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Superconductivity could be seen as a Bose–Einstein condensation (BEC) of Cooper pairs. However, the

creation and annihilation operators of Cooper pairs do not satisfy the bosonic commutation relations and

then, the mentioned viewpoint has a weakness in its foundation. In this work, we introduce the concept of

collective Cooper pairs (CCP) as linear combinations of Cooper pairs and prove their bosonic nature at the

dilute limit. This bosonic nature is given rise from their diffuse character on the Cooper pairs, which

permits the accumulation of many collective pairs at a single quantum state. Moreover, the super-

conducting ground state proposed by Bardeen, Cooper and Schrieffer (BCS) can be written in terms of

these collective Cooper pairs, which means that the BCS theory is consistent with a possible BEC theory of

superconductivity based on collective Cooper pairs. Finally, we calculate the energy spectra and the BEC

critical temperature of CCP.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Superconductivity is one of the most interesting phenomena in
physics. Nowadays, there is a consensus that this extraordinary
phenomenon is originated from the Cooper pairs (CP). Recently,
many experiments have confirmed the existence of a pseudo
energy gap at a higher temperature than the superconducting
one in cuprate superconductors [1,2]. A possible interpretation of
this observation could be the separation of the superconducting
transition from the formation of CP, i.e., the superconductivity
could be visualized as a Bose–Einstein condensation (BEC) of CP,
when their phase coherence is reached. However, CP are not true
bosons as stated in the original paper of Bardeen, Cooper and
Schrieffer (BCS) [3], since the creation (b̂
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�kk) and
annihilation (b̂k � ĉ�kkĉkm) operators of CP do not satisfy the
bosonic commutation relations, because
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where n̂ks ¼ ĉ
y

ksĉks is the number operator of electrons, ĉ
y

ks and ĉks
are the creation and annihilation operators of a single electron with
linear momentum k and spin s, respectively. In addition, from the
definition of b̂
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k and b̂k, it is easy to prove that
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k ¼ b̂kb̂k ¼ 0, ð2Þ

which even emphasizes a fermionic character of CP.
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ang).
In this article, we demonstrate that the collective Cooper pairs
(CCP) defined as linear combinations of CP satisfy the bosonic
commutation relations at the dilute limit, as well as that the BCS
superconducting ground state can be written in terms of CCP. We
further calculate the energy spectra of CCP and the BEC critical
temperature.
2. Collective Cooper pairs

Let us consider a system with M possible Cooper pairs and we
define M creation operators of CCP as
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where a¼ 0, 1, � � � ,M�1, AaðlÞ ¼ 1ffiffiffiffi
M
p exp i2pla
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, and then
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Hence, the CCP are related to CP by a canonical transformation,
and from Eqs. (1) and (4)
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In general, a quantum state with N CCP can be written as
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where Bðn0, � � � ,nM�1Þ is the normalization factor,
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From Eq. (6) we find
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By using the inequality 9
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where /ôS�/n0, � � � ,nM�19ô9n0, � � � ,nM�1S. Hence, at the dilute
limit, N=M-0, Eq. (5) leads to
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On the other hand, from equation (1) we have

½â
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y

b� ¼ ½âa,âb� ¼ 0: ð12Þ

Briefly, Eqs. (11) and (12) prove the bosonic nature of CCP at the
dilute limit. In addition,

Bðn0, � � � ,nM�1Þ ¼ ðn0! � � �nM�1!Þ
�1=2: ð13Þ

can be obtained from equations (6), (11) and (12).
3. Energy spectrum of CCP

Let us start from the BCS Hamiltonian [3] given by
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where eðkÞ ¼ _2k2=2m is the single electron energy with
momentum k and

Vk,ku ¼
�V , if9eðkÞ�EF9 and 9eðkuÞ�EF9r_oD

0, otherwise

(
ð15Þ

being V40, EF the Fermi energy, and oD the Debye frequency. For
this case, M is the number of states with wave vector k that satisfy
9eðkÞ�EF9r_oD. In the strong coupling limit, _oD5V , we can make
the approximation of e(k)EEF and then, Hamiltonian (14) can be
rewritten as
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. From Eq. (9),
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and the energy spectrum of N CCP is given by
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which is in agreement with the energy spectrum found by Thouless
[4], evaluating for the dilute limit.

