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Dimensional crossover of a boson gas in multilayers
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4Facultad de Ingenierı́a, Universidad Nacional Autónoma de México, 04510 México, D.F., Mexico
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We obtain the thermodynamic properties for a noninteracting Bose gas constrained on multilayers modeled
by a periodic Kronig-Penney delta potential in one direction and allowed to be free in the other two directions.
We report Bose-Einstein condensation (BEC) critical temperatures, chemical potential, internal energy, specific
heat, and entropy for different values of a dimensionless impenetrability P � 0 between layers. The BEC critical
temperature Tc coincides with the ideal gas BEC critical temperature T0 when P = 0 and rapidly goes to zero
as P increases to infinity for any finite interlayer separation. The specific heat CV as a function of absolute
temperature T for finite P and plane separation a exhibits one minimum and one or two maxima in addition to
the BEC, for temperatures larger than that of BEC Tc. This highlights the effects due to particle confinement. We
then discuss a distinctive dimensional crossover of the system through the specific heat behavior driven by the
magnitude of P . For T < Tc the crossover is revealed by a change in slope of log CV (T ) and when T > Tc, it is
exhibited by a broad minimum in CV (T ).
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I. INTRODUCTION

Nonrelativistic composite bosons in layered structures are
found as molecular electron pairs in cuprate superconductors
[1], alkaline atoms in optical lattices [2], excitons in multilay-
ered semiconductors [3], exciton polaritons in microcavities
[4] or simply as atoms of helium four adsorbed on graphite [5]
or any another substrate [6,7]. These systems with planar
symmetry have been described in [8,9] and several periodic
potentials have been used such as the sinusoidal [10] and the bi-
parabolic [11] with good results only in the low particle energy
limit, or in the tight-binding approximation [12]. However, to
analyze structural effects like particle trapping between the
planes or quasi-two-dimensional (quasi-2D) behavior when
plane separation is of the order of half the thermal wavelength,
it is necessary to consider a much wider temperature region in
which a large number of energy bands needs to be included in
the calculation of the system thermodynamic properties.

Recent experiments with ultracold atoms particularly in
optical lattices, provide a test not only to probe new physics
at very low temperatures but also for interacting many-
body models of condensed matter (the so-called quantum
simulators [13]). Although this is the current trend in the
field, experimental and theoretical studies on noninteracting
many-body systems [10,14] are still being considered due to
the possibility of tuning off the strength of interactions between
particles in experimental situations.

In Ref. [15] it was shown that a layered structure with
plane separation a is revealed in the specific heat behavior
as a function of temperature. For closely separated planes
(a � λ0 ≡ h/

√
2πmkBT0), a minimum at T ≡ Tmin whose

corresponding thermal wavelength scales with a as λ � 2a

is found in the CV versus T curves, where T0 is the ideal
gas Bose-Einstein condensation (BEC) critical temperature.
For a � λ0 the minimum disappears as a well-defined bump
develops while the sharpness of the transition smooths out.

This bump occurs at Tmax > Tc and in the limit of a → ∞
both, Tc and Tmax tend to T0 and the bump evolves into the
well-known BEC peak.

In this paper we show that there is a marked dimensional
crossover from three-dimensional (3D) to quasi-2D as P [16] is
increased over a range of thermal energies around πh̄2/2ma2.
Here we elucidate some aspects of this feature. Even when
interactions between bosons are neglected, it is known that
the inhomogeneity induced by a trapping potential such as a
harmonic trap [17] deforms the free particle density of states
(DOS) thus giving rise to a finite, nonvanishing, critical tem-
perature in a 2D system. In a weakly interacting Bose gas the
trapping potential suppresses long-range thermal fluctuations
that would otherwise destroy the condensate [18,19].

