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We propose an improved effective-medium theory to obtain the concentration dependence of the viscos-
ity of particle suspensions at arbitrary volume fractions. Our methodology can be applied, in principle, to
any particle shape as long as the intrinsic viscosity is known in the dilute limit and the particles are not
too elongated. The procedure allows to construct a continuum-medium model in which correlations
between the particles are introduced through an effective volume fraction. We have tested the procedure
using spheres, ellipsoids, cylinders, dumbells, and other complex shapes. In the case of hard spherical
particles, our expression improves considerably previous models like the widely used Krieger–Dougherty
relation. The final expressions obtained for the viscosity scale with the effective volume fraction and
show remarkable agreement with experiments and numerical simulations at a large variety of situations.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

When particles are suspended in an homogeneous isotropic
fluid, the viscosity of the resulting complex fluid is increased. In
the case of dilute suspensions, the increase in viscosity as a func-
tion of the volume fraction / was firstly determined for spherically
shaped particles by Einstein in 1911 [1]. Some years later, exten-
sions of Einstein’s work appeared and new formulas for the viscos-
ity as a function of the volume fraction for solid ellipsoidal particles
and emulsions were also derived by Jeffery (1922) and Taylor
(1932), respectively [2,3].

For sufficiently low particle concentrations, the viscosity g of a
suspension can in general, be written as,

gð/Þ ¼ g0ð1þ ½g�/þ kH/2 þ � � �Þ; ð1Þ

where g0 is the solvent viscosity, ½g� is the low filling fraction intrin-
sic viscosity, kH is the so called Huggins coefficient, and / is the vol-
ume fraction of the particles. The value of ½g� depends on the
particle shape. Although its calculation is difficult, there are few
cases where ½g� has been obtained analytically as in the case of
spheres [1], ellipsoids [4,5], long cylinders [6] and dumbbells con-
sisting of two identical spheres [6,7]. Fortunately, accurate numer-
ical approaches have been developed to calculate the intrinsic
viscosity of arbitrarily-shaped particles [8,9].

The large amount of work devoted to determine the relation be-
tween viscosity and concentration under different physical condi-
ll rights reserved.
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tions that reflect experimental protocols [10–13], is clearly
connected with the important role that suspensions and emulsions
play in almost all fields of industry, medicine and biology-related
soft-matter systems.

Many remarkable theoretical and, more recently, numerical
works have made central contributions to the understanding of
the rheology of concentrated suspensions (see for instance, Refs.
[14–29]). Essentially, most of these works introduce particle corre-
lations by taking into account hydrodynamic interactions and pro-
vide a conceptual framework that explains how the microstructure
of the systems modifies the behavior of the viscosity as a function
of the volume fraction. However, the quantitative description of
the problem still constitutes an open challenge for theoretical
descriptions even in the simplest case of spherical particles.

Several models have been proposed in order to extend the range
of applicability of Einstein’s expression to larger volume fractions
[10]. Semi-empirical [30–33] and effective-medium [34–37] mod-
els intended to extend the quantitative description of the experi-
mental dependence of the effective viscosity of hard particle
suspensions at arbitrary volume fractions have been proposed long
ago. Among them we can mention the one derived by Saito [14]
that accounts for hydrodynamic interactions between uncorrelated
particles

gð/Þ ¼ g0 1þ ½g� /
1� /

� �� �
: ð2Þ

Other approaches include the use of differential effective-
medium theories (DEMT). Krieger and Dougherty [36] derived
the following expression that incorporates excluded volume using
a crowding effect introduced by Mooney [38]
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gð/Þ ¼ g0 1� /
/max

� ��½g�/max

; ð3Þ

with /max the filling fraction at maximum packing. This formula
agrees reasonably well with the experimental data particularly in
the low concentration regime. Moreover, this relation reduces to
the correct Einstein’s equation in the limit of infinite dilution. Very
recently, Bullard and coworkers [39] also used DEMT techniques to
derive a similar relationship for suspensions of particles that may
themselves incorporate some of the solvent either by solvation or
by occlusion in interstitial pores. In the case of spheres their expres-
sion adopts the form

gð/Þ ¼ g0ð1� K/Þ�½g�=K
; ð4Þ

where the factor K considers flocculation of the particles thus repre-
senting the ratio of the volume of the clusters to the volume of the
particles forming the clusters [39].

The original formulations of DEMT were based on Einstein’s
expression, providing moderate agreement with experimental re-
sults. It is important to stress that one common characteristic of
these models is that they describe acceptably well the viscosity–
concentration relation at low concentrations but fail to describe
correctly the whole concentration regime. As we will explain later,
this is because these theories do not incorporate appropriately the
correlations introduced by the excluded volume effects.

