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a b s t r a c t

Results for the linear thermoconvective stability of a layer of viscoelastic Maxwell fluid are presented. The
stability problem is characterized by taking into account the lower and upper wall thermal conductivities
as well as their thicknesses. This allows more realistic theoretical boundary conditions. A system consist-
ing of a horizontal infinite Maxwell fluid layer confined between two parallel walls perpendicular to grav-
ity is considered. The critical Rayleigh number Rc, the frequency of oscillation xc and the wavenumber kc

were determined for fixed values of the relaxation time constant F and the Prandtl number Pr. The results
are given for a range of wall thermal conductivities and thicknesses. Analytical and numerical solutions
were calculated. Some unexpected results were found in comparison to those of the Newtonian fluid
where the criticality curves become more unstable when the conductivities of the walls change from very
good conductors to very bad conductors.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Thermal convection of viscoelastic fluids may occur in many
experimental set-ups and technological applications such as mate-
rial processing, food and chemical industries. A particular area of
research of growing interest where hydrodynamics of viscoelastic
fluids is involved is that of the flow properties of biomolecules.
In manipulation of biomolecules like DNA, for genome analysis
and other applications, problems related to hydrodynamics arise
and the theory of viscoelastic fluids can be used. Some efforts on
this matter have been done since many years ago such as that of
Bowen and Zimm [1] who determine some viscoelastic properties
of DNA.

Thermal convection appearing in aqueous suspensions of DNA
which behave as viscoelastic fluids (see [2] for example) is a very
complex subject. This is due to a number of physical mechanisms
that contribute or compete to set in convective cells in the suspen-
sion. Krishnan et al. [3] developed a device where Rayleigh convec-
tion is relevant to perform thermally activated chemical reactions
such as polymerase chain reaction (PCR). In this case Krishnan et al.
[3] proposed to replace the conventional thermocyclers by
Rayleigh convection cells that make the device very simple and
of easily assembly in any laboratory. Braun and Libchaber [4]
ll rights reserved.
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proposed an efficient mechanism for trapping DNA in solution
through the interaction of thermophoresis and thermoconvection.
A study of the PCR in thermal convection for replication of DNA
was conducted by Braun et al. [5] and by Braun [6]. In a more re-
cent paper the interaction of thermophoresis and thermoconvec-
tion have been studied along with PCR for replication of DNA by
Mast and Braun [7]. Theoretical advances on the hydrodynamics
of this suspensions which exhibit viscoelastic behavior have been
conducted by Sri Krishna [8] and Laroze et al. [9,10].

The aim of this paper is to study how the thermal properties and
geometrical nature of the walls influence the hydrodynamic stabil-
ity of a viscoelastic Maxwell fluid layer. The scenario we propose
here has not been considered nor discussed before. The theory
developed in this work may be significant to complement and
understand the phenomena appearing in the applications.

The linear thermoconvective stability of a viscoelastic Maxwell
fluid layer heated from below is investigated. The constitutive
equation for the Maxwell fluid is used. It has a relaxation time that,
when large, allows for important elastic properties. The physical
problem investigated here is to understand the effect the thermal
conductivity and thickness of the walls has on the instability. In
the case of natural convection in a Newtonian fluid, this influence
was investigated by Metcalfe and Behringer [11], Cerisier et al. [12]
and Howle [13].

