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A boson–fermion (BF) quantum-statistical binary gas mixture model consisting of positive-energy
resonant bosonic Cooper electron pairs (CPs) in chemical and thermal equilibrium with single unpaired
electrons is presented. Two-time retarded Green functions are shown to conveniently cope and deal with
nonzero center-of-mass momentum (CMM) CPs. They yield an analytic expression for a dimensionless-
coupling (�)- and temperature (T)-dependent generalized energy gap Egð�; TÞ in the single-electron
spectrum of a superconductor. This generalized gap vanishes above a specific (‘‘depairing’’ or
‘‘pseudogap’’) temperature T� > Tc, where Tc is the critical Bose–Einstein condensation (BEC)
singularity associated with the BF binary mixture, but is nonzero for all T below T� due initially to
the formation of ‘‘preformed’’ pairs. Within the present BF model the generalized gap Egð�; TÞ is not
restricted to the underdoped high-temperature superconductors as we illustrate with BSCCO, but is also
applicable in optimally-doped and even overdoped compounds for which T� and Tc virtually coincide as
in BCS theory where nonzero-CMM CPs are neglected.
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1. Introduction

Unusual experimental properties in the normal state
of high-temperature superconductors (HTSCs) provide in-
direct signatures interpretable as the opening of a so-called
pseudogap1) in the electronic spectrum well above the
critical temperature Tc below which the material super-
conducts. This has given rise to an intense and challenging
debate on the origin of the pseudogap phenomenon.2) Two
basic trends are found in the literature: either the pseudogap
has its origin in some phenomenon different from super-
conductivity3) and which may possibly be in competition
with the superconducting state, or is of the same origin4,5) in
which case it might reflect the presence of pairs above Tc,
i.e., so-called ‘‘preformed pairs’’. As they very naturally
explain the pseudogap phenomenon in terms of preformed
Cooper pairs (CPs) boson–fermion (BF) models6–9) of
superconductivity (SC) are being reexamined to better
understand the physics of HTSCs. BF models of SC began
to be studied10) in the mid-1950s, predating even the BCS-
Bogoliubov theory of SC. However, the successes of the
BCS theory11) in describing properties of traditional low-
temperature SCs left BF models neglected for many years.
But the discovery of cuprate SCs, and the realization that it
is impossible to describe the peculiarities of cuprates within
the framework of BCS model, led to a revival of some
traditional SC scenarios, in particular, of BF models which
posit the existence of actual bosonic CPs. As in BCS theory
we assume that the subsystem of electrons attract each other
when lying (in 3D) within the spherical shell EF � h�!D �
� � EF þ h�!D about the Fermi energy EF of the ideal Fermi
gas in single-electron � energy space, with h�!D the Debye-
frequency energy parameter of the s-wave BCS model

interaction. Here we restrict ourselves to pure s-wave CPs
but higher, viz, d-waves, can be also accommodated (see,
e.g., refs. 12–17).

Even with the simple s-wave interaction, a gas of single
fermionic charges in an ionic lattice can evolve into two
coexisting and dynamically interacting subsystems: single
fermionic charges (namely, pairable but unpaired charged
fermions) and individual bosonic CP entities consisting of
two mutually confined electrons. The simplest grand canon-
ical Hamiltonian describing a binary mixture of interacting
fermions with bosons as suggested in refs. 6–9 has been
applied in an effort to understand the properties of HTSCs.
In grand canonical form the total Hamiltonian is

H � H � �N ¼
X
k;�

�ka
þ
k�ak� þ

X
K

EKb
þ
KbK þ Hint ð1Þ

where the first two terms on the rhs of (1) are respectively
the zeroth-order Hamiltonians of free (pairable but unpaired)
fermions and of composite-boson CPs. Here aþk� and ak� are
the usual fermion creation and annihilation operators for
individual electrons of momenta k and spin � ¼ " or #
while bþK and bK are postulated18,19) to be bosonic operators
associated with CPs of definite total, or center-of-mass
momentum (CMM), wavevector K � k1 þ k2. Fermion
�k � �k � � and boson EK energies are measured from �
and 2�, respectively, where � is the fermionic chemical
potential introduced in (1). If L is the system size in d

dimensions, processes of boson formation/disintegration are
then driven by the interaction Hamiltonian6–9)

Hint �
f

Ld=2

X
q;K

ðbþKaqþK=2"a�qþK=2#

þ bKa
þ
�qþK=2#a

þ
qþK=2"Þ: ð2Þ

In this paper f is a phenomenological BF (two-fermion/one-
boson) vertex-interaction form-factor coupling parameter
chosen as a constant nonzero only in the range EF � h�!D �
� � EF þ h�!D.
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A Hamiltonian scheme similar to (1) with (2) but
extended so as to include hole CPs along with electron
CPs gives20) precisely the BCS gap equation for all coupling
V and all T as well as the zero-T condensation energy for
all V � 0, provided f is identified, as in the present work,
with the attractive interelectron ( four-fermion) interaction
strength V of the s-wave BCS model interaction through the
relation18,19) f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h�!DV
p

. refs. 18–20 ignore nonzero-
CMM CPs in the interaction Hamiltonian Hint but not in
the unperturbed Hamiltonian, while they are completely
ignored in the entire Hamiltonian in the original BCS theory.
We also note that the ‘‘two-fermion/one-boson’’ interaction
form (2) used here and familiar ‘‘four-fermion’’ interaction
employed by BCS11) originate from two distinct Feynman
diagrams respectively referred to in Fig. 1 of ref. 7 as the
s- and t-channels in the language of particle physics. Here,
nonzero-CMM CPs are not ignored in (2) and we show how
two-time Green functions can deal with such pairs. This
then allows deriving an analytical expression for both the
pseudogap and superconducting gap energies originating
from the BF binary mixture model (1) and (2) based on
bosonic CPs having the gapped excitation spectrum given by
(4) below and which describes resonant CPs as advocated
originally by Schafroth10) in 1954.