A different approach to calculate the viscosity of suspensions is
based on the expected theoretical divergence of viscosity near the
percolation threshold [32]

gð/Þ � g0 1� /
/c

� ��2

; ð5Þ

which, according to Douglas and coworkers [33], should be inde-
pendent of the shape of the particles in suspension.

Bicerano et al. [31] examined the viscosity of suspensions of dif-
ferent hard bodies, and proposed a formula for the relative viscos-
ity that provides a smooth transition between the dilute and the
concentrated, Eq. (5), regimes and is valid for low-shear

gð/Þ ¼ g0 1� /
/c

� ��2

1þ C1
/
/c

� �
þ C2

/
/c

� �2
" #

; ð6Þ

with

C1 ¼ ½g�/c � 2; ð7Þ

and

C2 ¼ kH/2
c � 2½g�/c þ 1: ð8Þ

This theoretical formula accounts for both the low density exact
results from hydrodynamics as well as the large volume fraction
semi-empirical expansions. Pryamitsyn and Ganesan [40] pro-
posed to extend the domain of validity of this expression to arbi-
trary shear rates by considering the viscosity percolation
threshold /�ðPeÞ a function of the Peclet number.

Recently, a model has been proposed that introduces in appro-
priate form the correlations introduced by the excluded volume ef-
fects and gives an excellent quantitative description of the
viscosity of solid and liquid suspensions of spherical particles at
arbitrary filling fractions Refs. [41,42]. This model incorporates
an effective filling fraction /eff that leads to an universal represen-
tation of all experimental results in a master curve that suggest the
role of /eff as a scaling variable for the viscosity of these systems.

Despite the importance of the theoretical and numerical analy-
sis performed mostly in the case of spherical particles, in real sys-
tems the assumption of sphericity of the suspended particles is not
always satisfied since polydispersity and different particle shapes
have to be taken into account [43]. Thus, the main objective of this
article is to propose a continuum-medium description for the vis-
cosity–concentration relation for different particle shapes as long
as they are not too elongated. The description is derived using
DEMT techniques introducing correlations between particles
through an effective volume fraction that incorporates excluded
volume effects. These effects are responsible for the scaling proper-
ties of the suspensions and show to be universal independently of
the shear rate and the shape of the particles.

The article is organized as follows, in Section 2 we propose a
first correction to Eq. (1) that takes into account excluded volume
effects and use it as the starting point of a differential effective
medium approach. In Section 3 we compare the predictions of
our model with previous theories and with various experimental
results for different particle shapes. Finally Section 4 is devoted
to conclusions.

2. Correlations and DEMT approach

The main difficulty when dealing with suspensions at large con-
centrations is to take into account the correlations among particles.
Although many efforts have been devoted to microscopically
calculate the viscosity of a suspension of hard particles taking into
account the hydrodynamic interactions, the enormous mathemati-
cal complications associated to the many body problem only permit
to find corrections applicable to the low concentration regime.
However, in first approximation, such correlations can be consid-
ered as follows: the contribution by the particles to the total stress
tensor PV

p of the suspension is given in terms of an average over the
volume V of the system in the form

PV
p ’

N
V

Z
Pð1Þp dV ; ð9Þ

where we represented the single particle contribution to the stress
tensor by Pð1Þp . The upper V in Eq. (9) stands for the volume average
and the factor N accounts for the contribution of the N independent
particles. However, as defined in Eq. (9), the average is strictly valid
only for a system of point particles [41].

Considering that each particle has a volume Vp, then the volume
average must be performed over the free volume accessible to the
particles defined by: Vfree ¼ V � cNVp. Here c is a geometric factor
that takes into account the fact that the complete free volume can-
not be filled with particles. Note that, for different shapes of the
suspended particles, the value of the constant c will be different.
It also contains information about the maximum packing of parti-
cles the system may allocate and if the excluded volume effects are
taken into account, the suspended phase contribution to the stress
tensor is now given by [41,42]

P
Vfree
p ’ N

V � cNVp

Z
Pð1Þp dV ;¼ 1

1� c/
½g�/rv0

0
V ; ð10Þ

where / ¼ NVp=V ; rv0
0

V is the volume average of the traceless
velocity gradient with v0 the velocity field of the background fluid
[41,44]. For finite-sized particles, this relation leads to the result
that Einstein’s expression scales with the excluded volume factor
/=ð1� c/Þ instead of /, and thus gives the following expression
for the viscosity of a suspension

gð/Þ ¼ g0ð1þ ½g�/eff Þ; ð11Þ

where the effective filling fraction /eff is defined by

/eff ¼
/

1� c/
: ð12Þ

The constant c depends on the filling fraction /c which is the
critical concentration at which the suspension loses its fluidity.
This viscosity percolation threshold generally is greater than the
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purely geometrical percolation threshold of the particles, but less
than or equal to the maximum packing fraction /max [39]. The
crowding factor c is given by

c ¼ 1� /c

/c
: ð13Þ

The effective filling fraction (12) approaches the bare / at low
concentrations and becomes 1 at the divergence of the viscosity
which occurs at /c . The fact that the particles cannot occupy all
the volume of the sample due to geometrical restrictions is taken
into account in the crowding factor c. For example, for a face cen-
tered cubic (FCC) arrangement of identical spheres, the maximum
volume that the spheres may occupy is larger than for a random
arrangement of spheres.