Natural convection in viscoelastic Maxwell fluids was first
investigated by Vest and Arpaci [14] and in an Oldroyd fluid layer
by Takashima [15]. In both papers, the temperature boundary con-
ditions are of fixed temperature at the walls.
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Nomenclature

DL ratio of thicknesses (lower wall/fluid)
DU ratio of thicknesses (upper wall/fluid)
dF depth of fluid layer
dL thickness of lower wall
dU thickness of upper wall
F relaxation time
g acceleration due to gravity
KL thermal conductivity of the lower wall
KF thermal conductivity of the fluid
KU thermal conductivity of the upper wall
k wavenumber
Pr Prandtl number
R Rayleigh number
T�F dimensional fluid temperature profile
T�L dimensional lower wall temperature profile
T�U dimensional upper wall temperature profile
TF dimensionless fluid temperature profile
TL dimensionless lower wall temperature profile
TU dimensionless upper wall temperature profile
TBL temperature below the lower wall

TAU temperature above the upper wall
w velocity perturbation
XL ratio of thermal conductivities (fluid/lower wall)
XU ratio of thermal conductivities (fluid/upper wall)
z⁄ dimensional vertical coordinate
z dimensionless vertical coordinate

Greek symbols
a volumetric expansion coefficient of the fluid
h temperature perturbation
k relaxation time, s
j thermal diffusivity of the fluid, cm2 s�1

m kinematic viscosity, cm2 s�1

q fluid density, g cm�3

x frequency of oscillation

Subscripts
c critical value
L lower
U upper
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The fixed heat flux boundary condition at the walls was inves-
tigated by Kolkka and Ierley [16] for natural convection of a visco-
elastic Oldroyd fluid layer heated from below. Martínez-Mardones
and Pérez-García [17] reported results for the stationary and oscil-
latory convection and a codimension-two point for the case of
fixed temperature at the walls. Several advances in the study of
convection in viscoelastic fluids have been made by Rosenblat [18],
Park and Lee [19,20], Martínez–Mardones et al. [21], Dávalos-Orozco
and Vázquez Luis [22], Martínez–Mardones et al. [23–26] and more
recently by Li and Khayat [27]. Some other advances in coupled
buoyancy and capillary thermoconvection in viscoelastic fluids
have also been made by Dauby et al. [28], Lebon et al. [29] and
Parmentier et al. [30]; and earlier for capillary thermoconvection
alone by Getachew and Rosenblat [31].

The system consists of a horizontal fluid layer between two par-
allel walls which are perpendicular to gravity. The system is char-
acterized by nondimensional parameters such as: the Rayleigh
number R, the Prandtl number Pr, the relaxation time constant F,
the thermal conductivity ratios of the fluid to the lower and upper
walls (XL,XU), the thickness ratios of the lower and upper walls re-
spect to that of the fluid layer (DL,DU), the frequency of oscillation x
and the perturbation wavenumber k. The results presented here
are of great importance because the physical and geometrical
properties of the walls are taken into account. This allows the the-
ory to better simulate the real experimental conditions.

The paper is organized as follows. In Section 2 the formulation
of the problem is given including the governing equations, bound-
ary conditions as well as nondimensional parameters of the prob-
lem. In Section 3 a solution to the eigenvalue problem using
analytical techniques and numerical methods is presented. Finally,
a discussion of the results is presented in the last section.
2. Formulation of the problem

Consider the natural convection in a viscoelastic Maxwell fluid
layer confined between two infinite horizontal walls perpendicular
to gravity. The lower and upper walls have thicknesses (dL,dU) and
thermal conductivities (KL,KU), respectively. The upper surface of
the lower wall and lower surface of the upper wall are located at
z = 0 and z = 1, respectively. The fluid layer has density q, dynamic
viscosity qm (with m being the kinematic viscosity), thermal con-
ductivity KF and thickness dF.

The equations of momentum and energy of the incompressible
Maxwell fluid are linearized and perturbed (see [14,15]). Next, the
rotational operation is taken twice in the momentum equation to
obtain the following system of coupled equations for the
perturbations

1þ F
@

@t

� �
1
Pr

@

@t
r2w� Rr2

?h

� �
¼ r4w ð1Þ

@

@t
�r2

� �
h ¼ w ð2Þ

where w is the fluid velocity and h is the temperature. The dimen-
sionless parameters in Eqs. (1) and (2) are F ¼ kj=d2

F the relaxation
time, Pr = m/j the Prandtl number and R ¼ agd3

F ðTBL � TAUÞ=
½mjð1þ DUXU þ DLXLÞ� the Rayleigh number. Dimensionless vari-
ables are obtained by using the following scales: dF for length,
d2

F=j for time, (TBL � TAU)/(1 + DUXU + DLXL) for temperature and
j/dF for velocity. Notice that TBL > TAU.