The paper unfolds as follows. In Sec. II we describe the
model consisting of a boson gas initially in an infinitely
large box where we introduce layers of null width and finite
impenetrability separated periodically by a distance a. The
layers are introduced via the Kronig-Penney (KP) potential
[20] only in the z direction and in the limit where the KP
square potential barriers become repulsive delta potentials.
Using the energy dispersion relations in this model, we derive
the number equation and the equation for the grand potential to
calculate the critical temperature and the condensate fraction.
From the grand potential we also obtain the internal energy,
specific heat, chemical potential, and entropy, which are then
compared with the case where there are no layers (i.e., with
the properties of the infinite ideal boson gas). In Sec. III the
density of states is obtained and a model of it is proposed to
exhibit the 3D to quasi-2D dimensional crossover. In Sec. IV
results are discussed and conclusions given.

II. THERMODYNAMIC PROPERTIES

We consider a system of N noninteracting bosons of
mass m within layers of separation a which we model as
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FIG. 1. (Color online) Bosons among very thin planes of variable
penetrability and stacked in the z direction.

a periodic array of delta potentials of strength � in the z

direction,
∑∞

n=−∞ �δ(z − na). They are free in the other two
directions (see Fig. 1). This z-directional model is a version
of the Kronig-Penney potential known as the “Dirac comb”
potential. The Schrödinger equation for any boson of mass m

is separable in x, y, and z directions so that the single-particle
energy as a function of the momentum k = (kx,ky,kz) is
εk = εkx

+ εky
+ εkz

, where

εkx,ky
= h̄2k2

x,y

2m
, (1)

with kx,y = 2πnx,y/L and nx,y = 0, ± 1, ± 2, . . . , that is, in
the x and y directions, particles are free and periodic boundary
conditions in a box of size L are imposed. The energies εkz

in
the z direction are obtainable from

(P/αa) sin(αa) + cos(αa) = cos(kza), (2)

with α2 ≡ 2mεkz
/h̄2 and we have defined the dimensionless

constant P ≡ m�a/h̄2 as the ratio of the competing energy
scales, �/a and h̄2/ma2. Here P measures the layer impen-
etrability whereby P → 0 signifies the trivial free-particle
dispersion energy in the z direction εkz

→ h̄2k2
z /2m. By

contrast, P → ∞ implies sin(αa) → 0 which corresponds to
confining bosons inside a semi-infinite slab of width a and
lateral infinite extent as has been extensively discussed in the
literature (see [21] and references therein). For small particle
energy (i.e., εkz

� h̄2/2ma2) (2) becomes

εkz
� ε0 + h̄2

Ma2
(1 − cos kza), (3)

where ε0 and M are the P -dependent ground-state en-
ergy and the effective boson mass in the z direc-
tion, respectively. Here, ε0 satisfies Eq. (2) for kz →
0, namely (P/α0a) sin(α0a) + cos(α0a) = 1 where ε0 ≡
h̄2α2

0/2m and M ≡ |[sin α0a − (P + 1)(cos α0a)/α0a]/α0a|.
Expression (3) has been used [8,9] to describe the dispersion
relation in periodic arrays such as the CuO2 planes in cuprate
superconductors. However, these studies were limited to very
low energies since only the first energy band was considered.

Calculation of thermodynamic properties requires inte-
gration, in the thermodynamic limit, over all allowed wave
vectors k. Integrals over kx and ky are straightforward but
for the integration over kz, the values of εkz

are required
from the solution of (2). This is discussed extensively (e.g.,

in Refs. [22,23]), where (αa)2 as a function of kza exhibits
allowed and forbidden energy bands. The integrals over kz can
be evaluated as the sum over allowed bands of integrals over
the first half-Brillouin zone (0 < kza < π ). In other words, for
any function f (εz),

∫ ∞

−∞
dkzf (εkz

) = 2
∞∑

j=1

∫ π/a

0
dkzf (εkzj ),

where εkzj denotes the energy in the j th band.
Thermodynamic properties are then obtained from the

grand potential �(T ,V,µ) for a boson gas [24] in a volume
V ≡ L3, namely,

�(T ,V,µ) = U − T S − µN

= �0 + kBT
∑
k �=0

ln{1 − exp[−β(εk − µ)]} (4)

where U is the internal energy, S is the entropy, β ≡ 1/kBT ,
and µ is the chemical potential. Here, we have explicitly
separated the term �0 ≡ kBT ln{1 − exp[−β(ε0 − µ)]} cor-
responding to the k = 0 ground-state contribution to the grand
potential. After expanding the logarithm ln(1 + x) into its
power series −∑∞

l=1(−x)l/ l valid for |x| < 1, substituting
εk and reordering, (4) becomes

�(T ,V,µ) = �0 − kBT

∞∑
l=1

exp βµl

l

×
∑
k �=0

exp
{−βl

[
(h̄2/2m)

(
k2
x + k2

y

) + εkz

]}
.