The formula for the effective viscosity of the suspensions given
by relation Eq. (11) can also be written as

gð/Þ ¼ g0 1þ ½g� /
1� c/

� �� �
: ð14Þ

Although in this expression it is clear that gð/Þ incorporates
the excluded volume corrections for the viscosity of a suspen-
sion, hydrodynamic interactions are ignored and therefore one
expects its validity been restricted to low concentrations. To im-
prove it, further corrections must appear due to the interactions
between particles. In the system under consideration, these
interactions are the hydrodynamic interactions which become
increasingly important when increasing the filling fraction. The
mentioned correlations can be accounted for by using DEMT
techniques [39]. This theoretical method is based on a progres-
sive addition of spheres to the sample in which the new parti-
cles interact in an effective way with those added in previous
stages [10].

Taking Eq. (11) as the starting point, suppose that we increase
by d/eff the particle concentration in the suspension of viscosity
gð/eff Þ by adding a small quantity D/eff of few new particles. If
we treat the suspension into which we add these particles as a
homogeneous effective medium of viscosity gð/eff Þ, then the new
viscosity can be written as

gð/eff þ d/eff Þ ¼ gð/eff Þð1þ ½g�D/eff Þ: ð15Þ

Note that the increase in the effective particle concentration
d/eff is different from the effective concentration of new particles
added at a given stage D/eff . This is due to the fact that one has
to remove part of the effective medium, which already contains
some particles, in order to allocate the new particles. From this,
it follows that the fraction of particles of the new effective medium
is given by /eff þ d/eff ¼ /eff ð1� D/eff Þ þ D/eff , from which we find

D/eff ¼
d/eff

1� /eff
: ð16Þ

Substituting Eq. (16) in Eq. (15) and integrating we finally
obtain

gð/Þ ¼ g0ð1� /eff Þ
�½g�

; ð17Þ

or, using the definition of /eff

gð/Þ ¼ g0 1� /
1� c/

� �� ��½g�
: ð18Þ

This relation for the effective viscosity of a suspension of rigid
particles constitutes a powerful improved generalization of previ-
ous theoretical results and empirical proposals, as we will show
in the following section. In the limit of low concentrations Eq.
(18) always reduces to Eq. (1) and the predicted Huggings coeffi-
cient, obtained by expanding Eq. (18) in a virial series, is given by
kH ¼
1
2
½g� ½g� þ 2

/c
� 1

� �
; ð19Þ

that has the form suggested by Douglas (see Eq. (17) of Ref. [39]).
Although the procedure that leads to Eq. (18) is similar to other

DEMT [34–37,39], the introduction of excluded volume correla-
tions through the effective filling fraction /eff defined in Eq. (12)
and then its role as integration variable in the differential proce-
dure improves remarkably the agreement with experimental data
when compared to other models, this is shown in Ref. [41] for
the special case of hard spheres. This agreement is due to the fact
that the use of /eff as integration variable implicitly considers cor-
relations between spheres of the same recursive stage in contrast
to other models.

It will be shown in the next sections that our model gives excel-
lent quantitative results at the whole concentration range for dif-
ferent particle shapes. However, at this point it is interesting to
compare the functional form of our expression (18) with the one
by Bicerano and coworkers, Eq. (6). Their equation was designed
explicitly to provide a smooth transition between the semidilute
and concentrated regimes. Eq. (18) can be written in a form similar
to Bicerano’s expression to obtain

gð/Þ
g0
¼ 1� /

/c

� ��2

1þ C1
/
/c

� �
þ C2

/
/c

� �2

þ C3
/
/c

� �3

þ Oð/4Þ
" #

:

ð20Þ

Here, /c can be considered a function of the Péclet number and
therefore is no restricted to the low-shear regime. The constants C1

and C2 are identical to the ones corresponding to the model of Bic-
erano and coworkers given by Eqs. (7) and (8), and the coefficient
of the cubic term is given by