In the basic state there is no motion in the fluid and the heat
transport is only by conduction. Before perturbation, the main
temperature profiles for the fluid and walls are calculated from
the linear stationary heat diffusion equation d2T/dz⁄2 = 0. These
dimensional solutions satisfy the following thermal boundary con-
ditions. The temperature is constant over the outer surface of each
wall, that is, T�L ¼ TBL at z⁄ = �dL and T�U ¼ TAU at z⁄ = dF + dU. They
satisfy the continuity of temperature and heat flux at the interface
of the fluid with each wall at z⁄ = 0 and dF, respectively. The solu-
tions, in dimensional form, are:

T�F ¼ �
ðTBL � TAUÞz�

dFð1þ DUXU þ DLXLÞ
þ TBL �

ðTBL � TAUÞDLXL

ð1þ DUXU þ DLXLÞ
ð3Þ

T�L ¼ �
ðTBL � TAUÞXLz�

dFð1þ DUXU þ DLXLÞ
þ TBL �

ðTBL � TAUÞDLXL

ð1þ DUXU þ DLXLÞ
ð4Þ

T�U ¼ �
ðTBL � TAUÞXUz�

dFð1þ DUXU þ DLXLÞ
þ TBL �

ðTBL � TAUÞð1þ DLXL � XUÞ
ð1þ DUXU þ DLXLÞ

ð5Þ

Lets assume that Ti ¼ T�i � TAU
� �

ð1þ DUXU þ DLXLÞ= TBL � TAUð Þ,
where the subscript i stands for (F,L,U). Then, in nondimensional
form they can be rewritten as
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TF ¼ �zþ 1þ XUDU ð6Þ
TL ¼ �XLzþ 1þ XUDU ð7Þ
TU ¼ XUð�zþ 1þ DUÞ ð8Þ

For the perturbed governing equations a normal modes
separation in the form of [w,h] = [W(z),H(z)]exp[i(kxx + kyy) + rt]
is considered. kx and ky are the x and y-components of the wave-

number vector with magnitude k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
. r is a complex

parameter whose real part rR and imaginary part x are the growth
rate and the frequency of oscillation, respectively. Thus after sub-
stitution in Eqs. (1) and (2) we obtain

ð1þ FrÞ r
Pr

d2

dz2 � k2

 !
W � Rk2H

" #
¼ d2

dz2 � k2

 !2

W ð9Þ

r� d2

dz2 � k2

 !" #
H ¼W ð10Þ

Dimensionless boundary conditions including the properties of
the walls (see [12] for example) are

W ¼ DW ¼ 0 at z ¼ 0;1
d
dz
� q

XL tanh qDL

� �
H ¼ 0 at z ¼ 0

d
dz
þ q

XU tanh qDU

� �
H ¼ 0 at z ¼ 1

ð11Þ

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ r

p
.

3. Analytical and numerical solutions

In this section the conditions for the onset of convection are
determined by using the analytical Galerkin method (see [32] for
more details) to solve the eigenvalue problem posed in the system
of Eqs. (9) and (10) subject to the boundary conditions Eq. (11).
Although this is an approximate method, it has very high precision.
Besides, it gives the possibility to obtain an analytical expression
for the Rayleigh number R. Consider the following expansion of
W which already satisfies the boundary conditions

