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Superconductivity could be seen as a Bose-Einstein condensation (BEC) of Cooper pairs. However, the
creation and annihilation operators of Cooper pairs do not satisfy the bosonic commutation relations and
then, the mentioned viewpoint has a weakness in its foundation. In this work, we introduce the concept of

collective Cooper pairs (CCP) as linear combinations of Cooper pairs and prove their bosonic nature at the
dilute limit. This bosonic nature is given rise from their diffuse character on the Cooper pairs, which
permits the accumulation of many collective pairs at a single quantum state. Moreover, the super-
conducting ground state proposed by Bardeen, Cooper and Schrieffer (BCS) can be written in terms of
these collective Cooper pairs, which means that the BCS theory is consistent with a possible BEC theory of
superconductivity based on collective Cooper pairs. Finally, we calculate the energy spectra and the BEC

critical temperature of CCP.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Superconductivity is one of the most interesting phenomena in
physics. Nowadays, there is a consensus that this extraordinary
phenomenon is originated from the Cooper pairs (CP). Recently,
many experiments have confirmed the existence of a pseudo
energy gap at a higher temperature than the superconducting
one in cuprate superconductors [1,2]. A possible interpretation of
this observation could be the separation of the superconducting
transition from the formation of CP, ie., the superconductivity
could be visualized as a Bose-Einstein condensation (BEC) of CP,
when their phase coherence is reached. However, CP are not true
bosons as stated in the original paper of Bardeen Cooper and
Schrieffer (BCS) [3], since the creation (bk _cchT x,) and
annihilation (bk_c,lucm) operators of CP do not satisfy the
bosonic commutation relations, because

[y by = brcby— by by = [ b1 = 0 ™
[bk:b;] =(1-f_g; — Ak )oK

where fiy, = ¢} ¢i is the number operator of electrons, &}, and &,
are the creation and annihilation operators of a single electron with
linear momentum k and spin g, respectively. In addition, from the
definition of 13,'( and by, it is easy to prove that

At oAt PN
bkbk = bkbk = O, (2)
which even emphasizes a fermionic character of CP.
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In this article, we demonstrate that the collective Cooper pairs
(CCP) defined as linear combinations of CP satisfy the bosonic
commutation relations at the dilute limit, as well as that the BCS
superconducting ground state can be written in terms of CCP. We
further calculate the energy spectra of CCP and the BEC critical
temperature.

2. Collective Cooper pairs

Let us consider a system with M possible Cooper pairs and we
define M creation operators of CCP as

Z exp <127rloc> bk, 3)
- M-1, A, ()=
|:127'Cl([3 oc)}

I = ZAa(’)bk,

=1

where =0, 1,-

ZA*(I)A,;(I) = Z ex

=1

exp(‘Z"’“) and then

Hence, the CCP are related to CP by a canonical transformation,
and from Egs. (1) and (4)
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In general, a quantum state with N CCP can be written as

M-1
) [ @™oy

v=0

M-1 / M " fy
o) [ <ZAv(l)bk,> 10>

v=0\l=1

M
.Zc(ll'...

L =1 Iv=1

|ng, - -+ ,nm_1> =B(ng, - - -

ot ot
)by, -+ by, [0, 6)

where B(ny, - - - ,ny—1) is the normalization factor,
M-1
Z n, = Nv (7)
v=0
and
C(ly,---In)=B(ng, - - - ,ny—1Ao (1) - - - Am—1(In). 8
From Eq. (6) we find
M
Z Ko |0, -+ =1 )
) M Moot ot
= Z Z C(I], . lN) Z nkl,;bkll cee kaN ‘O>
= 1N =1 =1
M M N s At
= Z Z Clly, -1 Y @y + -+ +0u)by, by [0>
L= Iy=1 =1
=N\n SMM-1). 9

By using the inequality |3°AB| < 3|Al| B,

M
<ZA;:(I)Aﬁ(l)(ﬁk,1 + gy )> '

=1

M N N 2N
éZ\AZ(DHAﬁ(DIK”—m>+<”m>\=V' (10
=1

where (6> = (ng,---,ny_1|6|ng, - - -
limit, N/M -0, Eq. (5) leads to

0o, p- (11)

On the other hand, from equation (1) we have

,Ny—1>. Hence, at the dilute
[0, 1)) =
[d3.] = [2.5] = 0. (12)

Briefly, Eqs. (11) and (12) prove the bosonic nature of CCP at the
dilute limit. In addition,

ny_1)~ 2. (13)
) and (12).