C3 ¼
/3

c

6
½g�ð½g�2 � 3½g� þ 2Þ: ð21Þ

It is not surprising that the coefficients of the linear and qua-
dratic terms are the same in both models since by construction
they reduce to Eq. (1) at low concentrations. Note however that
in practice, when using the model of Bicerano and coworkers, Eq.
(6), once ½g� is known for a given particle shape, /c and kH are trea-
ted as two independent fitting parameters when comparing to
experimental data [39]. In our model, on the other hand, /c and
kH are related by means of Eq. (19), therefore leading to one fitting
parameter only. It is important to point out that although similar in
form, expression (20) has not the same divergence near /c as (6)
since the expression in square brackets in Eq. (20) diverges as
/! /c . However, if we make the expansion

gð/Þ=g0 ¼ 1� /
/c

� ��½g�
1þ C01

/
/c

� �
þ C02

/
/c

� �2

þ Oð/3Þ
" #

; ð22Þ

where

C01 ¼ ½g�/c � ½g�; ð23Þ

and

C02 ¼ kH/2
c � 2½g�/c ½g� �

1
2

� �
þ ½g�ð½g� � 1Þ; ð24Þ

then, the expression in square brackets converges. This is an impor-
tant result meaning that the viscosity diverges near /c with an scal-
ing that depends on ½g� and therefore is not universal but depends
on the particle shape and shear rate, in contrast to the prediction
of Eq. (6).
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3. Illustrative calculations

3.1. Spheres

The first illustrative example of the procedure is a system of
hard spheres which corresponds to take the value ½g� ¼ 5=2 in
the above expressions which leads to the well known Einstein’s re-
sult, valid for very low concentrations

gð/Þ ¼ g0 1þ 5
2

/

� �
: ð25Þ

Additionally to the models presented in the previous section,
other phenomenological formulas have been proposed in order to
fit experiments in the largest possible range of volume fractions.
For example, Clercx and Schram obtained the following expression
for the high-frequency effective viscosity [45]

g1ð/Þ ¼ g0 1þ
5
2 /þ 1:42/2

1� 1:42/

" #
; ð26Þ

by considering two-particle hydrodynamic interactions only.
In order to carry out comparisons of our model with experi-

ments and other models it is important to notice that the value
of /c in Eq. (13) is a free parameter of the theory to be chosen in
order to best fit the experimental results. Nonetheless, this param-
eter can be chosen beforehand based on physical arguments, and
then used to compare with specific experimental situations.

This is done in the left panel of Fig. 1, where the behavior of the
relative viscosity gð/Þ=g0 (Fig. 1a, left) is compared with experi-
mental results of de Kruif et al. [46] and of Krieger [47] for low
and high-shear rates, and with the results of van der Werff et al.
[48] and by Zhu et al. [49] at high frequencies as a function of
the volume fraction /. We also plot the values obtained by Cichocki
and Felderhof [20] for the high-frequency case. The upper curve
represents the prediction of Eq. (18) with /c ¼ 0:637, which corre-
sponds to the random close packing (RCP) of identical spheres. The
comparison with the experimental results for low-shear rates is
excellent. The middle curve is the prediction of Eq. (18) with
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Fig. 1. Left panels: (a) Relative viscosity gð/Þ=g0 as predicted by our model (Eq. (18)) f
function of the volume fraction /. The lines correspond to the predictions of our model w
fitting parameter /c ¼ 0:8678 (lower line). The measured data are from Refs. [46] (circ
triangles, Cichocki and Felderhof [20]. (b) Representation of various viscosity data as sug
high-shear limit Refs. [26,46]; triangles, high-frequency limit of the real part of the com
(upper line), /c ¼ 0:7404 (medium line), and /c ¼ 0:8678 (lower line). Right panels: t
Dougherty (Eq. (3)).
/c ¼ 0:7404, which corresponds to FCC close packing. This gives
again an excellent agreement with the experimental results for
the case of high-shear rates. These results are consistent with the
known fact that for low-shear rates the spheres remain disordered
while at high-shear rates the equilibrium microstructure of the dis-
persion is completely destroyed and the spheres adopt an ordered
FCC configuration. The lower curve is the prediction of Eq. (18)
with /c ¼ 0:8678, which gives again an excellent fit with the infi-
nite-frequency data and with the values obtained by Cichocki
and Felderhof [20].

In order to account for thermodynamic interactions between
the spheres, Bedeaux proposed the following expression for the
viscosity [23,24]

gð/Þ=g0 � 1
gð/Þ=g0 þ 3

2

¼ /ð1þ Sð/Þ; ð27Þ

where Sð/Þ is an unknown function of the volume fraction giving
the modification of the moment of the friction forces on the surface
of a single sphere due to the ensemble-averaged hydrodynamic
interactions with the other spheres [24].

As discussed by Bedeaux [23], Sð/Þ is a more sensitive represen-
tation of the relative viscosity data since its expansion in powers of
/ converges much better. For this reason, the differences between
the predictions of the different models are more noticeable in this
representation. In Fig. 1b, left panel, we plot the function Sð/Þ for
various experimental results obtained in a variety of experimental
situations and compare with the values obtained with our model.
We take the same values of /c used previously for the low-shear,
high-shear, and high-frequency cases. The agreement with the
experimental data is very good especially at large values of /. Note
that for small values of / the experimental accuracy of Sð/Þ is
unsatisfactory which explains the large scatter in the experimental
points [23].