In the continuous limit where h̄2/mL2 � kBT (i.e., when
level spacing is negligible compared to thermal energy), the
summations over k can be approximated by integrals, namely∑

k −→ (L/2π )3
∫

d3k. Thus,

�(T ,V,µ) = �0 − kBT

(
L

2π

)3 ∞∑
l=1

exp βlµ

l

×
∫ ∞

−∞
dkx exp

[−βl(h̄2/2m)k2
x

]

×
∫ ∞

−∞
dky exp

[−βl(h̄2/2m)k2
y

]

×
∫ ∞

−∞
dkz exp(−βlεkz

).

The integrals over kx , ky are elementary so that

�(T ,V,µ) = �0 − 1

β2

L3m

(2π )2 h̄2

∫ ∞

−∞
dkz

∞∑
l=1

exp βl(µ − εkz
)

l2
.

(5)

The infinite sum is expressible in terms of Bose functions [24]
gσ (t) ≡ ∑∞

l=1 t l/lσ . Combining gσ and (5) leaves

� (T ,V,µ) = �0 − 1

β2

L3m

(2π )2 h̄2

∫ ∞

−∞
dkz

× g2{exp[β(µ − εkz
)]}. (6)
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From (6) it is possible to find the thermodynamic properties
for a monatomic gas using the well-known relation,

d� = −SdT − pdV − Ndµ. (7)

In this representation the grand potential �(T ,V,µ) = −pV

is the fundamental relation leading to all the thermodynamic
properties of the system, via [24]

N = −
(

∂�

∂µ

)
T ,V

, S = −
(

∂�

∂T

)
V,µ

,

(8)

p = −
(

∂�

∂V

)
T ,µ

= −�

V
.

The internal energy and specific heat are

U (T ,V ) = −kBT 2

[
∂

∂T

(
�

kBT

)]
V,z

,

(9)

and CV =
[

∂

∂T
U (T ,V )

]
N,V

,

where z ≡ exp(βµ) is the fugacity.

A. Critical temperature

The equation for particle number N is obtained from the
first equation of (8) and the grand potential (6) to yield

N = 1

exp[β(ε0 − µ)] − 1

− L3T

(2π )2 T0γ a2

∫ ∞

0
dkz ln{1 − exp[−β(εkz

− µ)]}

≡ N0(T ) + Ne(T ), (10)

where we have introduced the dimensionless parameter γ ≡
h̄2/2ma2kBT0 = (1/4π )(λ0/a)2, T0 being the critical tem-
perature of an ideal boson gas in an infinite box given by
T0 = 2πh̄2n

2/3
B /mkBζ (3/2)2/3 � 3.31h̄2n

2/3
B /mkB with nB ≡

N/L3 the boson number density. Evidently, γ and nB are
related by

γ 3/2 = ζ (3/2)/(4π )3/2a3nB � 0.0586/Na,

where Na is the number of bosons contained inside a volume
a3. Clearly, the first term in (10) is the number of particles
N0(T ) in the condensed state while the second term is the
number of bosons Ne in excited states. For T > Tc, N0(T ) is
negligible compared with N while for T < Tc it becomes a
sizable fraction of N . At precisely T = Tc, µ = µ0, N0(Tc) �
0, and N � Ne, with µ0 the lowest particle energy. Then, at
T = Tc (10) is just

N = − L3

(2π )3

2π

a3

Tc

T0γ

×
∫ ∞

0
adkz ln{1 − exp[−βc(εkz

− µ0)]}. (11)

Since εkz
has a band structure one can split the integral into

a sum of contributions from each of the allowed energy bands.
In practice, the infinite sum is truncated after, say, J terms
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FIG. 2. Critical temperature as a function of the impenetrability
parameter P for different values of γ. Critical temperatures of HTSC
lie in the region between the horizontal dashed lines.