W ¼
X1
n¼0

An½zðz� 1Þ�2þn ð12Þ

Now, if the proposed expansion of H is

H ¼
X1
n¼0

AnHn ð13Þ

then, after substitution of W of Eq. (12) and H of Eq. (13) into Eq.
(10), Hn is the solution of the following differential equation

r� d2

dz2 � k2

 !" #
Hn ¼ ½zðz� 1Þ�2þn ð14Þ

subjected to proper boundary conditions as given in Eq. (11). In this
way by solving the differential equation Eq. (14) Hn can be easily
calculated. Hn is not shown here and can be obtained from the
authors upon request. Next, Eq. (9) is multiplied by W and inte-
grated in the range z = 0 to z = 1, to get

0 ¼
Z 1

0
Wm

d2

dz2 � k2

 !
r
Pr

1þ Frð Þ � d2

dz2 � k2

 !" #
Wn dz

�����
� 1þ FrÞRk2

Z 1

0
WmHn dz

� ���� ð15Þ

where use of Eqs. (12) and (13) have been made as well as some
simplifications. Determinant Eq. (15) calculated with help of the
software Maple, is the solvability condition from which the
eigenvalue R is computed. The first approximation of R, corresponding
to the element (0,0) of the matrix in the determinant Eq. (15), can
be easily calculated. From here on, it is supposed that the walls have
the same properties and geometry, that is XL = XU = X and
DL = DU = D. Then the result is:

R ¼
q11 coth q q2 þ B2

� 	
tanh qþ 2qB

h i
C1 þ ð1þ FrÞ k2 þ 12

� 	
rPr�1

h i
k2ð1þ FrÞ C2B2 þ C3Bþ C4

� 	
ð16Þ

where

B ¼ q
X tanh qD

C1 ¼ k4 þ 24k2 þ 504

C2 ¼ qðq8 � 12q6 þ 504q4 þ 30240q2 þ 362880Þ

� 5040 tanh
q
2
ðq2 þ 12Þ2

C3 ¼ 2q6ðq4 � 12q2 þ 504Þ coth qþ 60480q2ðq2 þ 12Þcschq

� 5040qðq2 � 6qþ 12Þðq2 þ 6qþ 12Þ
C4 ¼ q3ðq8 � 12q6 þ 504q4 � 30240q2 � 362880Þ

þ 181440q4 coth
q
2

The Rayleigh number given in Eq. (16) is a result that have not
been reported before which includes k, X and D, without any
restriction in their magnitudes. A second order estimate of R ob-
tained from Eq. (15) was performed numerically.

The critical values for the Rayleigh number Rc, the wavenumber
kc and the frequency of oscillation xc were obtained as follows. The
Rayleigh number in Eq. (16) is complex and the frequency which
makes the imaginary part of R zero is used in the real part to cal-
culate the marginal R for given D, X, Pr, F and k. In this way, k is var-
ied until a minimum of R is found which is called the critical value
Rc with corresponding kc and xc. Notice from Eq. (16), that q is the
argument of hyperbolic functions and, as explained above, it has
the form q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ r

p
. Therefore, it is not possible to give an expli-

cit solution of the frequency of oscillation from the imaginary part
of R in Eq. (16).

Results obtained by the Galerkin method were verified with a
shooting numerical method and the agreement is very good. In or-
der to apply this method, the Eqs. (9) and (10), subject to the
boundary conditions Eq. (11) were integrated by a Runge–Kutta
method while the resulting eigenvalue problem for R was solved
by shooting various trials to satisfy the boundary conditions at
z = 1. For given D, X, Pr, F and k, the R and x which make zero
the real and imaginary parts of a complex determinant of the trials
are the marginal eigenvalues [33].

