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In this paper, we investigate the flow instability of a horizontal fluid layer under an inclined

temperature gradient. The fluid layer is supposed to be of infinite extension, and the differentially

heated lateral walls are very far away from the central region which is the subject of research. The

layer is also inside two rigid, horizontal and parallel walls which are perpendicular to gravity and

subjected to a vertical adverse temperature gradient. Calculations are done for Prandtl numbers Pr

in the range from 0.026 to 1, which include materials from liquid metals to gases. By improving

the Galerkin numerical method, new results and important extensions and corrections to the work

of Nield [Int. J. Heat Fluid Flow 15, 157 (1994)] are obtained. It is found that inside the range

0.2<Pr< 0.45, a new oblique oscillatory mode starts to appear and that it can be the first unstable

one in a particular range of the horizontal Rayleigh number RH for all Prandtl numbers until Pr¼ 1.

To the left, this mode separates from an oscillatory longitudinal even mode already found by Nield

[Int. J. Heat Fluid Flow 15, 157 (1994)]. A new codimension two point is found when the Prandtl

number is increased to Pr¼ 0.4886, where the curves of the oblique oscillatory mode and the even

stationary longitudinal mode touch each other for the first time. Another new codimension two

point starts to appear in the range 0.5<Pr< 1.0 which corresponds to the crossing between the

curves of the oblique oscillatory mode and the odd stationary longitudinal mode. As a

consequence, another interesting result is that, to the right of this point, the odd stationary

longitudinal mode is the first unstable one in a range of RH. The qualitative form of the curves of

criticality changes notably between Pr¼ 0.026 and Pr¼ 1.0. Therefore, here we present a detailed

description of this change by means of calculations for different Prandtl numbers inside that range.
VC 2011 American Institute of Physics. [doi:10.1063/1.3626009]

I. INTRODUCTION

The problem of natural convection has been investigated

since many years ago due to its presence in many natural phe-

nomena where temperature differences exist under gravity.

However, from the point of view of applications, sometimes

it is important to avoid any motion due to temperature differ-

ences. Examples are processes of crystal growth and molten

metals where any motion previous to solidification can pro-

duce important inhomogeneities and striations in the resulting

material. In the atmosphere and oceans, temperature gradients

are the source of motion of big masses of fluid. In this case,

the understanding of the response of gases and liquids to their

influence is of fundamental interest to investigate the climate

of the earth. The convection in a horizontal infinite fluid layer

heated from below has been reviewed by Chandrasekhar.1 In

the case of parallel and rigid walls, it is shown that the critical

Rayleigh number (representing the ratio of buoyancy and vis-

cous forces) has a value of 1708. If the temperature gradient

is vertical and adverse, this is the minimum magnitude neces-

sary to destabilize an unstably stratified fluid layer. In this

particular situation, the starting flow is always stationary.

Other convective phenomena are due to a horizontal tempera-

ture gradient. The system is supposed to be a horizontal fluid

layer of very large extension and perpendicular to gravity

which has two vertical differentially heated walls. A closed

basic flow is produced immediately after setting the horizon-

tal temperature gradient because the fluid starts to move

upwards at the hot vertical wall and downwards at the cold

vertical wall. The result is a very large cell flow. It has been

shown experimentally that this motion is unstable and that it

produces oscillations which are the source of a banded distri-

bution of solute in crystals.2 Besides, Hurle et al.2 and Hart3

investigated the instability of this flow with a very small as-

pect ratio, the so called Hadley circulation. Hart3 obtained

results of the critical horizontal Rayleigh number RHC for a

range of Prandtl numbers Pr (the ratio of the thermal and vis-

cous diffusivities). Gill4 investigated the particular case of

liquid metals that have a very small Prandtl number

(Pr¼ 0.026 for mercury). Hart5 shows that, when the horizon-

tal walls are insulated, in a range of small Prandtl numbers,

the convection is first oscillatory. Walton6 studies the stability

of a flow under a horizontal temperature gradient due to a

hot-patch. Kuo et al.7 present important corrections to previ-

ous work using a pseudospectral method with Chebyshev pol-

ynomials. In other papers, Kuo and Korpela 8 and Wang and

Korpela9 investigated the non linear problem for particular

ranges of the Prandtl number, including good and bad con-

ducting walls. Laure10 and Laure and Roux11 made numerical

calculations which confirm and correct previous results in the

literature. More recently, Braunsfurth et al.,12 Juel et al.,13

and Hof et al.14 made numerical analysis and experiments

related to liquid gallium but in a finite domain. Other experi-

ments were done by Wang and Huang15 with salt water.

Hughes and Griffiths16 reviewed this problem including,

among others, applications to oceanography.
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The effect of an inclined temperature gradient was first

investigated by Weber17 assuming that the horizontal walls

are stress-free and that the horizontal temperature gradient is

small. Later, Sweet et al.18 investigated the instability for free

shear walls extending the results to larger values of the hori-

zontal temperature gradient. They assume mean values of the

basic velocity and temperature profiles, instead of the original

z-dependent ones. It is found the possibility of oscillatory con-

vection increasing the ratio of the applied temperature gra-

dients. This problem is extended, with the same assumption

but for small horizontal temperature gradient, to the case of

rigid horizontal walls by Bhattacharyya and Nadoor.19 Later,

Weber20 improved his calculations for stress-free walls using

a Galerkin method. He also made calculations for rigid hori-

zontal walls. He found that the Prandtl number is important to

determine which mode is the first to appear in the instability,

the longitudinal or the transversal one with respect to the basic

flow. Besides, he shows that an increase of the horizontal tem-

perature gradient promotes the appearance of oscillatory flow.