once convergence is achieved. The expression for the critical
temperature is then

−1 = ATc

T0

J∑
j=1

∫ jπ

(j−1)π
dξ ln{1 − exp[−βc(εkzj − µ0)]}, (12)

where A ≡ 2(γ /π )1/2/ζ (3/2), ξ ≡ akz, and we have reex-
pressed N in terms of the critical temperature T0. Using ξ ≡
η + (j − 1)π then dξ = dη, and when ξ = (j − 1)π then
η = 0; similarly when ξ = jπ , η = π . Using this definition
(13) becomes

−1 = AT̃c

J∑
j=1

∫ π

0
dη ln{1 − exp[−β̃cγ (ε̄ξj − µ̄0)]}, (13)

if one introduces the dimensionless quantities β̃ ≡ βkBT0 and
T̃c = Tc/T0. Here, ε̄ξj and µ̄0 are the energy and chemical
potential below Tc, respectively, in units of h̄2/2ma2 and are
the solutions of (2). Since the left-hand side of (13) is constant,
this is an implicit equation to determine Tc. In Fig. 2 we show
the critical temperature as a function of the parameter P for five
values of γ which were chosen to span a wide symmetric range
of a values around a = λ0. For reference, the interval over
which empirical high-temperature superconductivity (HTSC)
critical temperatures are found [25,26] is shown between
dashed horizontal lines. We note that T̃c is a monotonically
decreasing function of P but not of γ or λ0/a as shown by
crossing curves [15] for γ = 1,10. The existence of a finite
nonzero critical temperature for any finite value of P is caused
by the ε1/2 behavior of the density of states in 3D, valid for
energies around the bottom of the first band (see Sec. III).
In the limit P → ∞ we recover a collection of independent
slabs of volume L × L × a with L → ∞ and finite a, such
that the z-direction particle energies are those associated with
Dirichlet boundary conditions. The critical temperature for
any of these slabs with boson density nB vanishes as a
consequence of an infrared divergence as occurs in the exact
2D system [27].
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FIG. 3. (Color online) Condensate fraction as a function of T/Tc

for different values of the impenetrability parameter P . Top panel is
for a/λ0 = 0.892; bottom panel is for a/λ0 = 0.089.

B. Condensate fraction

From (10), the condensate fraction N0/N = 1 − Ne/N is

N0/N = 1 + A

β̃

J∑
j=1

∫ π

0
dξ ln{1 − exp[−β̃γ (ε̄ξj − µ̄0)]}.

(14)

In Fig. 3 we compare the condensate fractions of an ideal
free Bose gas (i.e., P = 0) and of bosons among layers with
P = 10,102,103, and 104 with a/λ0 = 0.892 (top panel) and
a/λ0 = 0.089 (bottom panel). The different behavior of N0/N

in each case may be explained as follows: the smaller the
ratio a/λ0, the larger the temperature Tmin where confinement
effects are markedly observed. This is the case for a/λ0 =
0.089 (γ = 10) where Tmin � 31.42T0 > Tc (see Table I for
the respective values of Tc/T0), and therefore we do not expect
a large departure from the P = 0 case. On the other hand,
trapping effects are revealed at low temperatures when a/λ0 �
0.892 and are more prominent as P increases.

In particular, for a/λ0 = 0.892 (Tmin � 0.314T0), the
condensate fraction changes from its familiar temperature
dependence 1 − (T/Tc)3/2 for P = 0, to 1 − (T/Tc)d/2 while
the effective dimension 2 < d < 3 is a function of P and a/λ0.

A fit to this expression leads to d = 2.842,2.558,2.376, and
2.275 for P = 10, 102, 103, and 104, respectively, as shown in
the top panel of Fig. 3.