2. Gapped Resonant Cooper Pairs

In refs. 21–23 it was suggested that if electron CPs are
considered as composite bosons shifted in energy at zero K
from the Fermi energy EF by a positive gap it then becomes
possible to exhibit two characteristic temperatures, T� and
Tc. First, a depairing temperature T� below which the
electronic chemical potential �ð�; TÞ first dips below the EF

associated with interactionless electrons: below this T� the
first CPs begin to appear in the system. Here, we introduce
the usual dimensionless coupling parameter � � Nð0ÞV with
Nð0Þ the electronic density of states (DOS) for each spin at
the Fermi surface. The condition EF � �ð�;T�Þ ¼ 0 then
yields the T� below which a transition occurs from the
normal state with no composite bosons to one with such
bosons, i.e., at temperatures below T� the system of
attractively-interacting fermions becomes a binary BF
mixture, albeit incoherent. Second, the BEC temperature
Tc at which a singularity first occurs in the total number
density of bosons

nBð�;TcÞ � L�d
X
K

exp
�K

kBTc

� �
� 1

� ��1

ð3Þ

where �K is essentially the boson energy EK appearing in
(1) but renormalized21) by the presence of BF interactions as
embodied in (2). We stress that determining two distinct
temperatures T� and Tc, where Tc < T�, that behave
qualitatively as is observed in high-Tc cuprates, was possible
owing only to assuming in (1) a boson spectrum such as

EK � 2EF þ 2�ð�Þ þ "K ð4Þ

where "K is a nonnegative CP excitation energy that
vanishes when K ¼ 0. Thus, in (4) EK is higher than the
total energy 2EF of two noninteracting individual electrons.

How is a boson energy EK given by (4) feasible and how
do attractively-interacting electrons confined into bosonic
CPs with a spectrum such as (4) lead to an energy lower than

that associated with the system of interactionless fermions?
To answer the first part of this question we refer to refs. 24
and 25 (for a recent review see ref. 26) where using the
Bethe–Salpeter integral equation in the ladder approxima-
tion for two-particle and two-hole coupled wavefunctions, in
either 3D24) or 2D,25) yielded (in leading order of the CMM
wavenumber K) a linearly-dispersive "K above the total
energy 2EF of two interactionless electrons and on top of a
positive bosonic gap 2�ð�Þ, where

�ð�Þ ¼
h�!D

sinhð1=�Þ
�!
�!0

2h�!D exp �
1

�

� �
ð5Þ

is the usual T ¼ 0 BCS fermionic energy gap for the BCS
model interelectronic interaction. Traven27,28) has also found
pair excitations in the ground state of a 2D attractive Fermi
gas by going beyond the standard random phase approx-
imation (RPA). Besides a long-wavelength soundlike col-
lective mode, he finds pair excitations with energy � 2� in
the weak-coupling-limit, where 2� is the threshold for the
decay into two fermionic quasiparticles. A year later similar
results were also reported29) for an attractive �-function
interfermion interaction in the 1D fermion gas.

It might be suspected that excitations with a positive
gap 2�ð�Þ would increase the energy contribution from the
second term on the rhs of (1), i.e., from free bosons, and
therefore that their existence would seem to be energetically
unfavorable. This suspicion, however, is not borne out on
comparing the energies of the BF mixture described by (1)
and (2) and that of interactionless fermions since it was
found30) that introducing an attractive interaction between
electrons in the gas of electrons leads to the formation of a
new type of lower-energy gas mixture state with bosonic
excitations above the Fermi sea of unpaired electrons.
Competition between electrons to occupy energy levels
below EF so as to minimize the volume of the Fermi sea
expels from the sea attractively-interacting charge carrier
levels and raises them above EF. These raised charge carriers
appear outside the Fermi sea and are mutually confined into
positive-energy resonant CPs. Processes of pair formation
and their subsequent disintegration into two unpaired
electrons are driven by (2) and were crucial in ref. 30 in
forming the BF mixture state with positive-energy bosonic
excitations. Separation of the initial attractively-interacting-
fermion system into bosons and fermions with spectra
shifted with respect to each other by the coupling-dependent,
positive-energy gap, first anticipated in ref. 24, is a new
ingredient in the BF model (1) introduced in refs. 21–23,
30.

3. Two-Time Green Functions

The nature of a pseudogap within the present BF binary
gas mixture model, whether this phenomenon is of the
same origin as superconductivity or not, and what distribu-
tion of free carriers occurs below some T� > Tc, can be
addressed by starting from the T-dependent occupation
number of unpaired electrons nk;� � haþk;�ak;�i in a state with
momentum k and spin �, where single-angular brackets hXi
of an operator X is the T-dependent thermal average over a
grand canonical Hamiltonian H � H � �N. The c-numbers
nk;� can then be found, e.g., from the infinite chain of
equations
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i
d

dt
hhAðtÞ j Bðt0Þii ¼ i�ðt � t0Þh½AðtÞ;Bðt0Þ��i

þ hh½AðtÞ;H� j Bðt0Þii ð6Þ

for two-time retarded Green functions, designated with
double-angular brackets, as defined in ref. 31 eq. (2.1b) for
dynamical operators ak"ðtÞ and aþ

k0"ðt
0Þ at times t and t0.