As a comparative, in the right panel of Fig. 1 and in Fig. 2 we
show the predictions obtained with the models of Krieger and
Dougherty (Eq. (3)), Quemada (Eq. (5)), Bicerano (Eq. (6)), and
Clercx (Eq. (26)). In each case, the symbols (a) and (b) state for
the direct comparison with experiments (a) and after using
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Bedeaux’s expression (b). It is clear that our model matches the
data at all volume fractions better than the other models tested.

Let us stress here that the improvement of our model given by
Eq. (18) to the models given by Eqs. (3) and (4) is due to the use of
/eff given by Eq. (12). Indeed, the model of Krieger and Dougherty
can be obtained from the dilute-limit expression gð/Þ ¼
g0ð1þ ½g�/Þ by introducing the effective filling fraction /KD

eff �
/=/max, which is larger than /. This definition of /KD

eff underesti-
mates the available volume for the particles at low / (and there-
fore, overestimates /eff ) while tends to the correct limit at high
/. In order to obtain the correct dilute limit, the overestimation
of /KD

eff , has to be compensated by decreasing the hydrodynamic
drag factor by the same constant factor /max, that is,
½g�KD � ½g�/max. Then, the dilute-limit expression can be rewritten
as

grð/Þ ¼ ð1þ ½g�
KD/KD

eff Þ: ð28Þ

Now, Eq. (3) can be derived from (28) by following the differen-
tial method used in the previous section with the effective filling
fraction /KD

eff instead of /eff and the corresponding ½g�KD instead of
½g�. The relative difference /KD

eff � /eff

� �.
/eff is a decreasing func-

tion of / that vanishes at /max (we assumed that /c ¼ /max in this
analysis) . Therefore, the overestimation of the filling fraction in
/KD

eff , is progressively less important with increasing / and the con-
stant underestimation of the hydrodynamic drag term in Krieger
and Dougherty’s model cannot be compensated by /KD

eff . Thus, Krie-
ger and Dougherty’s model underestimates the viscosity of the sus-
pension at large volume fractions, as confirmed in Fig. 1b. The
same reasoning can be applied to Bullard’s model since 1=K � /c

plays the role of a critical concentration and there is no mathemat-
ical distinction between Eq. (4) and the Krieger and Dougherty
equation.

In what follows, we show a direct comparison of the functional
forms of our proposal and the other models as well as a virial
expansion of them. For example, at high frequencies, a virial
expansion of Clercx and Schram’s expression, Eq. (26) gives

g1ð/Þ=g0 ¼ 1þ
5
2 /þ 1:42/2

1� 1:42/

¼ 1þ 5
2

/þ 4:97/2 þ 7:06/3 þ Oð/4Þ; ð29Þ

while our expression, Eq. (18) with ½g� ¼ 5=2 and /c ¼ 0:8678, can
be expressed using a Padé approximation as
g1ð/Þ=g0 ¼ 1þ
5
2 /þ 0:575/2

1� 1:67/

¼ 1þ 5
2

/þ 4:76/2 þ 7:95/3 þ Oð/4Þ; ð30Þ

showing that the second and third virial coefficients are very close.
Similarly, the expression by Bicerano and coworkers, Eq. (6), can be
written in the case or hard-spheres with /c ¼ 0:637 as

gð/Þ=g0 ¼ 1� /
0:637

� ��2

½1� 0:628/þ 0:84/2�

¼ 1þ 5
2

/þ 6:26/2 þ 13:47/3 þ Oð/4Þ; ð31Þ

while our expression gives for the same value of /c

gð/Þ=g0 ¼ 1� /
0:637

� ��2

½1� 0:64/þ 0:415/2�

¼ 1þ 5
2

/þ 5:8/2 þ 12:36/3 þ Oð/4Þ: ð32Þ

Both expressions are very similar up to third order in /. How-
ever, as explained before, near /c both models predict different
asymptotic relations. While Bicerano’s model predicts a divergence
of the viscosity as ð1� /=/cÞ

�2, our model predicts that the viscos-
ity diverges as ð1� /=/cÞ

�2:5, Eq. (22), for the case of spherical par-
ticles. Our prediction is in close agreement with that of Cheng et al.
[50], that adapted mode coupling theories developed for super-
cooled liquids and the liquid–glass transition for molecular sys-
tems to calculate the low-shear viscosity of colloidal dispersions.
Taking into account hydrodynamic interactions, they found that
near the glass transition /g ¼ 0:62, the viscosity diverges approxi-
mately as ð1� /=/gÞ

�2:59 which is in close agreement with our
model if /c ’ /g :