Using Eq. (7), Eq. (18) can be rewritten as
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is the energy spectrum of single CCP. Notice that Eqs. (7) and (19)
reveal that the system of N CCP can be consider as an ideal gas of
bosons at dilute limit.

4. Bose–Einstein condensation of CCP

Following a standard procedure of the BEC analysis within the
grand-canonical ensemble formalism [5], the average number of
CCP (/NS) for T40 is, from Eq. (20), given by

/NS¼
XM�1

a ¼ 0

1

ebðEa�mÞ�1
¼

1

eb½2EF�ðM�1ÞV�m��1
þ

M�1

eb½2EF þV�m��1
, ð21Þ

where b¼ 1=kBT and m is the chemical potential. Since Mb1, the
ground state occupation is negligible in comparison with the
occupation of excited states for moE0, i.e.,
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The BEC occurs when m¼E0, Eq. (22) leads to a critical
temperature (TC) given by

kBTC ¼
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/NS þ1

 � : ð23Þ

5. Comparison with the BCS ground state

Within the BCS theory, the superconducting ground state can be
written as [6],
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where M is the maximum number of CP.
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Fig. 1. CCP density of states (DOS) for (a) _oD ¼ 0:02EF and (b) _oD ¼ 0:03EF , where

the energy is discretized by using DE¼0.0001EF.
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Fig. 2. A comparison of the BEC critical temperature (TC) obtained with (lines) and

without (open symbols) the approximation of e(k)EEF as a function of the Debye

frequency (xD). Inset: the number of k-states (M) in the energy band _oD around EF

versus oD.
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In Eq. (25) each term of the summation corresponds to a state of
n CCP, i.e.,
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which is same as that of Eq. (6) by making n1 ¼ � � � ¼ nM�1 ¼ 0 and
vk ¼ uk ¼ 1=

ffiffiffi
2
p

for the strong coupling limit [6].
6. Beyond the strong coupling limit

In this section, we calculate the energy spectrum of CCP beyond
the approximation of e(k)EEF, by computing numerically the
single CCP eigenvalues of Hamiltonian (14) for an interaction
V¼10�5EF. For a cubic lattice of NS sites with one electron per
site, the number of k-states in the energy band _oD around EF is

M¼
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2
1þ
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� 1�
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EF
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The results of energy degeneracy or density of states (DOS)
for NS¼105 are illustrated by dots in Fig. 1 for (a) _oD ¼ 0:02EF and
(b) _oD ¼ 0:03EF , in comparison with the corresponding spectra of
self-energy 2e(k) (open squares). Observe that the energy band
width is almost 2_oD, since E is the CCP energy. Furthermore, the
DOS spectra and the corresponding 2e(k) ones are approximately
the same, except a lower-energy bonding state appeared for each
degenerate energy. This fact is an extension of the energy spectrum
at the strong coupling limit given by Eq. (20).

In Fig. 2, the analytical solution (lines) from Eq. (23) and numerical
one (open symbols) of TC versus _oD are comparatively plotted for the
cases of /NS=M¼ 0:01 and 0.2. Note that the numerical results
contain a remarkable fluctuation which is originated from the
fluctuation of M, as shown the open rhombus in the inset of Fig. 2
compared with Eq. (27) (line).
7. Conclusions

Throughout this article, we have demonstrated that the CCP
defined as linear combinations of CP are true bosons at the dilute
limit, since their creation and annihilation operators fully satisfy the
bosonic commutation relations. This demonstration is an extension of
Ref. [7], where only a single kind (a) of CCP is considered. Also, we
show that the BCS superconducting ground state can be written in
terms of CCP, which means that the BCS theory is consistent with a
possible BEC theory of superconductivity based on CCP. We further
calculate the energy spectrum of CCP with and without the
approximation of e(k)EEF using the BCS Hamiltonian. We can
observe from Fig. 1 that the highly-degenerate excited CCP state
from the analytical solution (20) is spread to a spectrum of degenerate
excited CCP states plus their corresponding bounding state. Hence, a
general reduction of TC is observed in Fig. 2, as consequence of a
diminution of the energy gap defined as (E1�E0).
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