Square brackets ½A;B�� � ABþ �BA denote the commutator
(� ¼ �1) or anticommutator (� ¼ þ1) of any two operators
A and B. In this formalism any dynamical operator XðtÞ is in
the Heisenberg representation, i.e., is of the form XðtÞ ¼
expðiHtÞX expð�iHtÞ. The Fourier transform hhA j Bii! of
hhAðtÞ j BðtÞii in ! satisfies the chain of equations [ref. 21,
eq. (A2)], namely

h�!hhA j Bii! ¼ h½A;B��iH þ hh½A;H�� j Bii!: ð7Þ

Knowing hhak	 j aþk0	ii! one can find expressions for the
corresponding thermal-average values haþk	ak	iH from the
so-called spectral density Jð!Þ (ref. 31. p. 78). Choosing
in (7) first A � ak" and then A � aþk# and setting B equal
to aþ

k0", one obtains after some algebra [refs. 21 and 22,
eq. (A6)]

ðh�!� �k þ �Þhhak" j aþk0"ii!

¼ �kk0 þ
f 2

Ld

X
K;Q

hbKihbþQi
h�!þ ��kþK � �

hhak�KþQ" j aþk0"ii!

ð8Þ
where we have set � ¼ þ1 in (7) signifying anti-commuta-
tion relations for fermion operators and where the b, bþ

operators are defined in (2). Furthermore, higher-order
Green functions hhBC j aþ

k0"ii coming from the last term
on the rhs of (7) are put into the form

hhBC j aþk0"ii! ¼ hBihhC j a
þ
k0"ii!

þ hhðB� hBiÞC j aþk0"ii!: ð9Þ
We note that the mean values hbKi and hbþKi are identically
zero for a pure Bose gas described by the Hamiltonian
H0

B �
P

K E0
Kb
þ
KbK. This is a result of the degeneracy of

a single statistical state associated with commuting NB �P
K bþKbK and H0

B operators implying conservation of the
number of Bose particles. This degeneracy can be removed
by adding to H0

B a term like 
ðb0 þ bþ0 Þ to give H0
B;
 �

H0
B þ 
ðb0 þ bþ0 Þ with an infinitesimal 
 eventually taken to

zero. The added terms in b0 and bþ0 violate commutativity
between NB and H0

B;
. Then, below a critical Tc, nonzero hb0i
and hbþ0 i signal the emergence of a new order in the pure
Bose gas.32) In the BF mixture described by (1) ½NB;H� 6¼ 0

implying nonconstant NB that varies with temperature T and
coupling � . Thus, (2) breaks the degeneracy associated with
the number and as well as total momentum conservation
laws and leads, in particular, to nonzero hbKi and hbþKi
signalling the emergent BF mixture state. Thus, contribu-
tions in (9) from terms proportional to hbKi and hbþKi are
most important. On the other hand, the total number
operator

N ¼
X
k;�

aþk�ak� þ 2
X
K

bþKbK ð10Þ

which includes both the numbers of unpaired electrons and
of twice the bosons, does commute with (1)9) and is thus an
invariant of motion for the BF mixture state.

Note that within all so-called ‘‘first-order theories’’
(ref. 32, p. 100) higher-order Green functions of the type
hhBC j aþ

k0"ii! are put in a form of linear combinations of the
first-order Green functions hhC j aþ

k0"ii! and hhB j aþ
k0"ii!,

viz., via

hhBC j aþk0"ii! ¼ hBihhC j a
þ
k0"ii!

þ hCihhB j aþk0"ii!: ð11Þ

There are no terms containing functions such as hhB j aþ
k0"ii!

in (9) where B ¼ bK or bþK, i.e., a pure boson operator. If
the vertex BF interaction parameter f in (2) is a small
parameter and the chain (7) is applied to obtain an equation
for hhB j aþ

k0"ii! one finds that this is proportional to f 2, i.e.,
hhB j aþ

k0"ii! contains an extra f 2 with respect to terms like

hhC j aþ
k0"ii! with C ¼ ak	 or aþk	 being a pure fermion

operator. Formally, the smallness of f justifies the absence
of terms like hhB j aþ

k0"ii! in (9). There is another reason for
ignoring the last term on the rhs of (11). In fact, for a system
conserving the total number of fermions, averages over all
products aþaþaþ � � � aa of unequal numbers of creation aþk	
and annihilation ak	 operators must be zero (ref. 32, p. 8).
This is exact for a system with a single kind of particle.
For the BF mixture defined by the Hamiltonian (1) and (2)
the total number of fermions, which from (10) is as a sum
of pairable (but unpaired) fermions and paired ones, is
evidently conserved. However, nonzero averages like hak	i
and haþk	i appear due to the cross terms from (2) in the total
Hamiltonian. Recalling the identity

h½C;H�iH � TrfðCH�HCÞ expð��HÞg ¼ 0 ð12Þ

where C is any dynamical operator (chosen here to be ak	 or
aþk	) and the thermal average h½C;H�iH of the commutator
½C;H� is performed over the Hamiltonian H � H � �N, it
is not difficult to see that the cross terms given by (2) lead
to the appearance of hak	i and haþk	i which turn out to
be Oð f 3Þ. Therefore, at least for a mixture with weakly
interacting boson and fermion subsystems we expect that
the contribution from hCihhB j aþ