TABLE I. Critical temperatures Tc/T0 computed with the values
of P and Tmin/T0, for γ used in Figs. 3–8 (Tc/T0 = 1 for P = 0).∖

P

Tmin/T0 γ
∖

10 102 103 104

0.31416 0.1 0.859 0.566 0.39 0.292
31.416 10 0.834 0.449 0.203 0.098

C. Internal energy

The internal energy U is obtained from (6) and (9) as

U (T ,V ) = ε0

exp β(ε0 − µ) − 1

− L3m

(2π )2h̄2

2

β

∫ ∞

0
dkzεkz

ln{1 − exp[−β(εkz
− µ)]}

+ L3m

(2π )2h̄2

2

β2

∫ ∞

0
dkzg2{exp[−β(εkz

−µ)]},
(15)

which can be rewritten as

(U − Nε0)/NkBT

= A

β̃

J∑
j=1

∫ π

0
dξg2{exp[−β̃(ε̃kzj − µ̃)]}

−A

J∑
j=1

∫ π

0
dξ (ε̃kzj − ε̃0) ln{1 − exp[−β̃(ε̃kzj − µ̃)]}.

(16)

To find U , we rewrite (10) to obtain µ(T ) as

1 = N0/N − A

β̃

∫ ∞

0
adkz ln{1 − exp[−β̃(ε̃kz

− µ̃)]}, (17)

from which one can numerically extract µ(T ). In Fig. 4 µ(T ) is
shown for different values of P and for two values of γ = 0.1
and 10 in which the CV has a markedly different behavior
[15]. In the limit P → ∞ and a/λ0 � 1, when the system
is approximately two-dimensional, we expect µ(T ) to vary
according to ε0 + kBT ln[1 − exp(−h̄2n2D/2πmkBT )], where
n2D is the 2D bosonic number density.

Note that the relation U = 3
2pV satisfied by ideal quantum

gases at all temperatures is no longer valid in the temperature
region where confinement effects appear. In this region we
have U = χ (T )pV , where the factor χ (T ) changes smoothly
from 3/2 to 1 and goes back again to 3/2. This effect is
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FIG. 4. (Color online) Chemical potential in kBT0 units as a
function of T/Tc for different values of the impenetrability parameter
P . Top panel is for a/λ0 = 0.892; bottom panel is for a/λ0 = 0.089.
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FIG. 5. (Color online) pV in NkBT units as a function of T/Tc

for different values of the impenetrability parameter P . Top panel is
for a/λ0 = 0.892; bottom panel is for a/λ0 = 0.089.

conspicuously evidenced for a/λ0 < 1 as is observed by
comparing the bottom panels of Figs. 5 and 6.

D. Specific heat

To determine CV (T ) one also needs ∂µ(T )/∂T . For T <

Tc, µ = µ0 is a constant so that ∂µ0/∂T = 0. For T > Tc,
N0/N � 0, and taking the derivative of the last equation with
respect to T gives

− dβ̃

dT
= A

∫ ∞

0
adkz

exp[−β̃(ε̃kz
− µ̃)]

1 − exp[−β̃(ε̃kz
− µ̃)]

× [(ε̃kz
− µ̃)(∂β̃/∂T ) − β̃(∂µ̃/∂T )],

which after some algebra leads to

1 + A
∫ ∞

0 adkz(ε̃kz
− µ̃)/{exp[β̃(ε̃kz

− µ̃)] − 1}
A

∫ ∞
0 adkz/{exp[β̃(ε̃kz

− µ̃)] − 1}
= −T

∂µ̃

∂T
. (18)
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FIG. 6. (Color online) Internal energy in NkBT units as a function
of T/Tc for different values of the impenetrability parameter P . Top
panel is for a/λ0 = 0.892; bottom panel is for a/λ0 = 0.089.

Taking the derivative of (16), and using (17) and (18) for the
chemical potential µ and its derivative, the specific heat is as
follows:
CV

NkB

= U − Nε0

NkBT
− Aµ̃0β̃

∫ ∞

0
adkz

(ε̃kz
− µ̃) + T (∂µ̃/∂T )

exp[β̃(ε̃kz
− µ̃)] − 1

+ A

β̃

∫ ∞

0
adkzg2{exp[−β̃(ε̃kz

− µ̃)]}

−A

∫ ∞

0
adkz ln{1 − exp[−β̃(ε̃kz

− µ̃)]}

× [(ε̃kz
− µ̃) + T (∂µ̃/∂T )] + Aβ̃

∫ ∞

0
adkzε̃kz

× [(ε̃kz
− µ̃) + T (∂µ̃/∂T )]

exp[β̃(ε̃kz
− µ̃)] − 1

, (19)

where we used z[dg2(z)/dz] = g1(z) = − ln(1 − z). Trans-
forming integrals into sums over allowed bands and after some
algebra gives