Nield21 was the first to try to give a more complete view of

this phenomena for four different values of the Prandtl num-

ber. His goal was to investigate all the possible modes of

instability by means of a Galerkin method. Due to numerical

problems, his results were limited to a horizontal Rayleigh

number of 6000. Later, Kaloni and Qiao22 made calculations

by means of the energy method. They showed that the curves

of criticality of Nield21 should drop to zero critical vertical

Rayleigh number RVC with the increase of RH. Therefore, for

some Prandtl numbers, the linear results of Nield21 have to be

corrected and extended to larger magnitudes of RH.

In this paper, we present complete calculations of the

linear problem of natural convection under an inclined tem-

perature gradient. To reach this goal, the numerical method

used by Nield is improved to get a better convergence and

the magnitude21 of RH is extended up to a value where the

curve of RVC drops to zero and the flow is unstable only by

means of a horizontal temperature gradient. Here, the magni-

tude of the Prandtl number will be restricted between the

range of 0.026 and 1. The selection of this range is because

there the qualitative properties of the curves of criticality

have an important change that allows, in a certain range of

RH, for the appearance of the new oblique oscillatory mode

of instability as the first unstable one, a result not presented

before in the open literature. Moreover, it is shown that this

qualitative change also leads to the appearance of an odd

longitudinal stationary mode and a harmonic of the even lon-

gitudinal stationary mode as the first unstable in other differ-

ent ranges of RH. The paper is organized as follows. In

Sec. II, a description of the physical system is given along

with the equations of motion and energy with their linearized

expressions for use in the numerical analysis. In Sec. III, a

description of the numerical method is presented with a dis-

cussion on how this improves the one used by Nield.21 Sec-

tion IV gives the results in the form of plots of the critical

vertical Rayleigh number RVC, wavenumber aC, frequency of

oscillation rC, and angle of propagation of the perturbation

/C against RH. The plots of the streamlines are included to

understand the physical behavior of the flow. Section V

presents the discussion, and Sec. VI is the conclusions.

II. EQUATIONS OF MOTION

The system under investigation is a flat fluid layer sub-

jected to an inclined temperature gradient. It is supposed that

the lateral differentially heated vertical walls are very far

away and that the region of interest is a large central part

where the basic flow can be considered as parallel. The par-

allel flat walls that contain the fluid are very large in compar-

ison to the thickness of the layer and are supposed to be

perpendicular to gravity. The walls are very good conduc-

tors, and the lower wall is hotter than the upper one. This

produces a vertical temperature gradient which combined

with the horizontal one, results in an inclined temperature

gradient. The fluid moves upwards in the hot lateral wall and

goes downwards in the cold one. This generates a basic flow

U(z) in the x-direction which depends on the vertical vari-

able z. Perpendicular to the basic flow and to the z-direction

is the y-direction. The equations are

Pr�1 D�u0

Dt
¼ �rp0 þ T0kþr2�u0; (1)

DT0

Dt
¼ r2T0; (2)

r � �u0¼ 0; (3)

where D/Dt is the Lagrange operator and use has been made of

the Boussinesq approximation. Here, �u0 ¼ ðu0; v0;w0Þ is the ve-

locity vector, k is a vertical unit vector, p0 is the pressure, and

T0 is the temperature. The variables have been made non

dimensional using for distances the thickness of the layer d, for

time d2/j (where j is the thermal diffusivity), for velocity j/d,

for pressure q0j�/d2 (where q0 is a reference density) and for

temperature DT/RV, where DT is the vertical temperature dif-

ference and the vertical Rayleigh number is defined as

RV¼ gaTd3DT/�j. The horizontal Rayleigh number is defined

as RH ¼ RVdbH=DT ¼ gaTd4bH=�j, where bH is the magni-

tude of the horizontal temperature gradient. The walls are rigid

and good conductors, then the velocity and temperature satisfy

the boundary conditions at the walls located at z¼61/2

�u0¼ 0; (4)

T0 ¼ �RV=2� RHx: (5)

In the inner region, very far from the lateral walls, the

flow is assumed parallel, and the variables of the steady state

solution only depend on z. Thus, the basic flow and tempera-

ture profiles satisfy the equations

D3UðzÞ ¼ �RH; (6)

D3VðzÞ ¼ 0; (7)

D2Tðx; zÞ ¼ �RHUðzÞ; (8)

where D¼ d/dz and T(x, z)¼F(z)�RHx. Therefore, the goal

is to calculate F(z) by means of Eq. (8). Note that at z¼61/2,

F zð Þ ¼ �RV=2. The flow is closed and the velocity compo-

nents U(z) and V(z) must satisfy a condition of zero mass flux,

that is, the integral of U(z) and V(z) in the range of the thick-

ness of the fluid layer must be zero. The solutions are
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UðzÞ ¼ RHðz=24� z3=6Þ; (9)

VðzÞ ¼ 0; (10)

Tðx; zÞ ¼ R2
Hð7z=5760� z3=144þ z5=120Þ � RVz� RHx:

(11)

The basic flow Eq. (9) modifies the temperature profile

as in Eq. (11), producing two unstable regions near the upper

and lower walls and a stable region in the middle section

(see Fig. 1 of Lappa23). These unstable regions are made

more unstable by an adverse vertical temperature gradient.

This shows that for a large enough horizontal temperature

gradient alone, it is possible to destabilize the flow. How-

ever, due to the stabilizing region of the temperature profile,

it is not possible to destabilize the system for small RH and

the result is that RH first stabilizes, for some magnitudes of

the Prandtl number, in the presence of RV and later destabil-

izes also due to the contributions of the shear flow instability.