B(ng, - --,ny—1) = (no! - - -

can be obtained from equations (6), (11

3. Energy spectrum of CCP

Let us start from the BCS Hamiltonian [3] given by

H= Zg(k)ck oCot D Vieke bkbk , (14)
k#Kk

where &(k) = h*k? /2m is the single electron energy with

momentum k and

-V, ifle)—Er| and |e(K)—EF| < hwp
Vickw =

0, otherwise (15)

being V > 0, Er the Fermi energy, and wp the Debye frequency. For
this case, M is the number of states with wave vector k that satisfy
|8(1()—EF <
the approximation of g(k) ~

Er and then, Hamiltonian (14) can be

rewritten as

H EFZCk (;-Cl( o -V Z bk,bk, +V Z bklbk,
LI=1 =1

= EFan s—MVajag+V Z bk,bk,, (16)
I=1

since @)= M, B;,/«/I\_/I. From Eq. (9),

H|ng, -,y 1> = @NEr—noMV +NV)|no, -,y 1 >, a7
and the energy spectrum of N CCP is given by
E(ng, - --,TlM_1)=2NEF+[N—MTl0]V, (18)

whichis in agreement with the energy spectrum found by Thouless
[4], evaluating for the dilute limit.
Using Eq. (7), Eq. (18) can be rewritten as

M-1
E(no, -+ ,nm-1)= Y NyEs. (19
where
2E—(M-1)V, if 0=0 5
= 2Er+V, if a=1,2,---,(M=1)’ (20)

is the energy spectrum of single CCP. Notice that Egs. (7) and (19)
reveal that the system of N CCP can be consider as an ideal gas of
bosons at dilute limit.

4. Bose-Einstein condensation of CCP

Following a standard procedure of the BEC analysis within the
grand-canonical ensemble formalism [5], the average number of
CCP ({N») for T> 0 is, from Eq. (20), given by

VO < T B 1 M-1 1
(N> = %Z()e/fwa—mq  ePRE—(M-1)V—p _1 + ePREr+V—-11_1" eh

where =1/kgT and p is the chemical potential. Since M > 1, the

ground state occupation is negligible in comparison with the

occupation of excited states for u < Ey, i.e.,
M-1

eBREF+V—p_1°

(N}~ (22)

The BEC occurs when u=E, Eq. (22) leads to a critical
temperature (T¢) given by
kgTc = (23)

5. Comparison with the BCS ground state

Within the BCS theory, the superconducting ground state can be
written as [6],

1G> =H<uk+ka3:()|0>, (24)
k

where |vi|?> and |ux|? are, respectively, the occupied and
unoccupied probabilities of the CP (kt,—k| ). Expanding Eq. (24)
we find that for uy # 0,

‘G> _ [Huk 1+ZVl(bk ZVle( b b :| ‘O>
{Huk} > (Zf,j;ﬂ) 0>, 25)

n=0 k

where M is the maximum number of CP.
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Fig. 1. CCP density of states (DOS) for (a) hwp = 0.02Er and (b) iwp = 0.03Eg, where
the energy is discretized by using AE=0.0001EF.

In Eq. (25) each term of the summation corresponds to a state of
n CCP, i.e.,

n>EB(n)<ZZ—iBL> 0>, (26)
k

which is same as that of Eq. (6) by making n; = --- =ny_; =0 and
Vi = Uy = 1/+/2 for the strong coupling limit [6].

6. Beyond the strong coupling limit

In this section, we calculate the energy spectrum of CCP beyond
the approximation of g(k)~ Er, by computing numerically the
single CCP eigenvalues of Hamiltonian (14) for an interaction
V=10"5E. For a cubic lattice of Ns sites with one electron per
site, the number of k-states in the energy band #®p around E. is

Ng hwp 372 hwp 372

The results of energy degeneracy or density of states (DOS)
for Ns=10° are illustrated by dots in Fig. 1 for (a) icop = 0.02EF and
(b) hawp = 0.03EF, in comparison with the corresponding spectra of
self-energy 2¢(k) (open squares). Observe that the energy band
width is almost 2a®p, since E is the CCP energy. Furthermore, the
DOS spectra and the corresponding 2¢(k) ones are approximately
the same, except a lower-energy bonding state appeared for each
degenerate energy. This fact is an extension of the energy spectrum
at the strong coupling limit given by Eq. (20).

In Fig. 2, the analytical solution (lines) from Eq. (23) and numerical
one (open symbols) of Tcversus Awp are comparatively plotted for the
cases of (N>/M=0.01 and 0.2. Note that the numerical results
contain a remarkable fluctuation which is originated from the
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Fig. 2. A comparison of the BEC critical temperature (T¢) obtained with (lines) and
without (open symbols) the approximation of €(k) ~ Er as a function of the Debye
frequency (®p). Inset: the number of k-states (M) in the energy band #p around Er
versus op.

fluctuation of M, as shown the open rhombus in the inset of Fig. 2
compared with Eq. (27) (line).

7. Conclusions

Throughout this article, we have demonstrated that the CCP
defined as linear combinations of CP are true bosons at the dilute
limit, since their creation and annihilation operators fully satisfy the
bosonic commutation relations. This demonstration is an extension of
Ref. [7], where only a single kind (o) of CCP is considered. Also, we
show that the BCS superconducting ground state can be written in
terms of CCP, which means that the BCS theory is consistent with a
possible BEC theory of superconductivity based on CCP. We further
calculate the energy spectrum of CCP with and without the
approximation of &(Kk)~ Er using the BCS Hamiltonian. We can
observe from Fig. 1 that the highly-degenerate excited CCP state
from the analytical solution (20) is spread to a spectrum of degenerate
excited CCP states plus their corresponding bounding state. Hence, a
general reduction of Tc is observed in Fig. 2, as consequence of a
diminution of the energy gap defined as (E; — Eo).
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