CV

NkB

= U − Nε0

NkBT
+ A

β̃

J∑
j=1

∫ π

0
dξg2{exp[−β̃(ε̃kzj − µ̃)]}

−A

J∑
j=1

∫ π

0
dξ ln{1− exp[−β̃(ε̃kzj−µ̃)]}[(ε̃kzj − µ̃)

+ T (∂µ̃/∂T )] + Aβ̃

J∑
j=1

∫ π

0
dξ (ε̃kzj − µ̃0)

× [(ε̃kzj − µ̃) + T (∂µ̃/∂T )]

exp[β̃(ε̃kzj − µ̃)] − 1
. (20)

As before, for T < Tc the chemical potential µ = µ0 is
constant and ∂µ̃/∂T = 0 so that the specific heat becomes

CV

NkB

= U − Nε0

NkBT
+ A

β̃

J∑
j=1

∫ π

0
dξg2{exp[−β̃(ε̃kzj − µ̃0)]}

−A

J∑
j=1

∫ π

0
dξ ln{1− exp[−β̃(ε̃kzj − µ̃)]}(ε̃kzj−µ̃0)

+Aβ̃

J∑
j=1

∫ π

0
dξ

(ε̃kzj − µ̃0)2

exp[β̃(ε̃kzj − µ̃0)] − 1
, T < Tc.

(21)

The effects on the temperature dependence of specific heat
when P is increased depends on whether a � λ0 (top panel in
Fig. 7) or a � λ0 (bottom panel in Fig. 7) just as happens for
the condensate fraction in Sec. II B. First, plane separations
are revealed in the specific heat as a minimum in the CV

versus T curves when a � λ0 (or as a crossover from T 3/2 to
T in the low-temperature dependence of CV when a � λ0).
Second, such characteristics mark an effective 2D behavior
of the system on a range of temperatures that becomes wider
as P is increased (one can note such behavior in the bottom
panel of Fig. 7 where the characteristic CV /NkB � 1 in 2D is
revealed on a wider range of temperatures as P is increased).

For the a � λ0 case, two distinctive features in the specific
heat can be observed. The first one is characterized by the
appearance of a maximum at Tmax immediately after the
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FIG. 7. (Color online) Specific heat in NkB units as a function
of T/Tc, for different values of the impenetrability parameter P .
Top panel is for a/λ0 = 0.892; bottom panel is for a/λ0 = 0.089.
Horizontal dotted lines denote the classical values for two- and three-
dimensional ideal boson gas (IBG) systems.

BEC Tc. Since any property related to the condensate should
manifest itself at temperatures lower than Tc, this maximum
must be unrelated to BEC as is suggested by the fact that
it persists even for P = ∞ when no BEC exists at all. This
conclusion contrasts to the one given in [28–30] where the
system studied corresponds to ours in the P → ∞ limit and
the maximum in Cv has been used as a criteria that marks the
onset of BEC in finite systems.

The second feature contrasts with the 3D case in that the
discontinuity of ∂CV /∂T at Tc (being positive at T −

c and
negative at T +

c ) is reduced as P is increased. Indeed, for
large enough values of P the sign of ∂CV /∂T |T +

c
changes

from negative to positive, thus smoothing the “cusp” of CV

at Tc. This same behavior is qualitatively observed when the
dimensionality of the IBG is continuously reduced from 3D
to 2D [31]. Indeed, a clear signature of 2D behavior is found
in the linear temperature dependence of CV as T → Tc for
P = 102,103, and 104 (recall that CV ∝ T d/2 for T � Tc in d

dimensions [32]). Furthermore, smooth curves of CV versus T

with no sign of a phase transition and that exhibit a maximum
just above Tc have been observed in path-integral simulations
of 2D superfluidity [33] as well as in 2D planar spin models
of superfluidity [34]. In those systems, the critical temperature
marks the separation between a phase with quasi-long-range
order and a disordered one. The crossover from one phase to
the other as a function of the temperature is known as the
Berezinskii-Kosterlitz-Thouless phase transition [35,36] and
differs from the BEC phase transition in that no long-range
order is present in the condensate.