k0"ii! in (11) will be Oð f 5Þ.
Finally, terms of the type hhðB� hBiÞC j aþ

k0"ii! on the
rhs of (9) are considered small contributions and hence
neglected in getting (8). The last approximation is similar
to Tyablikov’s [ref. 33, p. 258, eq. (32.7)] random phase
approximation (RPA) which underlies all first-order theories
(ref. 32 pp. 108 ff.). That is, if in considering higher than
first-order Green functions one assumes that the phases of
pure boson B and pure fermion C operators vary independ-
ently, then by averaging over H in (9) to obtain hhðB�
hBiÞC j aþ

k0"ii! this vanishes precisely because of the factor
B� hBi.

4. Boson Number Density

Note that k and K in (13) are wavenumbers corresponding
to fermions and bosons, respectively. The magnitude of
boson center-of-mass momentum wavenumbers K are
defined by the energy scale of 2e-bosonic excitations which
in turn can be expected to be much less than the highest
energy scale EF in the present model. In particular, the
condensation energy per pair of electrons describing the
decrease in the energy-per-particle and which occurs upon
the transition from the normal into the superconducting state,
may be considered a suitable energy scale for the 2e-CPs.
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For estimates one may therefore assume that h�
2K2

max=2mB 	
h�

2k2
F=2m � EF where Kmax is the maximum value of 2e-CP

wavenumbers K and mB is approximately twice of the
effective electron mass m. The maximum value Kmax is that
critical value of K beyond which breakups or depairings of
2e-CPs occurs.34,35) Hence, K can be taken as much less than
kF. As to fermion wavevectors k and k0, their magnitude is of
order kF. Therefore, one may assume that k 
 K in (13),
thanks to which ��kþK ’ ��k and hhak�KþQ" j aþk0"ii! ’
hhak" j aþk0"ii! allowing one to factor all terms except
hbKihbþQi outside the summation in (8). Collecting in (8)
the terms with �kk0 yields

hhak" j aþk0"ii!

’ �kk0

�
h�!� �k þ ��

f 2

Ld

X
K

hbKihbþKi
h�!þ ��kþK � �

��1

:

ð13Þ

The rhs of (13) is exactly as in eq. (A�7) of ref. 21. Note that
if translational symmetry holds functions like hhak" j aþk0"ii
and hhak�KþQ" j aþk0"ii turn out to be diagonal as in lowest-
order two-time Green functions (ref. 33, p. 244).

In (13) we assume that hbKihbþKi ’ hb
þ
KbKi ¼ hnBKi for

any K � 0 with hnBKi the number of bosons with CMM
K. This approximation, the justification of which is given
in Appendix A, holds only for the particles obeying Bose
statistics, i.e., when hL�dbþKbKi and hL�dbKb

þ
Ki are macro-

scopic numbers: their difference vanishes asymptotically as
�L�d making the effects associated with the non-commu-
tativity of bK and bþK unimportant in this limit. Thus in (13)
we may insert

L�d
X
K

hbKihbþKi ’ L�d
X
K

hnBKi � nBð�;TÞ ð14Þ

where nBð�; TÞ is the net number density (3) of CPs in the
BF mixture at any T . It is exactly zero for all T � T� and
begins to differ from zero as one lowers the temperature T

below T�. Arguably, hnBKi � hbþKbKi decreases sharply with
wavenumber K thus corroborating the assumption k 
 K

used in (13).
The value of nBð�; TÞ was related in ref. 21, eq. (20) with

the magnitude of EF � �ð�;TÞ driven by bosonization. Thus,
from eq. (20) in ref. 21 one finally has

nBð�; TÞ ’ NðEFÞ½EF � �ð�;TÞ� ð15Þ

for the net boson number density, condensed and non-
condensed.

5. Generalized Gap

Relating the phenomenological BF vertex (‘‘two-electron/
one-boson’’) coupling parameter f with the attractive
interelectron (‘‘four-electron’’) BCS interaction model11)

strength V via f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h�!DV
p

18–20) and recalling that � �
NðEFÞV makes (13) become

hhak" j aþk0 ii! ’ �kk0
h�!þ �k

2Ek

1

h�!� Ek

�
1

h�!þ Ek

� �
ð16Þ

since �k ¼ ��k and whereffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2k þ E2

gð�; TÞ
p

� Ekð�;TÞ ð17Þ

with the generalized gap Egð�;TÞ defined as

Egð�;TÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�h�!D½EF � �ð�; TÞ�

p
ð18Þ

and where as before �k � �k � �. Preliminarily establishing
the spectral density [ref. 31, eq. (3.25)] and then applying it
to calculate haþk;�ak;�i gives

nk �
X
�

haþk;�ak;�i ¼
1

2
1�

�k

Ek

tanh
Ek

2kBT

� �� �
: ð19Þ

The departure of �ð�;TÞ from EF in (18) is found as
in deriving (13) by recalling that k 
 K and repeating the
calculation reported in ref. 21, eq. (32). This finally gives