It is possible to obtain an expression of R in Eq. (16) in the limit
of X ? 0, which corresponds to the fixed temperature boundary
condition. In this limit only the term corresponding to B2 will sur-
vive. Therefore, the equation becomes:

R ¼ q11½C1 þ ð1þ FrÞðk2 þ 12ÞrPr�1�
k2ð1þ FrÞC2

ð17Þ

When F = 0 the newtonian case is recovered and the frequency is
zero. The limit Pr ? 0 can not be taken because it is a singularity
corresponding to viscosity zero (inviscid limit). However, the limit
Pr ?1 gives another expression for the Rayleigh number. That is:

R ¼ q11 coth q½ðq2 þ B2Þ tanh qþ 2qB�C1

k2ð1þ FrÞðC2B2 þ C3Bþ C4Þ
ð18Þ

By considering the fixed temperature boundary condition at
both walls, in the limit of small X, it was possible to compare the
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critical values Rc, kc and xc for fixed values of F with those reported
by Vest and Arpaci [14] in their Table I, Takashima [15] in his Table
I, Sokolov and Tanner [34] in their Table I and Martínez-Mardones
and Pérez-García [17] in their Fig. 5. The agreement was very good.
On the other hand, assuming the fixed heat flux boundary condi-
tion at both walls, in the limit of large X, the critical values Rc, kc

and xc for fixed values of F were also compared with those re-
ported by Kolkka and Ierley [16] in their Tables I and II. In this case
too, the agreement was excellent.

For fixed Pr = 1 curves of Rc, kc and xc against X in the two
limiting cases of small D = 0.1 and large D = 100 are shown in
Fig. 1(a)–(c) for F = 0.1 and in Fig. 1(d)–(f) for F = 100, respectively.
Notice that the curves corresponding to D < 0.1 are very near to
that of D = 0.1. The same can be said for the curves corresponding
to D > 100. It can be seen in Fig. 1(a) that for Pr = 1 and F = 0.1 a
competition exists between oscillatory and stationary convection
(a)

(b)

(c) (

(

(

Fig. 1. Curves for F = 0.1: (a) Rc, (b) kc and (c) xc against X, and curves for F = 100: (d) R
D = 100 by continued lines.
to destabilize the system. The change from oscillatory to stationary
convection, at the codimension two point as stated by Martínez-
Mardones and Pérez-García [17], appears at intermediate values
in the range of X. This very interesting result shows that at Pr = 1
the convection can be stationary and the viscoelastic Maxwell fluid
behaves as Newtonian. The competition between these two modes
comes to an end at approximately Pr = 1.4 when convective mo-
tions set in only as oscillatory, as shown in Fig. 3. After the codi-
mension two point the stationary convection destabilizes with X
monotonically and the results agree with those of Cerisier et al.
[12]. In the limit of fixed temperature boundary condition
(X� 1) at both walls the following critical values were found:
Rc = 870.5590, kc = 4.92 and xc = 15.09 [14,15,34]; while in the lim-
it of fixed heat flux boundary condition (X� 1) at both walls it was
found: Rc = 720.0183, kc = 0.02 and zero frequency xc [12]. The codi-
mension two points for D = 0.1 and D = 100 are located approximately
f)

e)

d)

c, (e) kc and (f) xc against X. Here, Pr = 1, D = 0.1 are indicated by dashed lines and
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at X = 50 and X = 8, respectively. An unexpected behavior was
found in the curves of xc against X for F = 0.1 and F = 100 shown
in Fig. 1(c) and (f). That is, besides the relative minimum that the
xc has at the limit of fixed heat flux boundary condition, there is
an absolute minimum at an intermediate value of X. We checked
the curves for different values of Pr and found that this absolute
minimum disappears only as Pr reaches Pr = 10. These results
obtained by the Galerkin method were confirmed with the
shooting method as well. For Pr = 1 and F = 100 in the limit of fixed
temperature boundary condition at both walls the following
critical values were found: Rc = 0.4589, kc = 3.41 and xc = 0.6198
[14,15,34]; while in the limit of fixed heat flux boundary condition
at both walls it was found: Rc = 0.2372, kc = 1.57 and xc = 0.6132
[16]. The curves in Fig. 1(d) for F = 100 show that the system
becomes more unstable as X increases and that in this case
convective motions are only oscillatory.
(a) (d