In another region, for Pr smaller than a critical magnitude

calculated in this paper, RH destabilizes even for small mag-

nitudes, as will be seen presently. When RV> 0, the two

unstable regions in the temperature profile also bring about

the possibility of having an odd mode as the first to appear in

the instability, as will be shown below. The characteristic of

this odd mode is that it produces two convection cells, one

over the other. The stability of the flow is investigated using

normal modes of the form G(z)exp[i(kxþ ly – rt)], where

G(z) represents the amplitude of any of the perturbations of

the variables and k and l are the x and y-components of the

perturbation wavenumber. The real part of r is the frequency

of oscillation of the perturbation and its imaginary part is the

growth rate. In this way, the system of equations of the per-

turbations is

½PrðD2 � a2Þ � iðkU � rÞ�ðD2 � a2Þw
þ ikwD2U � Pra2h ¼ 0; (12)

½ðD2 � a2Þ � iðkU � rÞ�hþ RHu� wDT ¼ 0; (13)

½PrðD2 � a2Þ � iðkU � rÞ�ð�a2uþ ikDwÞ þ l2wDU ¼ 0;

(14)

where u and w are the amplitudes of the x and z-components

of the velocity, respectively, and h is the amplitude of the tem-

perature. The square of the magnitude of the wavenumber

vector is defined as a2¼ k2þ l2. Therefore, it is possible to

write k ¼ a cos/ and l ¼ a sin/, where / is the angle of prop-

agation of the perturbation with respect to the x-direction (the

same of the basic flow). The boundary conditions are w¼Dw
¼ u¼ h¼ 0 at z¼61/2.

The Eqs. (14) and (12) are obtained applying once and

twice, respectively, the rotational operator to the perturbed

equation of motion. Therefore, Eq. (14) corresponds to the

vorticity equation. This system of equations will be analyzed

numerically as explained in Sec III.

III. NUMERICAL ANALYSIS

The boundary value problem formed by the system of

Eqs. (12)–(14) and the boundary conditions will be solved

FIG. 1. Graphs of RVC vs RH for fixed Pr¼ 0.026. In (a), the areas below

the curves are stable with respect to the corresponding critical instability.

Here, the first unstable mode is TS, the transversal stationary mode, and only

below this curve the flow remains stable. The other modes LO1, LO2, LS1, and

LS2 are the longitudinal oscillatory even and odd modes and the longitudinal

stationary even and odd modes, respectively. In (b) and (c), the critical

wavenumber and frequency, respectively, are presented. Streamlines data

are in the order (RH, RVC, aC): TS (10, 1703.03, 3.1), TS (100, 1266.54, 3),

and TS (218.24, 0, 2.7).
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by means of a Galerkin numerical method.24,25 The accuracy

of the solutions depend on the selected trial functions, which

should satisfy the boundary conditions. Here, the selected

functions will be characterized by having, at the same time,

an even and an odd mode. This was done following the calcu-

lations of Hart5 for horizontal temperature gradient alone,

who found that it is possible to capture accurately different

modes of instability when including even and odd trial func-

tions. Notice that this was not done by Nield21 who stops his

analysis at a relatively small RH due to problems of conver-

gence in the calculations. Nield21 pointed out that for some

Prandtl number and for a range of RH an oblique mode

appears but that it was not the first one to appear in the insta-

bility. However, due to the Galerkin method used here, it has

been possible to show, among other things, that an oscillatory

oblique mode can be the first unstable one in a range of RH

and in a range of Pr. Note that numerically, it is only possible

to separate the even and odd modes in the case of longitudinal

perturbations and to obtain, from a solvability condition, a de-

terminant in the form of a product of two terms, each one for

each mode. Therefore, the calculations for all the other angles

of propagation of the perturbation are more complicated.

The perturbation functions appearing in Eqs. (12)–(14)

are expanded in the following form:

w ¼ we þ wo ¼
XN

n¼1

½a2ðn�1Þz
2ðn�1Þðz2 � 1=4Þ2

þ b2n�1z2n�1ðz2 � 1=4Þ2�; (15)

h ¼ he þ ho ¼
XN

n¼1

½c2n�1 cosð2n� 1Þpzþ d2n sin 2npz�;

(16)

u ¼ ue þ uo ¼
XN

n¼1

½f2n�1 cosð2n� 1Þpzþ g2n sin 2npz�;

(17)

where the subindexes e and o mean even and odd functions,

respectively. These expansions are used in their full expres-

sion when the perturbations are transversal and oblique. How-

ever, if the perturbations are longitudinal, it is possible to use

only the even part for even perturbations and the odd part for

odd perturbations. Note that the following notation will be

used below: Wn¼ zn(z2 – 1/4)2, T2n� 1¼ cos(2n – 1)pz,

T2n¼ sin 2npz, U2n� 1¼ cos (2n – 1)pz, and U2n¼ sin2npz.

Equations (15)–(17) are substituted into the homogene-

ous system of differential Eqs. (12)–(14). Then, the residuals

are made orthogonal to the basic trial functions.24,25 All this

leads to a system of linear algebraic equations whose solu-

tion is only different from the trivial one if the determinant

of the matrix of the system M is zero, that is, det(M)¼ 0.

This matrix is of order 3(2N)� 3(2N) and its elements are

M3i�2;3j�2 ¼ hL1Wj;Wii; M3i�2;3j�1 ¼ �a2hTj;Wii;
M3i�2;3j ¼ 0; M3i�1;3j�2 ¼ hDTWj; Tii;
M3i�1;3j�1 ¼ hL2Tj; Tii; M3i�1;3j ¼ �RHhUj; Tii;
M3i;3j�2 ¼ hL4Wj;Uii; M3i;3j�1 ¼ 0; M3i;3j ¼ hL3Uj;Uii:

From the equation det(M)¼ 0, it is possible to obtain the

proper values of RV and r in terms of a, /, RH, and Pr. To

find them, use has been made of a Newton-Raphson

method26 implemented in the Maple algebra package.