The proposal by Pryamitsyn and Ganesan [40] to extend Bicer-
ano’s expression to arbitrary shear rates by considering the pack-
ing fraction /cðPeÞ a function of the Peclet number can also be
tested by expanding in series of / for a large shear rate, which
means to take /c ¼ 0:7404. In this case Pryamitsyn and Ganesan
obtain

gð/Þ=g0 ¼ 1� /
0:7404

� ��2

½1� 0:54/þ 0:622/2�

¼ 1þ 1:6/þ 3:1/2 þ 5:46/3 þ Oð/4Þ; ð33Þ
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while our model gives

gð/Þ=g0 ¼ 1� /
0:7404

� ��2

½1� 0:201/þ 0:322/2�

¼ 1þ 5
2

/þ 5:25/2 þ 9:94/3 þ Oð/4Þ: ð34Þ

Notice that the agreement is not very good even at first order in
/ where the extended Bicerano’s expression do not agree with Ein-
stein’s expression for low /.
Table 1
Intrinsic viscosity ½g� (taken from Ref. [8]) and critical packing /c (taken from Ref.
[54]) of flat-ended circular cylinders.

L=a 1/4 1/2 1 2 4

½g� 3.92 3.05 2.87 3.40 5.27
/cð	Þ 0.67 0.69 0.68 0.62 0.53
3.2. Ellipsoids

Another case in which the behavior of highly concentrated sus-
pensions is of importance corresponds to suspensions of ellipsoidal
particles, since they have been widely used as models of globular
proteins and also because the hydrodynamic properties of ellip-
soids are analytically known. For example, the intrinsic viscosity
of an ellipsoid is given by [44]

½g� ¼ 2
5
ðp2 � 1Þ2 �ð4p2 � 1ÞBþ 2p2 þ 1

3p2ð3Bþ 2p2 � 5Þ½ð2p2 þ 1ÞB� 3� þ
14

3p2ð3Bþ 2p2 � 5Þ

�

þ 2
ðp2 þ 1Þð�3p2Bþ p2 þ 2Þ þ

p2 � 1
p2ðp2 þ 1Þ½ð2p2 � 1ÞB� 1�

	
;

ð35Þ

where

B ¼ p�1ðp2 � 1Þ�1=2cosh�1p; when p > 1;
¼ 1; when p ¼ 1;
¼ p�1ð1� p2Þ�1=2 cos�1 p; when p < 1:

ð36Þ

Here, the axis ratio is defined by p ¼ b=a with b the polar radius and
a is the equatorial radius. In the left panel of Fig. 3 we show the
behavior of the intrinsic viscosity as a function of the axis ratio p.
As can be seen, the lower value of the intrinsic viscosity occurs
for spherical particles and increases slightly more sharply for pro-
late ellipsoids than for oblate ones. In the right panel of Fig. 3 we
represent the viscosity as a function of the concentration / for ellip-
soids with different values of p. In all cases we have assumed that
the critical packing coincides with the so called maximally random
jammed (MRJ) state which corresponds to the least ordered among
all jammed packings [51]. The critical densities of simulated pac-
kings of ellipsoids are calculated in Refs. [52,53] for different aspect
ratios and we used them in the results of Fig. 3. As can be seen, the
non-monotonic behavior of the intrinsic viscosity shown in the left
panel of Fig. 3 is reflected in the right panel of this figure.
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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[η
]

p

Fig. 3. Left panel: intrinsic viscosity for ellipsoids as a function of the aspect ratio p ¼ b=a
different values of p. The critical packings were assumed to coincide with the MRJ stat
p ¼ 1; /c ’ 0:637; for p ¼ 2; /c ’ 0:704; and for p ¼ 4; /c ’ 0:632.
3.3. Cylinders

Cylinders may be used to represent DNA molecules in certain
physical conditions and also as models for rod-shaped viruses. Flat
cylinders are encountered most often. Except in certain limit, ana-
lytical results are not available for hydrodynamic properties of cyl-
inders. Thus, numerical calculations have to be used. In the limit
that the total length (2L) goes to zero, a flat-ended cylinder be-
comes a disk. The intrinsic viscosity of a disk with radius a can
be found from Eq. (35) by taking the p! 0 limit. The result is
½g� ¼ 128a3=45. In the case of globular cylinders for which the as-
pect ratio L=a ranges from 1/4 to 4 the hydrodynamic properties
obtained numerically are listed in Table 1 [8]. Together with the
hydrodynamic properties, in the last column of Table 1, we show
the critical packing which we assume to coincide with the random
packing of the cylinders. Actually, we are not aware of data for the
close packing of flat-ended cylinders so that we are using the re-
sults for spherocylinders obtained in Ref. [54] with the same aspect
ratio. The viscosity as a function of concentration is shown in Fig. 4.