Hence, the temperature dependence of the specific heat
shown in Fig. 7 (bottom) over a well-defined range of T may
reflect a dimensional crossover from 3D to 2D as the strength �

of the δ barriers is increased. For high temperatures the system
undergoes, as expected, another dimensional crossover taking
the system back to a 3D behavior. However, this 2D→3D
crossover occurs at a characteristic temperature dictated by
the relation λ � 0.7a [15].

E. Entropy

The entropy S follows on substituting (6) in the second
equation of (8). After some algebra we arrive at the dimen-
sionless entropy per particle:

S

NkB

= 1

N
ln[N0 + 1] + βN0

N
(ε0 − µ)

−A

∫ ∞

0
adkz(ε̃kz

− µ̃) ln
(
1 − exp[−β̃(ε̃kz

− µ̃)]
)

+ 2A

β̃

∫ ∞

0
adkzg2{exp[−β̃(ε̃kz

− µ̃)]}. (22)

The first two terms on the right-hand side are zero when T > Tc

since N0 ≈ 0 in the thermodynamic limit N −→ ∞. Thus, the
entropy can ultimately be rewritten in terms of sums as

S

NkB

= A

J∑
j=1

∫ π

0
adkz(ε̃kzj − µ̃) ln{1 − exp[−β̃(ε̃kzj − µ̃)]}

+ 2A

β̃

J∑
j=1

∫ π

0
adkzg2{exp[−β̃(ε̃kzj − µ̃)]}. (23)

Entropy and specific heat curves for γ = 10 clearly show a
smooth transition from a 3D to a 2D behavior for sufficiently
large impenetrability P and again to 3D over a finite temper-
ature interval for high enough temperatures. The temperature
interval where the system shows a 2D behavior is P dependent
and coincides with the specific heat valley in the bottom panel
in Fig. 7 where CV /NkB � 1. The dimensional transition in
the entropy is shown as a change in the slope of the S versus
lnT curves of Fig. 8 from 3/2 in 3D to 1 in 2D. For γ = 0.1 the
dimensional transition is observed at low temperatures and is
associated with the changeover of the temperature dependence
T 3/2 → T (see inset in Fig. 8).
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FIG. 8. (Color online) Entropy in NkB units as a function of
T/Tc, for different values of the impenetrability parameter P . Top
panel is for a/λ0 = 0.892; bottom one for a/λ0 = 0.089. Inset in the
top panel shows the trapping effect as a change in the slope below the
critical temperature for P = 100.
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FIG. 9. (Color online) Density of states per particle in units of
h̄2/2ma2 as a function of the energy ε in units of (2ma2/h̄2) and
impenetrability parameter P .

III. DENSITY OF STATES

The density of states (DOS) for this system may be obtained
as a function of the particle energy ε and the impenetrability
P . If h̄2α2(kz)/2m is the solution of the implicit equation (2),
the DOS is

g(ε,P ) = L2a

(2π )3

∫
d3kδ

(
ε − h̄2

2m
[k2

⊥ + α2(kz)]

)

= L2a

(2π )2

∫
dk⊥k⊥

∫
dkzδ

(
ε − h̄2

2m
[k2

⊥ + α2(kz)]

)
,

where k2
⊥ ≡ k2

x + k2
y. Using cylindrical coordinates and defin-

ing u = h̄2k2
⊥/2m we have

g(ε,P ) = L2a

(2π )2

m

h̄2

∞∑
j=1

∫ π/a

−π/a

dkz

×
∫ ∞

0
duδ

(
ε − u − h̄2

2m
α2

j (kz)

)
,

where j indexes the energy bands in the z direction. Note that
the integral over u vanishes if ε − h̄2α2/2m < 0 and equals 1
when ε − h̄2α2/2m � 0, or
∫ ∞