As shown below, the instability of the oblique mode of

instability will be investigated. The calculation of this mode

requires to check around the 360� of the direction of propaga-

tion of the perturbation. A lot of work can be saved by review-

ing the symmetry properties of Eqs. (12)–(14). First use is

made of the definitions k ¼ a cos /, l ¼ a sin /, and

a2¼ k2þ l2. Now, Eqs. (12)–(14) will be subjected to two rota-

tions. The first one is /!�/ (with respect to the basic flow

x-direction) which only changes l !�l, but l only appears

squared in all the equations. This means that the equations

remain the same and so will be the stability results. The second

one is a rotation /! /þ p which produces the changes

l !�l and k !�k. Proposing in this case, the changes

US!�US, u!�u, and RH!�RH, it is possible to recover

the original system of equations. The reason is that a 180� rota-

tion is equivalent to changing the direction of the x-axis.

Therefore, a change of the directions of the basic flow, the hor-

izontal temperature gradient, and the velocity perturbation in

the x-direction gives the same Eqs. (12)–(14). In conclusion,

for the oblique instability, it is only needed to investigate the

first quadrant of the wavenumber plane. Even with this simpli-

fication, the stability calculations are very time consuming.

Some useful analytical results for the marginal RV are

given by the following equations obtained from the smallest

order Galerkin approximation. They correspond to the longitu-

dinal instability case (k¼ 0, l¼ a) in which the even and odd

modes separate easily and simultaneously obtain the two algo-

rithms corresponding to the solutions of those two instability

modes. They are valid for relatively small magnitudes of RH.

They are first, for the stationary longitudinal even mode

RV ¼
1

20160

ða4 þ 24a2 þ 504Þða2 þ p2Þp10

C2
1a

2

þ 1

720p2C1

A1

p2
þ 60B1

ðp2 þ a2ÞPr

� �
R2

H; (18)

and second, for the oscillatory longitudinal even mode

r2 ¼ 1680Pra2B1C1R2
H

p12 ða4 þ 24a2 þ 504ÞPr þ ða2 þ p2Þða2 þ 12Þ½ � � ða
2 þ p2Þ2Pr2; (19)

RV ¼
1

20160

a4 þ 24a2 þ 504þ ða2 þ p2Þða2 þ 12Þ½ �ða2 þ p2Þð1þ PrÞp10

C2
1a

2

þ 1

720p2C1

A1

p2
� 60B1ða2 þ 12Þ
ða4 þ 24a2 þ 504ÞPr þ ða2 þ p2Þða2 þ 12Þ½ �

� �
R2

H (20)
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and use was made of A1¼ p6þ 348p4� 64800p2þ 604800,

B1¼p4� 228p2þ 2160, and C1¼ 12 – p2. Here, r is the fre-

quency of oscillation. The corresponding odd modes are

omitted because they are very stable for small RH and are not

relevant in what follows.

It is important to point out that the numerical method used

here made it possible to have very good convergence increasing

the order of approximation as needed. The results were com-

pared with the limiting case of horizontal temperature gradient

alone which was investigated numerically by Kuo et al.,7,8

Laure,10 Laure and Roux,11 and Kaddeche et al.27 (when the

magnetic field is zero). The agreement was very good.

IV. NUMERICAL RESULTS

The stability results will be presented in order of

increasing the Prandtl number. The first results are for

Pr¼ 0.026, which correspond to liquid metals like Mercury

at 20 �C (Ref. 28) and Gallium at 30 �C.4 Figure 1(a) shows

the critical values of RV, that is RVC, against RH for

Pr¼ 0.026. Different modes of instability are presented for

the sake of completeness. Modes that are not important here

because they are more stable than the critical one, will be im-

portant for larger values of Pr. In Fig. 1, the instability is

dominated by a transversal stationary mode TS which attains

the value of RVC¼ 1708 when RH¼ 0. For this Pr, the curve

drops to RVC¼ 0 with a relatively small RHC¼ 218.25 and a

wavenumber aC¼ 2.7. The longitudinal oscillatory even

mode LO1 drops at RHC¼ 1712.30, aC¼ 2.0, and rC¼ 5.94.

It was possible to capture a longitudinal oscillatory odd

mode LO2, but RVC increases with RH and it seems that it

never destabilizes. The curves for the stationary longitudinal

even LS1 and odd LS2 modes are of particular interest because

they stabilize in an important way in some region of RH, but

later destabilize dramatically for large values of RH. This

behavior will have important consequences for larger Pr.

The curve of LS1 also tends to RVC¼ 1708 when RH goes to

zero. Notice that the modes LO1 and LO2 start for a magni-

tude of RH different from zero, as it should be because it is

well known that when RH¼ 0, the instability begins as sta-

tionary.1 Therefore, there is a critical value of RH after which

the curves of these modes start. The streamlines of the flow

at criticality of two representative sets of (RH, RVC, aC) are

also shown in the figure. They are the streamlines of a sta-

tionary transversal mode and correspond to the values

(10,1703.03,3.1), (100, 1266.54, 3) and (218.24, 0, 2.7),

respectively. It is clear that the convection cells show no

symmetry with respect to z¼ 0 (located at the middle of the

z-axis), as explained above.

Figure 2 presents results for Pr¼ 0.2 which corresponds

approximately to a mixture29 of molten Lead (44.5%) and

Bismuth (55.5%) at 644 �C. Due to the changes of the curve

TS with respect to the Prandtl number, some important results

appear in this figure. First, the TS curve starts to grow and

the system stabilizes taking magnitudes of RVC larger than

1708 in almost all its range of RH and then drops to RVC¼ 0

at RH¼ 5089.81. Second, a codimension two point appears

at approximately RVC¼ 2652 and RH¼ 1010, where station-

ary (TS) and oscillatory (LO1) convective motions compete

FIG. 2. Graphs of RVC vs RH for fixed Pr¼ 0.2. In (a), the areas below the

curves are stable with respect to the corresponding critical instability. Here,

the first unstable mode is TS and then the mode LO1. A codimension two

point appears at around RH¼ 1010 and RV¼ 2652, larger than 1708. The

other modes LO1, LO2, LS1, and LS2 appear again as more stable. In (b) and

(c), the critical wavenumber and frequency, respectively, are presented.

