 ${ }^{6}$ R. M. Badger, J. Chem. Phys. 2, 128 (1934); 3, 710 (1935).
 ${ }^{7}$ G. Das, Chem. Phys. Lett. 86, 482 (1982).
 ${ }^{8}$ W. F. Cooper, G. A. Clarke, and C. R. Hare, J. Phys. Chem. 76, 2268 (1972).
 ${ }^{9}$ R. Busby, W. Klotzbücher, and G. A. Ozin, J. Am. Chem. Soc. 98, 4013 (1976).
 ${ }^{10}$ J. Harris and R. O. Jones, J. Chem. Phys. 70, 830 (1979).
 ${ }^{11}$ C. Wood, M. Doran, I. H. Hillier, and M. F. Guest, Faraday Symp. Chem. Soc. 14, 159 (1980).
 ${ }^{12}$ L. V. Gurvich, G. V. Karachevstev, V. N. Kondrat'yev, Y. A. Lebedev, V. A. Mendredev, V. K. Potapov, and Y. S. Khodeev, Bond Energies, Ionization Potentials and Electron Affinities (Nauka, Moscow, 1974); as cited by K. A. Gingerich, Faraday Symp. Chem. Soc. 14, 109 (1980).
 ${ }^{13}$ A. Wolf and H. H. Schmidke, Int. J. Quantum Chem. XVIII, 1187 (1980).
 ${ }^{14}$ S. P. Walch and C. W. Bauschlicher, Jr., Chem. Phys. Lett. 94, 290 (1983).
 ${ }^{15}$ L. B. Knight, Jr., R. J. van Zee, and W. Weltner, Jr., Chem. Phys. Lett. 94, 296 (1983).
 ${ }^{16}$ S. P. Walch and C. W. Bauschlicher, Jr., J. Chem. Phys. 79, 3590 (1983).
 ${ }^{17}$ M. Moskovits, D. P. Lella, and W. Limm, J. Chem. Phys. 80, 626 (1984).
 ${ }^{18}$ V. D. Fursova, A. P. Klyagina, A. A. Levin, and G. L. Gutsev, Chem. Phys. Lett. 116, 317 (1985).
 ${ }^{19}$ R. J. Buenker, S. D. Peyerimhoff, and W. Butscher, Mol. Phys. 35, 771 (1978).
 ${ }^{20}$ G. H. Jeung, Chem. Phys. Lett. 125, 407 (1986).