0
duδ

(
u −

[
ε − h̄2

2m
α2

j (kz)

])
= θ

[
ε − h̄2

2m
α2

j (kz)

]
,

where θ [x] is the Heaviside step function. Thus,

g(ε,P ) = L2a

(2π )2

m

h̄2

∞∑
j=1

∫ π/a

−π/a

dkzθ
(
ε − εkzj

)
. (24)

In Fig. 9, the DOS is plotted as a function of ε and
the plane impenetrability P . For P = 0 there are no planes
and we recover the 3D DOS g(ε) ∝ ε1/2. For finite P the
DOS shows the expected steplike energy dependence [37].
Expression (24) is of little use due to the fact that the sum
cannot be reduced to an elementary function, however, the

detailed steplike structure of (24) may be effectively replaced
by a two-parameter-dependent one-step structure,

g(ε,P ) =

⎧⎪⎨
⎪⎩

Gε1/2 if 0 � ε � εmin,

Gε
1/2
min if εmin < ε � εmin + �,

G(ε − �)1/2 if εmin + � < ε,

(25)

where the parameters εmin, � depend on both P and a/λ0.

G is chosen to meet the exact expression for g(ε,P ) in the
P = 0 case. Expression (25) can account for the T 3/2 → T

crossover of the low-temperature behavior of CV /NkBT . For
temperatures lower than Tc, the specific heat can be written
generally as

CV /kB = 1

(kBT )2

∫ ∞

0
dεg(ε,P )ε2 exp(βε)[

exp(βε) − 1
]2 , (26)

after substituting (25) into the last expression and some algebra
we have

CV /kB = G (kBT )3/2I1(εmin/kBT )

+Gε1/2
minkBT I2(εmin/kBT ,�/kBT ), (27)

where I1 ≡ ∫ εmin/kBT

0 dxx5/2exp(x)/[exp(x) − 1]2, a constant

for small enough temperature, and I2 ≡ ∫ εmin+�/kBT

εmin/kBT
dx x2

exp(x)/[exp(x) − 1]2. We have disregarded the third region
of (25) since this would contribute only at high tempera-
tures. Depending on ratios εmin/kBT and �/kBT , one can
see that the T 3/2 term would dominate over the T term
for low temperatures. As the temperature is increased, the
term proportional to T will dominate giving rise to the
crossover.

IV. CONCLUSIONS

We have calculated the thermodynamic properties of an
ideal boson gas in a planar periodic structure as a model to
understand different bosonic systems such as Cooper pairs in
cuprate superconductors, excitons in multilayer semiconduc-
tors, alkali-metal atoms in optical traps or helium-four atoms
in multilayer films. The multilayers in the model are generated
via the Kronig-Penney delta potential in one direction while the
particles are free in the other two directions. A boson gas inside
an infinite box is the starting point since its thermodynamic
properties are well known (e.g., its critical BEC temperature
T0 which is used to scale the critical temperature of the layered
system).

Introducing planes with finite impenetrability P breaks the
translational symmetry and this is reflected in the system
thermodynamic properties. For T � T0, a BEC transition
is always present. The critical temperature decreases as a
function of P for a fixed separation a between planes until
it vanishes for sufficiently large P when the system becomes
an infinite set of independent slabs.

The internal energy U increases monotonically as a function
of T until it reaches the 3kBT /2 classical limit but at a
slower rate than the internal energy of systems with smaller P

consistent with the specific heat or the entropy behavior.
The specific heat CV versus T for a given P and plane

separation a, along with the peak associated with BEC exhibits,
at temperatures higher than Tc, one minimum and one or
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two maxima. The existence of a local minimum when the
thermal wavelength satisfies λ ∼= 2a suggests that it is caused
by bosonic trapping in the z direction since it resembles a
quasi-2D behavior. This effect covers a wider temperature
region as the impenetrability P increases. However, the system
recovers its 3D behavior for plane separations of the order
of 1.43λ. The specific heat dependence over a well-defined
temperature range as the strength of the δ barriers is increased
reflects a crossover dimensionality effect from 3D to 2D. For

every finite P , the specific heat per particle reduces to the
expected limit 3kB/2 at high temperatures.
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