Streamlines data are in the order (RH, RVC, aC, rC): TS (800, 2351.21, 2.9,

0), LO1 (2000, 1404.83, 2.2, 16.46), and LO1 (2671.40, 0, 2, 20.90).
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for instability. These results are new and have not been

reported before in the open literature. Then, only below these

two curves, the flow remains stable. The curve of LO1 falls to

RVC¼ 0 at RH¼ 2671.40. It is clear that modes LS1 and LS2

have broaden their stable area. The wavenumber of LO1

remains smaller than that of TS. Here, the streamlines for

three representative flows are given for three sets of four val-

ues (RH, RVC, aC, rC). The flow for (800, 2351.21, 2.9, 0)

corresponds to TS and, therefore, has no symmetry. The os-

cillatory mode is longitudinal and its symmetry for the val-

ues set (2000, 1404.83, 2.2, 16.46) is apparent. The curve

LO1 for (2671.40, 0, 2, 20.90) is symmetric and has a smaller

wavenumber. As seen in Fig. 2(a), the transversal convection

cells are periodic in the x-direction, and the longitudinal cells

are periodic in the y-direction. Notice that the wavenumbers

of the convection cells of each case are different, but this

was not taken into account when deciding the size of each

figure of the streamlines. The main reason is that the relative

scaling of the wavenumber made it impossible to see the sep-

aration of the streamlines in some cases of convection cells.

Here, and in all the figures, it is interesting to note that, for

small magnitudes of RH, the curves LO1 disappear before

RH¼ 0. The reason is that for small magnitudes of RH it is

not possible to find roots of the frequency of oscillation in

agreement with the results of vertical temperature gradient

alone, where it has been shown that stationary convection is

the first to appear.1 It is also clear that the curves of LO1 do

not reach those of LS1 in Figs. 1(a) and 2(a).

The codimension two point begins to appear when the

curves of TS and LO1 touch each other for the first time at

RVC¼ 0 and RHC¼ 2249.05 when Pr¼ 0.1364, as shown in

Fig. 3 and confirmed by Kuo et al.7,8 (case RV¼ 0). This crit-

ical magnitude of Pr is just that after which the pure TS mode

changes in such a way that it allows for another instability

mode to appear as the first unstable one for larger Pr, that is,

the mode LO1. It is very interesting to point out that, in the

presence of RV, it is possible to have this codimension two

point in a range of Pr, starting from Pr¼ 0.1364, in contrast

with the case of RH alone. Moreover, notice in Fig. 3 that

very near to Pr¼ 0.13, the curve of TS starts to create a stabi-

lizing bump which shows the above mentioned stabilizing

effect of RH in an important range. This stabilizing effect on

TS is the cause of the appearance of the codimension two

point, because it delays the drop of the curve into a larger

critical RHC, which increases faster than that of the curve LO1

with respect to Pr. Notice that the magnitude of RH of the

codimension two point decreases with Pr, as seen in Figs. 3

and 2. For example, for Pr¼ 0.14, RH¼ 1620, and

RVC¼ 1503 and for Pr¼ 0.2, RH¼ 1010, and RV¼ 2652. The

reason is the constant increase with Pr of the bump of the

curve of TS.

The results shown in Fig. 4 correspond to Pr¼ 0.45

(Fig. 4(a)) and 0.4886 (Fig. 4(b)). In Fig. 4(a), it is shown the

important result of the presence of the new oblique oscilla-

tory mode ObO. It seems that the curve of ObO starts to

appear somewhere inside the range 0.2< Pr< 0.45. There-

fore, the first unstable modes for Pr¼ 0.45 are a stationary

transversal mode, an even oscillatory longitudinal mode and

an oblique oscillatory mode. The first codimension two point

in this figure, between TS and LO1, occurs at RH¼ 1105 with

the following data ordered as RV, a, and r (3589, 2.9, 0) and

(3589, 2.7, 10.43), respectively. The mode ObO starts to be

the first unstable one at / ¼ 86� when RH¼ 8300 and

(1582.34, 1.4, 60.38) and it crosses the RV¼ 0 axis at

RH¼ 9935 and (0, 1.6, 83.67) when / ¼ 72�. The results of

Fig. 4(b) for Pr¼ 0.4886 are interesting because a new codi-

mension two point appears when the curves of ObO and LS1

touch each other when RH¼ 12329.5 for (0, 1.7, 115.32) at

an angle of 65� and for (0, 8.2, 0), respectively. Here, again

ObO starts to be the first unstable one at / ¼ 86� but when

RH¼ 7800 and (4378.81, 1.5, 60.99). Notice that the slope of

LO1 already changed in this figure. This is important for other

phenomena which appear for larger Pr because the slope of

ObO will also change following that of LO1.

The way an oblique mode is calculated is by searching

around any stationary or oscillatory curve of criticality if

there are more unstable modes at different angles of the

wavenumber of the perturbation. Calculations show that the

ObO curve of criticality is first found separating from the

curve LO1 near but below Pr¼ 0.45 (see Fig. 4). This curve

also appears for Pr¼ 0.5 (Fig. 5(a)) and for Pr¼ 1 (Fig.