EF � �ð�;TÞ ¼ ��ð�Þ þ
�h�!D

2

Z h�!D

�h�!D

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ E2

gð�; TÞ
p

� tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ E2

gð�; TÞ
p

2kBT
ð20Þ

where �ð�Þ is given by (5).
If (15) and (18) are combined, one immediately arrives at

the principal result of this paper

Egð�;TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h�!DVnBð�; TÞ

p
� f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nBð�;TÞ

p
: ð21Þ

This relates the pseudogap order parameter Egð�;TÞ very
naturally with the total number density of electron pairs
nBð�;TÞ. Thus, from (17) it is Egð�;TÞ that determines
the single-fermion spectrum Ekð�;TÞ. Recalling that �ð�; TÞ
is the ordinary BCS energy gap and n0ð�;TÞ the BEC
condensate density associated with the zero-CMM state, the
relation that unifies BCS with BEC, namely

�ð�;TÞ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0ð�;TÞ

p
ð22Þ

first seems to have appeared in ref. 6. It later resurfaced in the
phenomenological BF BEC model that Friedberg and Lee7,8)

applied to cuprate superconductors. With just one adjustable
parameter (the ratio of perpendicular to planar boson masses)
they fitted8) cuprate Tc=TF data quite well. The ratio turned
out to be 66,560 — just under the 105 anisotropy ratio
reported36) almost contemporaneously for Bi2þxSr2�yCu-
O6
�. Later on, the precise connection with BCS theory
was finally established in refs. 18–20. Clearly, as nBð�; TÞ in
(21) is larger than n0ð�;TÞ of (22) exactly by the total number
density of excited or nonzero-CMM pairs, (21) indeed
generalizes the BCS–BEC relation (22) known for at least
20 years. CPs begin to appear not exactly at and below Tc as
in BCS theory, but at temperatures much above the Tc of the
BF mixture BEC. It is perhaps for this reason that one refers
to ‘‘preformed’’ CPs. Therefore, being proportional as in (21)
to the square root of the number density of all of the bosons,
the generalized gap Egð�;TÞ in the single-fermion spectrum
emerges at temperatures much higher than Tc.

Equation (18) connecting the generalized gap Egð�; TÞ
with the departure of �ð�;TÞ from EF due to bosonization,
can be rewritten as

EF � �ð�;TÞ ¼
E2

gð�;TÞ
2�h�!D

ð23Þ

which when inserted in (20) gives the implicit equation for
Egð�; TÞ as

E2
gð�; TÞ

2�h�!D

¼ ��ð�Þ þ
�h�!D

2

Z h�!D

�h�!D

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ E2

gð�;TÞ
p
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� tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ E2

gð�; TÞ
p

2kBT
: ð24Þ

According to (23), as the chemical potential �ð�;TÞ of
attractively interacting fermions becomes less than EF, a real
nonzero generalized gap Egð�;TÞ satisfying (24) appears in
the spectrum of single fermions. Note that (23) and hence
(24) have no real solution for T > T�. If �ð�;TÞ > EF in
(23) then a purely-imaginary Egð�;TÞ emerges. However, a
separation of the original many-fermion system into bosons
and fermions does not occur until EF � �ð�; TÞ � 0.

Valid for any T � T� and any coupling � (24) defines
Egð�; TÞ in terms of the boson gap separation 2�ð�Þ between
the Fermi sea and the bottom of the resonant CP band at
K ¼ 0. Introducing �ð�Þ was decisive21) in understanding
the reason why two specific temperatures, T� and Tc with
T� > Tc, appear in the picture. In particular, the depairing
event at T� was explained as a result of resonant CPs
occupying energy levels above the Fermi sea by 2�ð�Þ.
Then putting EF � �ð�;T�Þ ¼ 0 (see detailed discussion in
ref. 21, p. 104506-5) connects T� directly with �ð�Þ via

�ð�Þ ¼
�h�!D

2

Z h�!D

�h�!D

dx

x
tanh

x

2kBT�
: ð25Þ

If (25) is inserted in (24) one gets the equation

E2
gð�;TÞ
ð�h�!DÞ2

þ
Z h�!D

�h�!D

dx

x
tanh

x

2kBT�

�
Z h�!D

�h�!D

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ E2

gð�;TÞ
p tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ E2

gð�;TÞ
p

2kBT
¼ 0 ð26Þ

relating the coupling- and temperature-dependent general-
ized gap Egð�;TÞ with the T� at which the pseudogap opens
in the single-particle fermion spectrum. Equation (26)
contains, instead of the theoretical �ð�Þ given by (5),
an experimentally observable Egð�; TÞ and T� which can
thereby be taken from experiment as a fitting parameter. In
particular, based on experimental data on Egð�;TÞ and T�,
valuable information on the magnitudes of � and h�!D can be
extracted from (26). For estimation purposes, assuming h�!D

to be in the range 50 – 80 meV37) and using the empirical
values of Egð�;TÞ ¼ 38 meV and T�=Tc ’ 3:5 reported
in ref. 38 for the Bi2Sr2CaCu2O8þ� (Bi2212 or BSCCO)
compound with Tc ¼ 74 K, calculations based on (26)
give � � 0:8 to 1.3 with the smaller � corresponding to
larger h�!D.