((b)

(c) (

Fig. 2. Curves for F = 0.1: (a) Rc, (b) kc and (c) xc against X, and curves for F = 100: (d) R
D = 100 by continued lines.
For fixed Pr = 10 curves of Rc, kc and xc against X in the two
limiting cases of small D = 0.1 and large D = 100 are shown in
Fig. 2(a)–(c) for F = 0.1 and in Fig. 2(d)–(f) for F = 100, respectively.
For the case of Pr = 10 and F = 0.1 the value of (Rc,kc,xc) increases
with X. Here X has a stabilizing effect. Notice that this behavior is
in contrast with that of the curves in the previous figures and in
the next one. In Fig. 1(a) the stabilizing effect is incipient before
the codimension two point appears. In the limit of fixed tempera-
ture boundary condition at both walls the following critical values
were found: Rc = 226.7151, kc = 7.26 and xc = 76.2593 [14,15,34];
while in the limit of fixed heat flux boundary condition at both
walls it was found: Rc = 233.7246, kc = 7.61 and xc = 79.1547
[16]. For the case of Pr = 10 and F = 100 the value of (Rc,kc,xc) de-
creases with X. In the limit of fixed temperature boundary condi-
tion at both walls the following critical values were found:
Rc = 4.6230 � 10�2, kc = 3.44 and xc = 1.9625 [14,15,34]; while in
)

e)

f)

c, (e) kc and (f) xc against X. Here, Pr = 10, D = 0.1 are indicated by dashed lines and



Fig. 3. Curves of Rc against X for fixed F = 0.1. Curves for Pr = 1 and Pr = 1.4 correspond to oscillatory convection and curves without Pr indicated correspond to stationary
convection. Dashed line indicates D = 0.1 and continued line indicates D = 100.
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the limit of fixed heat flux boundary condition at both walls it was
found: Rc = 2.8520 � 10�2, kc = 2.31 and xc = 1.9243 [16].

A more explicit and clear presentation of the competition
between stationary and oscillatory convection given in Fig. 1(a)
is shown in Fig. 3. In the curves corresponding to oscillatory
convection presented in Fig. 3 the elastic parameter is F = 0.1.
There, the two pairs of curves of criticality for Pr = 1 and Pr = 1.4
correspond to oscillatory convection while the other two curves
correspond to stationary convection. Notice that the codimension
two points arising for Pr = 1 and different D’s, disappear as Pr
increases from Pr = 1 to approximately Pr = 1.4.

On the other hand note that for decreasing values of Pr convec-
tive motions set in first as oscillatory when X is small and they set
in first as stationary when X is large. It has also been found, numer-
ically, that if F increases then x decreases suggesting that there is a
balance between these two parameters.

It should be noted from Figs. 1 and 2 that in the limiting cases of
small and large X both curves of D = 0.1 and D = 100 for Rc, kc and
xc collapse into one curve, as expected. This means that, also for
the viscoelastic fluid (see [12]) the thickness of the walls have no
influence on the onset of convection in these regions of X
[14,15,34,17,16]. Notice that not always Rc approaches the value
of 720 when X ?1 (see [35–37]). This means that even with the
fixed heat flux boundary condition at the walls, stationary convec-
tion not always can occur in a viscoelastic Maxwell fluid [16], and
under certain conditions, the convective motions can set in as
oscillatory convection. The separation between every pair of curves
at moderate values of X in Figs. 1 and 2 is clearly the effect of the
difference between D = 0.1 and D = 100. In that region the thick-
ness of the walls has important influence on the instability.