6(a)). For example, in the case of Pr¼ 1, the separation of

the curve of ObO from that of LO1 is better understood by

means of the behavior of the marginal curves. The curve

starts to separate from a value of RH between 6700 and 6750

and the marginal curve begins to show two minima one of

which is the absolute one corresponding to LO1. A further

increase of RH decreases the difference between the two min-

ima until RH¼ 6785, where both minima reach the same

magnitude of RV. At this point, two convection cells of two

different wavenumbers (with small difference between each

other) and two different frequencies compete to be the first

FIG. 3. Graphs of RVC vs RH for TS and LO1 alone. The graphics are for

three values: Pr¼ 0.13 (dotted line), Pr¼ 0.1364 (solid line), and Pr¼ 0.14

(dashed dotted line). Notice that Pr¼ 0.1364 is the critical Prandtl number

at which the first codimension two point appears when RV¼ 0 and

RHC¼ 2249. For larger values of Pr, the codimension two points appear for

RV> 0. Thus, mode LO1 can be the first unstable one, only for Pr> 0.1364

and above a critical RH, to the right of the codimension two point. For exam-

ple, for Pr¼ 0.14 (dashed dotted line) that point is located at RH¼ 1620 and

RVC¼ 1503.

084107-6 A. S. Ortiz-Pérez and L. A. Dávalos-Orozco Phys. Fluids 23, 084107 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



unstable one. Finally, another increase of RH makes the

mode ObO to be the first unstable one.

Figure 5 shows results for Pr¼ 0.5, which may corre-

spond to a mixture of air and H2 from 20% to 50%.28 The

further increase of the Prandtl number leads to a rise of the

curve of LO1 which produces a change in that of ObO. This

behaviour makes the new codimension two point between

ObO and LS1 to have a RV different from zero. At the same

time, this produces a decrease of the corresponding RH of the

crossing point. In particular for Pr¼ 0.5, that point is located

at RH¼ 12244 for (1464.59, 1.7, 115.13) at / ¼ 65� (ObO

mode) and for (1464.59, 8.2, 0) (LS1 mode), respectively.

With this changes, the even stationary longitudinal mode LS1

becomes the first unstable one in a range of RH, as seen in

Fig. 5(a). This curve hits the RV¼ 0 axis at RH¼ 12359 for

(0, 8.2, 0). The ObO mode starts to appear as the first unsta-

ble one when RH¼ 7730 for (5066.46, 1.5, 60.57) at

/ ¼ 89�. The first codimension two point between TS and

LO1 occurs at RH¼ 1147 with (3764.7, 2.9, 0) and (3764.7,

2.7, 10.83), respectively. The results for the critical wave-

number are shown in Fig. 6(b). It is clear that the wavenum-

ber of LO1 remains below that of TS and ObO. The critical

frequency of oscillation of LO1 shown in Fig. 5(c) increases

with respect to the case of Pr¼ 0.2 and that of ObO is even

more larger. As can be seen in Fig. 5(d), the critical angle of

propagation of the perturbation shows discontinuous jumps

due to the competition between pairs of modes. The first one

is that between TS and LO1, then between LO1 and ObO

(small), and finally between ObO and LS1.

Figure 6 shows the results for Pr¼ 1 corresponding

approximately to gases and vapor at 200 �C (Ref. 28) and

one atmosphere. With this figure, it is possible to compare

with the results of Nield.21 It is important to note the increase

of the range of RH used in the calculations. The results of

Fig. 6(a) show that increasing RH starting from zero, the first

unstable mode is TS, then at RH¼ 1563, the mode is LO1,

next from RH¼ 6785 appears the new oscillatory oblique

mode ObO, which is followed from RH¼ 8957 by the odd

longitudinal stationary mode LS2, and finally from

RH¼ 11020, the first unstable one is the even longitudinal

stationary mode LS1. The different curves intersect to each

other at important points whose data will be ordered as RV,

a, and r. Two codimension two points appear for this Prandtl

number. The first one was already found by Nield21 and

from our numerical results it occurs at RH¼ 1563 and (5659,

2.7, 0) for TS and (5659, 2.8, 12.87) for LO1. The other

appears at RH¼ 8957 and (27714, 2.4, 124.52) for ObO when

/ ¼ 60� and (27714, 7.4, 0) for LS2. Notice that this is a new

codimension two point due to the surprising presence of the

odd mode LS2 as the first unstable one in a range of RH. Other

points are of importance. The intersection between LS1 and

LS2 is located at RH¼ 11020 and (19221, 8.1, 0) for LS1 and

(19221, 8.1, 0) for LS2 (that is correct, they have the same

wavenumber in this case). The mode LS1 finishes when

touching the horizontal axis at RH¼ 12998 and (0, 8.3, 0).

These are curves of criticality and only below them the flow

remains stable. As pointed out above, the mode ObO starts to

appear between RH¼ 6700 and 6750.

As can be seen, for Pr¼ 1, the magnitudes of RVC for all

the critical curves are very large in comparison with 1708,

which shows the great stabilizing effect of RH. Therefore, this

strong effect of RH is the reason why the very highly stable

odd mode Ls2 has been reached by mode ObO to become the

first unstable one in a range of RH. Also shown, for reference,

is the stability curve of the transversal oscillatory mode TO.

In Fig. 6(b), it is interesting to observe that the critical wave-

numbers of mode LO1 are now larger than those of TS, but

smaller than those of mode ObO. The critical frequencies of

ObO are also larger than those of LO1, as seen in Fig. 6(c).

Figure 6(d) presents the critical angle of propagation of

the perturbation /C. Note in the figure that this angle only

starts as the first unstable one at around /C ¼ 75� for

RH¼ 6785 and finishes at around /C ¼ 60� for RH¼ 8957,

after which the mode LS2 is the first unstable one. The two

FIG. 4. Graphs of RVC vs RH for (a) Pr¼ 0.45 and (b) Pr¼ 0.4886. (a)

Results previous to the codimension two point. It is of interest to note that

the oblique mode is already present. (b) For Prandtl number 0.4886, a new

codimension two point between ObO and LS1 appears for RVC¼ 0 and

RH¼ 12330. Besides, notice that the curve of LO1 already changed its slope,

fact that will be important for larger Pr because the curve of ObO will also

follow this behaviour.
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dashed lines indicate the angles of existence of the oblique

mode but where it is no longer the first unstable one. It is of

interest to point out that the oblique mode starts from a RH

larger than the largest magnitude investigated by Nield21 in

his Fig. 4. Thus, broadening the range of RH has been of

great importance in the present research because it also has

been possible to show that the odd longitudinal stationary

mode can be the first unstable one, followed by the even lon-

gitudinal stationary mode.