Equation (24) becomes especially simple at T ¼ 0 when

E2
gð0Þ

ð�h�!DÞ2
� ln

"
1þ 2

h�!D

Egð0Þ

� �2

þ 2
h�!D

Egð0Þ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

h�!D

Egð0Þ

� �2
s #

¼
Z h�!D

�h�!D

dx

x
tanh

x

2kBT�
ð27Þ

with Egð0Þ � Egð�; 0Þ the T ¼ 0 generalized gap. Clearly,
(17) formally resembles the gapped single-fermion energiesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2k þ�2ð�;TÞ

p
of the BCS theory.11) However, the BCS

gap �ð�;TÞ and the generalized gap Egð�; TÞ are of entirely
distinct origins. Once formed at and below Tc CPs in the

BCS model are allowed to go only over all paired-two-
particle states. The breakup of a CP into two unpaired
fermions requires an energy 2�ð�;TÞ which must be
supplied to the system to remove a CP from the subsystem
of CPs. Namely, owing to the mutual transitions between
CPs the BCS state happens energetically favorable compared
to that of the assembly of attractively-interacting single
fermions, ref. 11, eq. (2.42). In sharp contrast, however,
what lowers energy of the BF state compared to that of the
assembly of pairable fermions are the continual transitions
between CPs and unpaired fermions. These transitions are
driven by the term (2) in (1). Occupation of any single
fermion k state by an electron not participating in those
continual transitions, blocks many of CP pair-to-unpaired-2e
(and vice versa) transitions that would otherwise occur.
Such blockage of transitions raises the total system energy as
was shown in ref. 30, eq. (31); this renormalizes the single-
particle spectrum and gives rise to the generalized gap
Egð�; TÞ.

The pseudogap in the present model appears as an
actual energy gap in the single-fermion spectrum. It appears
already at temperatures higher than Tc. This contrasts with
the gap in BCS theory which emerges exactly at and below
Tc. It would thus be interesting to find experimental clues as
to whether physical properties such as charge transport are
associated with unpaired fermions whose density of states is
suppressed in the temperature range Tc � T � T� or with
charged 2e bosons.

6. Illustration with BSCCO and Discussion

In Fig. 1 we plot the generalized gap Egð�;TÞ (in units of
EF) as a function of reduced temperature T=TF as obtained
from (24) where (5) was used for �ð�Þ. From the Table on
p. 596 of ref. 39 TF in quasi-2D superconductors ranges
from 510 to 3150 K which for a median value for cuprates
of h�!D=kB ¼ 400 K40) gives a Debye-to-Fermi temperature
ratio h�!D=EF in the range 0.13 to 0.78. For illustration,
the numerical results shown in Fig. 1 correspond to a
typical value of h�!D=EF ¼ 0:35 within the stated range. The
qualitative behavior in T of Egð�;TÞ=EF does not change
radically over the range 0.13 to 0.78 of h�!D=EF.

Points on the curves in this figure refer to the values of
Tc=TF, namely 0.036 and 0.046 for � ¼ 0:6 (full curve) and

Fig. 1. Dimensionless generalized gap Egð�;TÞ=EF as function of dimen-

sionless temperature T=TF for � ¼ 0:6 (full curve) and 0.8 (dashed

curve), both for the typical cuprate value of h�!D=EF ¼ 0:35. Dots on

curves refer to theoretical Tc=TF found by applying the expression for Tc

established for 2D superconductors [ref. 21, eq. (35)]. Open circles locate

T� values. Curves are otherwise qualitatively the same for any h�!D=EF in

the range 0.13 to 0.78.
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0.8 (dashed curve), respectively, are found from the expres-
sion for Tc established in21) for quasi-2D superconductors
[ref. 21, eq. (35)]. Evidently, the generalized gap does not
close at and above Tc as does the coherent-state gap, say
�ð�; TÞ, predicted by BCS theory for ordinary superconduc-
tors. Instead, upon further heating it evolves into a well-
defined pseudogap which over an appreciably broad range
of temperatures is roughly of the same order of magnitude
as the superconducting gap itself. The pseudogap gradually
fills up and finally vanishes above T�=TF ¼ 0:255 and 0.209,
respectively, where the Egð�;TÞ=EF curves dip below the
horizontal axis. As to the value of the coherent-state gap at
temperatures below Tc, it remains nearly unchanged as T dips
below Tc. This contrasts with the gap associated with BCS
superconductors which is precisely zero for all T � Tc. The
behavior shown in the figure is seen to agree qualitatively with
tunneling conductance measurements (Fig. 3, ref. 2) of the
overdoped Bi2Sr2CuO6þ� (Bi2201) compound.

With the generalized gap Egð�;TÞ below Tc and Egð0Þ the
value of the gap at T ¼ 0, numerical calculations show that
for any fixed BCS coupling parameter � , increasing h�!D=EF

always leads to a linear increase in both Egð0Þ and T� as
seen in Fig. 2 for different � . Full and single-dashed curves
depict the value Egð0Þ (in EF units) for � ¼ 0:4 and 0.6,
respectively. Dimensionless depairing temperatures T�=TF

vs h�!D=EF for the present BF model are indicated dotted
(� ¼ 0:4) and dot-dashed (� ¼ 0:6) curves.

The linear rise of both Egð0Þ and T� as h�!D=EF increases
is clearly evident in this figure. The magnitude of Egð0Þ
increases with � in contrast with the depairing temperature
T� which decreases as � increases (see discussion in ref. 21,
p. 104506-7). Indeed, no matter how large T is, any
attractive interaction between electrons leads to nonzero
expectation of pair formations. As was established in ref. 21,
resonant CPs energetically closer to the Fermi surface,
namely those that according to (5) formed with smaller � ,
are better protected against breakups and thus survive
over a wider temperature range. In contrast with common
wisdom41) T�, interpreted as the temperature below which
the first paired states appear, is here expected to be higher in
superconductors with smaller � than in those with larger � .