In the case of circular cylinders with hemiellipsoidal ends, the
results for the intrinsic viscosity [8] and the critical packing are
listed in Table 2. As in the previous case, the value of the random
packing listed corresponds to spherocylinders with the same as-
pect ratio defined as ðbþ LÞ=a (see inset of Fig. 4). The viscosity
in this case is shown in Fig. 4 where one can see that it is larger
for the cylinders with the largest aspect ratio.

Experimental data for the concentration and particle size-
dependence of the low-shear viscosity of isotropic rod-dispersions
are discussed in Ref. [9]. Four systems of stiff rods are considered:
colloidal silicaboehmite, xanthan ðk ¼ 0:5Þ, schizophyllan ðk ¼ 0:3Þ
and non-Brownian PMMA-fibre. Here, k is the ratio of the polymer
length and the persistence length. The measured intrinsic viscosi-
ties ½g� of these systems are tabulated in Table 3. The packing den-
sity is determined by their aspect ratio. For a random packing of
thin hard rods, it was shown [55,56] that

/max
L
a
¼ n for

L
a
� 1; ð37Þ

where n is the average number of contacts experienced by a rod.
Experiments [55,57] on random rod packing yield n=2 ¼ 5:4. This
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Table 2
Intrinsic viscosity ½g� (taken from Ref. [8]) and critical packing /c (taken from Ref.
[54]) of hemiellipsoidal-ended circular cylinders.

L=a 1 0.74 0.5 0.2

b=a 1 1.26 0.5 0.8
½g� 2.944 2.910 2.571 2.512
/cð	Þ 0.62 0.62 0.68 0.68

Table 3
Intrinsic viscosity ½g� (taken from Ref. [9]), aspect ratio L=a, and critical packing /c

[obtained from Eq. (37)] for isotropic dispersions of rods.

Silica rods Schizophylian Xanthan PMMA-fibre

½g� 50.2 42.7 58.1 27.6
L=a 44.0 46.0 56.0 39.8
/cð	Þ 0.245 0.235 0.193 0.271
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isotropic maximum packing fraction is a metastable glass with re-
spect to the thermodynamically more favorable nematic phase as
predicted by Onsager. The aspect ratio and the corresponding max-
imum packing calculated using Eq. (37) for the systems considered
in Ref. [9], are also tabulated in Table 3. In Fig. 5a we compare these
data to our model using as parameters the values given in Table 3.
As can be seen, poor agreement is found between the model and the
experiment. A number of reasons can be argued to explain this re-
sult. For example, the silica rods are weakly attractive which im-
plies a steeper viscosity–concentration curve as compared to the
rigid macromolecules xanthan and schizophyllan. Of these two
rod-like macromolecules the xanthan chain possesses higher flexi-
bility which may also influence the viscosity data. Additionally,
since long rod-shaped molecules ‘‘entangle” in the semidilute re-
gime, it is expected that some orientational correlation arises at
large concentrations and our model do not consider these effects.

To explore the possibility that the rods present some amount of
orientational correlations, we have compared our model to the
experimental data but considering that some alignment due to
the flow and the correlations is possible. In this case, the maximum
packing is no longer given by Eq. (37) and we assume the opposite
limit, that is, that the rods are completely aligned. Then the maxi-
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Fig. 5. Left panel: relative viscosity gð/Þ=g0 as predicted by our model for isotropic rods
(solid line), schizophylian (dashed line), xanthan (dotted line), and PMMA-fibre (dash-do
using /max ’ 0:9069. The fitted values of ½g� were 90 for silica rods (solid line), 50 for sch
dotted line). The data sets were taken from Ref. [9].
mum packing takes the value corresponding to an hexagonal
arrangement of parallel rods /max ’ 0:9069. Then, the intrinsic vis-
cosities for random rods as tabulated in Table 3 are no longer use-
ful and we take ½g� as a fitting parameter. This comparison is shown
in Fig. 5b. As can be seen, a much better agreement is obtained
using these assumptions. Thus, some degree of alignment is sug-
gested by the model. Nonetheless, for a concentration dependent
orientational correlation, the intrinsic viscosity ½g� is rather a func-
tion of / and therefore, the values predicted by the present model
may not be correct.

3.4. Dumbbells

A dumbbell that consists of two spheres can be used as a model
for a protein dimer or a protein consisting of two separate do-
mains. Wakiya [7] and Brenner [6] calculated the intrinsic viscosity
for dumbbells consisting of two equal-radius spheres at various
separations. Here, we will only discuss the case when the ratio
L=a ¼ 1, where a is the radius of the spheres and L is half of their
center-to-center separation. In this case, ½g� ¼ 3:4496.