V. DISCUSSION

A variety of results have been presented in the above

sections. Here, a discussion is given of the stability. An im-

portant characteristic of the flow under an inclined tempera-

ture gradient is the basic temperature profile given in Eq.

(11). This equation is of 5th degree in z, in contrast to that of

natural convection inside inclined parallel walls where the

temperature profile is linear. Therefore, different results are

expected even though the velocity profiles are similar.

The z-dependent part of the temperature profile Eq. (11)

has five roots. It crosses through z¼ 0, which can be shown

to be always an inflexion point. There are other four roots,

two of them are outside the flow range of z, and the other

two, calculated from z2 ¼ ð5RH � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

H þ 4320RV

p
Þ=12RH,

exist if 5RH � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

H þ 4320RV

p
� 0, that is, when

R2
H � 5760RV=7. Note that, when the equality is satisfied,

z¼ 0 becomes a root of multiplicity three and the other roots

remain outside the range of z. The z-derivative of the temper-

ature has two roots in the range of z, calculated from

z2 ¼ ð15RH � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30R2

H þ 21600RV

p
Þ=60RH, and exist if

15RH � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30R2

H þ 21600RV

p
� 0, which corresponds to

R2
H � 5760RV=7, the same condition as that for the tempera-

ture. The second derivative of the temperature is

d2T=dz2 ¼ R2
Hz z2 � 1=4ð Þ=6, which shows that z¼ 0 is the

FIG. 5. Graphs of RVC vs RH for fixed Pr¼ 0.5. Here, increasing RH from zero, the first unstable mode is TS, then from RH¼ 1147, the mode LO1, next from

RH¼ 7730, a new oscillatory oblique mode ObO which is followed from RH¼ 12244 by the even stationary mode LS1. Note that, at the end, LS1 drops at

RHC¼ 12358. Two codimension two points appear from the competition between stationary and oscillatory modes and are located at around RH¼ 1147 and

RH¼ 12244, respectively. In (b), (c), and (d), the critical wavenumber, frequency of oscillation, and angle of propagation of the perturbation, respectively, are

presented. Streamlines data are in the order (RH, RVC, aC, rC): TS (1000, 3279.64, 2.9, 0), LO1 (5000, 3987.34, 1.9, 47.16), ObO (11000, 3327.59, 1.7, 102.12)

at 67� and LS1 (12358.81, 0, 8.2, 0).
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inflexion point in the range of z. Notice that if the condition

R2
H � 5760RV=7 is satisfied, a maximum appears in

0< z< 1/2 and a minimum exists in 0> z >�1/2. If these

conditions are not satisfied, only an inflexion point is present

and the temperature decreases monotonically with z. This is

important, because only one convection cell is able to form

inside the walls.

When the conditions are satisfied, the temperature profile

shows two unstable regions inside the two walls due to the

appearance of the maximum and minimum. The unstable

regions are formed as follows. The first one is formed with

the temperature difference between the point of the maximum

and the upper wall and the second one with the temperature

difference between the lower wall and the point of the mini-

mum. This has an important consequence. That is, the forma-

tion of a very stable region in the middle section, between the

point of the maximum (above) and the point of the minimum

(below). This contributes to stabilize the flow when RH

increases, as seen in the curves of criticality of the results pre-

sented above when the Prandtl number is large enough (lets

say, starting from Pr¼ 0.2). This stable region is responsible

of the need to increase RH to a magnitude far more larger

than that required by the condition R2
H � 5760RV=7 in order

to excite other modes of instability. Note that, in absolute

value, the z-location of the maximum and minimum is

reduced when RH increases (see above, the location of the

roots of the temperature derivative). Consequently, the stable

region thickness decreases with RH in such a way that, with

the two unstable regions, it is possible to excite the odd mode

(see the two cells streamlines of the odd longitudinal station-

ary mode LS2 in Fig. 6(a)) and to excite a harmonic mode of

the even solution (see the three cells streamlines of the longi-

tudinal stationary even mode LS1 in Fig. 5(a) (RV¼ 0) and in

Fig. 6(a) (for both RV¼ 0 and RV> 0)).

FIG. 6. Graphs of RVC vs RH and Pr¼ 1. The first unstable mode is TS, then from RH¼ 1563, the mode LO1, next from RH¼ 6785, a new oscillatory oblique

mode ObO, followed from RH¼ 8957 by the odd stationary mode LS2 and finally from RH¼ 11020 is the even stationary mode LS1. Note that LS1 drops at

RHC¼ 12998. Two codimension two points appear from the competition between stationary and oscillatory modes and are located at around RH¼ 1563 and

RH¼ 8957, respectively. In (b), (c), and (d), critical wavenumber, frequency of oscillation, and angle of propagation of the perturbation, respectively, are pre-

sented. Streamlines data are in the order (RH, RVC, aC, rC): TS (1000, 3319.29, 2.9, 0), LO1 (5000, 12646.39, 2.2, 56.68), ObO (8000, 24448.55, 2.4, 107.54) at

64�, LS2 (10000, 24583.05, 7.8, 0), LS1 (12000, 10575.26, 8.2, 0), and LS1 (12998.04, 0, 8.3, 0).
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Among the properties of the eigenfunctions30 that of

symmetry is very important. The symmetry is reflected in the

parity of the functions. An arbitrary function f(z) can be

decomposed into the sum of two functions of definite parity,

even and odd with respect the origin.