From Fig. 2 the ratio 2Egð0Þ=kBT
� (defined in analogy

with the emblematic dimensionless gap-to-Tc ratio 2�ð0Þ=
kBTc ’ 3:53 of BCS theory with T� replacing Tc) does not
depend on the energy width 2h�!D of the interaction shell
EF � h�!D � � � EF þ h�!D as also occurs with the BCS

ratio 2�ð0Þ=kBTc. However, as seen in Fig. 3, for fixed
h�!D=EF with 0.26 (full and dot-dashed curves, respectively
for Egð0Þ and T�) and 0.35 (dashed and dotted curves,
respectively for Egð0Þ and T�) the response of Egð0Þ and T�

to changes in � are qualitatively different as Egð0Þ increases
as � increases whereas T� decreases within the overall
interval of variation of � . For small � the decrease in T� is
rapid but for larger � , T� becomes less sensitive to changes
in � .21)

The dimensionless ratio 2Egð0Þ=kBT
� for the small � is

strongly �-dependent but, as is evident below in Fig. 4, as �
increases past about 0.8 the ratio becomes largely independ-
ent of � . Results of numerous calculations are shown in
Fig. 4, namely that for all � the magnitude of 2Egð0Þ=kBTc

rises proportionally with T�=Tc. For any variation of T�=Tc

the slope of a graph 2Egð0Þ=kBTc vs T�=Tc in Fig. 4 remains
unchanged. The proportionality between 2Egð0Þ=kBTc and
T�=Tc implies that the ratio 2Egð0Þ=kBT

� is a function of
� only.

Not considered in our calculations are extremely small
values of � , say, less than 0.2. Then, eq. (28) of ref. 21,
applied to estimate the ratio h�!D=2kBT

� lets us put h�!D=
2kBT

� � 1:5 in (B·2) (see Appendix B) to solve eq. (B·2)
numerically. Calculations are repeated with different �s
which run up to very high values, looking for how strongly
the ratio 2Egð0Þ=kBT

� changes with � . Although approx-

Fig. 2. Shown as functions of h�!D=EF are zero-temperature gap Egð0Þ=EF

(full curve for � ¼ 0:4, dashed for � ¼ 0:6) found from (24) and T�=TF

extracted from (25) (dotted curve for � ¼ 0:4 and dot-dashed for

� ¼ 0:6) where (5) is inserted in the lhs of (25).

Fig. 3. Shown as functions of coupling parameter � are zero-temperature

generalized gap Egð0Þ=EF (full curve for h�!D=EF ¼ 0:26 and dashed for

h�!D=EF ¼ 0:35) and T�=TF (dotted curve for h�!D=EF ¼ 0:35 and dot-

dashed for h�!D=EF ¼ 0:26). Note that Egð0Þ rises while T� falls with

increasing � , and combining to render 2Egð0Þ=kBT
� insensitive to

changes in � at larger �s.

Fig. 4. Shown as functions of T�=Tc is the generalized-gap-to-Tc ratio

2Egð�; 0Þ=kBTc for � ¼ 0:86, 1.2, and 3. Increasing � increases the curve

slope, approaching a value of about 3.67 which keeps roughly constant

at 3.2 to 3.7 for all � > 0:8. Symbols in figure refer to experimental data

points for various Bi-based and for La2CuO4 (Li124) and YBa2Cu3O7��
(Y123) cuprate compounds reproduced from Fig. 5 of ref. 2 where data

are collected from different sources cited therein.
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imations made to give (17)–(18) are justifiable only in the
limit of weak coupling, we found that the description of the
effects associated with the appearance of nonzero averages
hbKi and hbþKi in the system which was the main motivation
in truncating the infinite chain of equations (7) are already
captured qualitatively in the lowest order of � . The variation
in 2Egð0Þ=kBT

�, i.e., the change in the slope of the curves of
Fig. 4, turns out to be small when � is larger than about 0.8.
For example, 2Egð0Þ=kBT

� ’ 3:2 for � ¼ 0:86 and changes
by only about 10% as � rises increases to 3. However,
2Egð0Þ=kBT

� changes by less than 2% on further increasing
� and continues to rise but very slowly, saturating to a
constant value of about 3.67. Thus, 2Egð0Þ=kBT

� increases
no more than 10 to 12% as � increases from 0.8 to very large
values. As to the ratio h�!D=2kBT

� its increase leads to a
small variation in the value of 3.67 at which 2Egð0Þ=kBT

�

saturates. In agreement with our estimations for � made
above, we focus on � ¼ 0:86 (dotted curve) and 1.2 (dashed
curve) in Fig. 4.