The viscosity of dumbbells made of two fused spheres is shown
in Fig. 6 and compared with the numerical results reported by in’t
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with different aspect ratios and intrinsic viscosities as given by Table 3. Silica rods
tted line). Right panel: the same as left panel but assuming orientational order and

izophylian (dashed line), 40 for xanthan (dotted line), and 13 for PMMA-fibre (dash-
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Fig. 6. Relative viscosity gð/Þ=g0 as predicted by our model for a system of
dumbbells. The closed squares represent points assuming radii of the spheres
a ¼ 5r, where r is the size of a Lennard-Jones solvent atom in determining /,
whereas the circles denote a volume fraction for radii adjusted to the peak onset in
the nanoparticle pair distribution function.
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Veld and coworkers for nanodimers [58]. The closed circles repre-
sent points assuming an effective volume fraction for particle radii
adjusted to the peak onset in the nanoparticle pair distribution
function. This adjustment corrects for the solvation shell around
the nanoparticles when the solvent is treated explicitly [58]. The
fitting parameter in this case was /c ’ 0:58, which is close to the
critical packing value for the glass transition predicted by mode
coupling theory /c ’ 0:56 (see Ref. [59]).

3.5. Other shapes

Notice that the intrinsic viscosity ½g� for long rod-shaped parti-
cles takes values much larger as compared to the corresponding
ones for spheres. However, it is possible to have very large values
of the intrinsic viscosity without making a very extended or flat ob-
ject [33]. An strategy to increase ½g� is to consider irregularly
shaped particles like sponges or jack-like objects. The intrinsic vis-
cosities for these shapes have been calculated numerically by finite
element computations in Ref. [33]. We use these values in Fig. 7 to
compare the viscosity–concentration curves for three representa-
tive cases: a sponge, a wire frame, a square ring, and a jack-like
object.

The sponge is constructed starting with a cube in which a
square channel is cut through the center of each face, which passes
completely through the cube, as seen in Fig. 7. The parameter m is
taken to be the edge length of the cutout face in units of the cube
edge length. When m approaches 1 a rigid cubic wire frame is ob-
tained. A similar procedure is employed to construct the flat
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Fig. 7. Relative viscosity gð/Þ=g0 as predicted by our model for a sponge
ðm ¼ 23=27; ½g� ¼ 44:7Þ, a cubic wire frame ðm ¼ 33=35; ½g� ¼ 255Þ a square ring
ðm ¼ 23=25Þ; ½g� ¼ 98:7Þ, and a jack-like object ð½g� ¼ 3:68Þ. The specific propor-
tions of the jack are as follows, if the width of the parallelipipeds have unit length,
the length has 15 units and the sphere diameter has 9. In all cases we assumed
/c ’ 0:637.
square. The jack is constructed by poking three rectangular paral-
lelepipeds orthogonally through a sphere. In all the curves of Fig. 7
we assumed /c ’ 0:637, the random close packing for spheres and
the values of the intrinsic viscosity given in Ref. [33]. As expected,
the objects with larger intrinsic viscosities have steeper curves.
These examples are intended for illustrative purposes only, since
we are unaware of experimental results to compare with.

4. Conclusions

We have presented a simple model based on an effective-med-
ium theory for the calculation of the viscosity of suspensions of
arbitrarily-shaped particles as a function of particle concentration.
The model considers excluded volume interactions between the
particles through an effective filling fraction /eff . This quantity
introduces a universal scaling that may be used to reduce both
experimental and theoretical results to a master curve [41,42]
which is independent of the experimental details or the shape of
the particles.

Starting from known values and formulas for the intrinsic vis-
cosity of the particles, the procedure yields to analytical expres-
sions that predict the viscosity of the system for the whole range
of concentrations. At low filling fractions it reduces to the correct
limit while at high concentrations it diverges in a way similar to
that predicted by mode coupling theories. In contrast to other
models [31], our proposal contains only one fitting parameter
which corresponds to the critical packing where the suspension
loses its fluidity.

When applied to a suspension of spherical particles, our model
improves considerably the predictions obtained using the well
known Krieger and Dougherty model and any other model tested
in the whole concentration range. We have employed our model
to predict the viscosity of elliptical, and cylindrical particles, as
well as dumbbells made of fused spheres and other complex
shapes. In all cases where numerical or experimental data are
available, the agreement with the proposed model is very good.
It is convenient to emphasize that our model is not intended to de-
scribe correctly suspensions of large fibres, since in this case orien-
tational correlations may exist. These correlations could introduce
dependences of the intrinsic viscosities on the concentration. In a
previous work [42] we have applied the procedure to emulsions
of spherical droplets with equally good results.

Due to the importance of shape effects on the rheological
behavior of colloidal dispersions and despite that there are numer-
ous reports for industrial systems but fewer data for suspensions
with controlled geometry, we consider that the results presented
in this article can help to provide a valuable characterization of
these systems with very promising practical applications.
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