The terms (z2� 1/4)2z2(i� 1), with i an integer (see

Eq. (15)), and the cosines of odd degree fcos(pz),

cos(3pz), …g are even functions symmetric about the origin

(Eqs. (16) and (17)). The terms (z2 – 1/4)2z2i� 1, with i an in-

teger, and the sines of even degree fsin(2pz), sin(4pz), …g
are odd functions antisymmetric about the origin.

As can be seen, Eqs. (9) and (11) of the basic flow and

temperature fields are odd functions of z. In Eqs. (12)–(14) of

the perturbation appear the basic velocity (odd), its first deriv-

ative (even), its second derivative (odd), and the first deriva-

tive (even) of the basic temperature. With these symmetry

characteristics, it is possible to prove that the equations for

longitudinal disturbances (k¼ 0, l¼ a) are symmetric or anti-

symmetric if w, u, and h are symmetric or antisymmetric,

respectively. The reason is that, only in this case, the coeffi-

cients of the differential equations have even parity. There-

fore, for the longitudinal disturbances, it is not necessary to

combine even and odd solutions.3 In order to calculate, the

even longitudinal mode only the even functions and for the

odd longitudinal mode only the odd functions of Eqs.

(15)–(17) are required, respectively. Note that for all other

orientations the even and odd modes remain coupled and the

complete expressions in Eqs. (15)–(17) must be used.

The symmetries with respect to z¼ 0 of these modes can

be observed clearly by means of the convection cells stream-

lines of the longitudinal modes. For instance, when Pr¼ 1 in

Fig. 6(a), the mode Ls2 shows antisymmetry (odd parity).

Besides, the modes Lo1 and Ls1 are symmetric (both have

even parity). For the transverse and oblique modes, there

is no symmetry, as can be seen from the complete Eqs.

(12)–(14) and from the corresponding streamlines of the

cells shown in Figs. 1(a), 2(a), 5(a), and 6(a).

As discussed before, the curves of criticality present codi-

mension-two points at different magnitudes of RH. In the figures,

other curves above the first unstable ones present codimension-

two points (see Figs. 1(a) and 2(a)); however, they are not impor-

tant from the point of view of the linear theory. Only those

occurring between critical curves are of interest and were dis-

cussed above. Note that all the curves above the critical in the

figures are drawn as reference in order to understand their behav-

ior before they become the first unstable when Pr increases.

VI. CONCLUSIONS

In this paper, new results of the problem of natural con-

vection under an inclined temperature gradient have been

presented. All the results calculated with the improved

Galerkin method have been checked with those in the litera-

ture related with a horizontal temperature gradient. Besides,

the results were also checked using a 5th order in the approx-

imation of the Galerkin method. That is, ten terms (5 even

and 5 odd) of the expansion of the variables were used. The

broadening of the range of RH in comparison with that used

by Nield21 lead to the interesting results presented here for

the first time. The dominant mode for Prandtl numbers in the

range 0.026 	 Pr 	 0.1364 is the transversal stationary. A

codimension two point, due to the competition between sta-

tionary and oscillatory modes, appears at Pr¼ 0.1364 for

RVC¼ 0, where the curves of TS and LO1 touch each other for

the first time. The presence of a vertical temperature gradient,

represented by RV, promotes the appearance of this codimen-

sion two point for all the Prandtl numbers in the range

0.1364<Pr 	 1. This codimension two point starts to appear

due to the increase with Pr of the stabilizing bump in the

curve of TS which eventually allows the mode LO1 to be the

first unstable one. The same behavior of this two curves fol-

lows until a critical value of Pr is reached after which their

slopes change and it is found that they do not drop to RV¼ 0

in the range of RH investigated. This critical value of Pr for

TS is different from that of LO1. For TS, it is nearly Pr¼ 0.4

(here corrections are given to the work of Kuo et al.7,8) and

for LO1, it is approximately Pr¼ 0.46. These two Prandtl

numbers are very important because for magnitudes above

them, the rapid growth of TS and LO1 with RH is determinant

for the appearance of other modes as the first unstable ones in

the instability. However, before the change of slope of LO1

occurs, there is a Prandtl number after which the new oblique

oscillatory mode starts to appear. With a further increase of

Pr, this mode is able to intersect the curve of LS1 producing

another new codimension two point. This codimension two

point still appears until a Prandtl number between 0.5 and 1

where another new codimension two point appears at the

cross point between the oblique oscillatory mode and the odd

mode LS2 which now appears as the first unstable one in a

range of RH. This mode LS2 is ignored in the case of vertical

temperature gradient alone (RH¼ 0) due to its very high sta-

bility. However, due to the strong stabilizing effect of RH on

the different modes of the instability, this mode is now able

to be the first one to destabilize in a range of RH.

The streamlines of the convection cells for representative

magnitudes of RH and RVC have been included in the figures.

With them, it is possible to understand physically the qualita-

tive and quantitative changes of the cells under the influence

of the different parameters involved in the system of equa-

tions. The important effect of the basic temperature profile on

the structure of the convection cell is clear when the maxi-

mum and minimum have a large enough temperature differ-

ence with respect to the walls at large RH. With this, it was

shown that it is possible to excite convection modes not seen

before like the odd LS2 mode (two cells) and the harmonic of

the even LS1 mode (three cells). These results are new in the

presence of an inclined temperature gradient.

Detailed calculations for the Prandtl numbers larger than

Pr¼ 1 are in progress and are not presented here. Our hope

is to find new critical modes. However, it is also of interest

to follow the oblique oscillatory mode and to find out the

maximum Prandtl number where it can appear as the first

unstable one. This requires far more careful calculations.
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