Increasing � beyond 0.86 gradually increases the slopes in
Fig. 4, approaching a limiting value for 2Egð0Þ=kBT

� which
appears to be very close to that given by the s-wave-pairing
BCS ratio 2�ð0Þ=kBTc ’ 3:53. The unusual high �s as well
of h�!D=2kBT

� lead to slightly higher 2Egð0Þ=kBT
� values

approaching 3.7. The solid line in Fig. 4 exhibits 2Egð0Þ=
kBTc vs T�=Tc for � ¼ 3. To summarize the numerical
analysis, although the ratio 2Egð0Þ=kBT

� does depend on � it
varies very weakly for � ’ 0:8 since as one increases � from
0.86 up to very large �s the ratio 2Egð0Þ=kBT

� rises very
slowly approaching the value 3.7. But it remains strictly
between 3.2 and 3.7 for any � � 0:86. This provides an
alternate explanation for the experimental data collected in
Fig. 5 of ref. 2 and reproduced in our Fig. 4 where 2Egð0Þ=
kBTc is shown as a function of T�=Tc for various values of � .
As seen from Fig. 4, for a given HTSC compound with a
large ratio T�=Tc, the magnitude of 2Egð0Þ=kBTc is expected
to be large. This qualitatively agrees with the results of
refs. 38, 42, 43, 45–47 where the experimental data in
Bi2Sr2CaCu2O8þ� (Bi2212), La2CuO4 (La214) and YBa2-
Cu3O7�� (Y123) are reported. In particular, Fig. 4 explains
experiments on overdoped Bi2Sr2CuO6þ� (Bi2201)2) where
Tc was only 10 K, but with the surprisingly large 2Egð0Þ=
kBTc ’ 28. According to Fig. 4 the ratio T�=Tc appears
extremely large, specifically ’7, as in (21) and is in a good
agreement with ref. 2. It was shown in ref. 44 how the
momentum-space symmetry of the pseudogap and super-
conducting gaps are the same. Furthermore, the pseudogap
is not restricted to the underdoped state, but occurs also
in optimally-doped and overdoped superconducting com-
pounds such as Bi2:1Sr1:9CaCu2O8þ�.

38,45) These observa-
tions suggest that the pseudogap and superconducting gap
have a common origin, indirectly supported by the present
work according to which both gaps are experimental
manifestations of the same phenomena displayed in two
distinct temperature regions, namely Tc � T � T� and
T � Tc.

7. Conclusions

It was shown that an upward shift of 2�ð�Þ between the
boson and fermion spectra leads on cooling to a continuous
decrease of the fermion chemical potential �ð�;TÞ with

respect to the value EF associated with interactionless
fermions at very small T . In other words, the BF binary gas
mixture state develops gradually from the fermion gas as
T is lowered. According to (17), (19) and (20) the single-

fermion spectrum becomes gapped as the difference EF �
�ð�;TÞ starts differing from zero, i.e., already beginning at
and below a temperature T ¼ T� > Tc so that a minimum
energy Egð�;TÞ is required to excite single fermions from
the subsystem of unpaired fermions in the BF mixture. An
analytic expression for the value of the gap in the spectrum
of single-fermions which evolves by bosonization is there-
fore derived via two-time Green functions.
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Appendix A

Write the bosonic operators bK in terms of local scalar
field operators �ðrÞ as in ref. 7, namely

bK ¼ L�d=2
Z

dr�ðrÞ expð�iK � rÞ ðA:1Þ

and consider the averages

hbþKbKi
Ld

¼ L�2d

Z
Ld

Z
Ld

dr1 dr2h�þðr1Þ�ðr2Þi

� expðiK � ½r1 � r2�Þ: ðA:2Þ
In the thermodynamic limit when Ld !1 (with the density
hbþKbK=L

di of CPs of total CMM K constant) the integrals
over r1 and r2 in (A·2) accumulate mainly at largely
separated points r1 and r2. Indeed, the portions of neighbor-
ing points r1 and r2 contributing to (A·2) are much smaller
than portions due to remote r1 and r2. When referred to well-
separated points r1 and r2 correlations between �þðr1Þ and
�ðr2Þ weaken and one may write

hbþKbK=L
di ’ L�2d

Z
Ld

dr1h�þðr1Þi expðiK � r1Þ

�
Z
Ld

dr2h�ðr2Þi expð�iK � r2Þ

¼ hL�d=2bþKihL
�d=2bKi: ðA:3Þ

Justification of hbþKbKi ’ hbKihbþKi given here and used in
(13) was adopted from ref. 32, p. 57 where this approx-
imation was justified in detail for K ¼ 0 whenever Ld !1.
Note, in the pure Bose gas considered in ref. 32, the nonzero
averages hb0i and hbþ0 i emerged after eliminating (in a
manner as discussed above) the degeneracy associated with
boson-number conservation-law. But because of (2) the
bosons number does not conserved in a BF mixture gas. As
a result, the condition hbKi ¼ hbþKi ¼ 0 exact for the pure
Bose system with boson-number conservation fails. Being
different from zero below T�, the mean values of the bosonic
annihilation and creation operators appear to be related
through the (A·3).
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Appendix B

To see how the ratio 2Egð0Þ=kBTc differs in various
HTSCs with different values of T�=Tc and get Fig. 4 we
introduce the new dimensionless variables

X �
T�

Tc

; Y �
�ð0Þ
2kBTc

; and D �
h�!D

2kBT�
ðB:1Þ

in terms of which (27) takes the form

1

�2

Y

DX

� �2

þ
Z D

�D

tanh x

x
dx

� ln

"
1þ 2

DX

Y

� �2

þ 2
DX

Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

DX

Y

� �2
s #

¼ 0: ðB:2Þ

where both X and Y are functions of � and h�!D. However, as
discussed in Fig. 2, for fixed � the parameter D in (B·2) does
not depend on h�!D. If one fixes the value of � then the ratio
D in (B·2) may be considered constant, the actual value of
which must be defined with a choice of � . That is, for fixed
� (27) written in terms of X, Y , and D allows us to consider
it as a relation between two independent variables, i.e.,
between 2�ð0Þ=kBTc and T�=Tc which may be solved, at
least numerically, to find Y satisfying (B·2) for a given X.
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