Curves presented in Figs. 1 and 2 show the role played by X.
They show how X bridges the two limiting cases already studied
since many years ago: perfect conducting walls and perfect insu-
lating walls. It have been found in this study that for fixed Pr and
growing X, convection cells appear faster in the fluid layer when
F = 0.1 than when F = 100. The influence of the geometrical nature
of the walls is noticeable across all the curves shown in Figs. 1 and
2 although this effect is magnified for the curves corresponding to
(Pr = 1,F = 0.1) and (Pr = 10,F = 0.1).
It is of interest to give asymptotic solutions of R and x of the
convection problem to compare with the above given numerical
results. These approximations were done using a Galerkin ap-
proach different from that of Chandrasekhar. The procedure is ex-
plained in Appendix A. Appendixes B and C show the results of
asymptotic calculations based on the results of the Galerkin meth-
od presented in Appendix A. There, it can be found different
asymptotic approximations as for Pr ?1, F ? 0, F ?1 and for
two different limits of D ? 0 and D ?1. The approximate results
for R and x agree very well with the numerical calculations in their
respective limit of approximation.
4. Conclusions

Very interesting results were found when the effects of the
thermal conductivities and thicknesses of the bounding walls were
taken into account in the convection of a viscoelastic Maxwell
fluid. The case considered here is that of a system having walls
with the same properties and geometry. The Prandtl numbers con-
sidered were Pr = 1, 10 and two representative wall relaxation
times were taken into account, that is, F = 0.1, 100.

In the case of Pr = 1, it was shown that, in both cases of F = 0.1
and F = 100, the ratio of thermal conductivities X destabilizes the
system. Notice that the effect of the thickness of the wall is more
important here when F = 0.1 than when F = 100. A very interesting
situation occurs at F = 0.1 due to the competition between station-
ary and oscillatory convection. This last interesting situation can be
observed in Fig. 1(c) in the curves of xc vs. X when xc drops to zero
when X increases; and in Fig. 3 where it is shown that oscillatory
motions dominate the instability of the system as Pr increases to
approximately Pr = 1.4. At the codimension two points, corre-
sponding to different values of D, the convection becomes station-
ary. This is shown in the curves of Fig. 1(a) for Rc vs. X, as a sudden
drop of the critical Rayleigh number, and a similar behavior is ob-
served in the curves for kc vs. X of Fig. 1(b) as well.

When Pr = 10 and F = 0.1 the relative effect of the thickness of
the wall is reduced considerably. When F = 100 the magnitudes
of the critical values are so small that it is difficult to notice an
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important effect of the thickness of the walls. It was found that,
depending on the value of the relaxation time F, the ratio of ther-
mal conductivities X plays a different role. When F is small X stabi-
lizes and when F is large X destabilizes.

These results are in contrast with those for stationary convec-
tion in a Newtonian fluid [11,12] where the system becomes more
unstable when X increases.
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Appendix A. Another approach with the Galerkin method

Here, another approach to the Galerkin method [38] is exposed.
With this Galerkin method a more simple and tractable asymptotic
approximation is available to the present eigenvalue problem. Due
to the resulting magnitudes of (R,x,k,Pr) (see Figs. 1 and 2), it was
not possible to obtain asymptotic expressions for R and x from the
formula given in Eq. (16). Besides, the presence of q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ r

p
in

the argument of several hyperbolic functions makes it difficult to
obtain asymptotic expansions.

Thus, the process to solve the eigenvalue problem posed in the
system of Eqs. (9) and (10) subject to the boundary conditions Eq.
(11) is to consider the following trial functions for W and H satis-
fying the boundary conditions Eq. (11),

W ¼
X1
n¼0

En½zðz� 1Þ�2þn ðA:1Þ

H ¼ G0ð1þ Bz� Bz2Þ þ
X1
n¼1

Gnznþ1 z� nþ 2þ B
nþ 1þ B

� �
ðA:2Þ

After substitution of W and H given in Eqs. (A.1) and (A.2) in the
system of Eqs. (9) and (10) the residuals are formed and they are
made orthogonal to the respective trial functionsR 1

0 WmL1Wndz �ð1þ FrÞRk2 R 1
0 WmHn dzR 1

0 HmWn dz �
R 1

0 HmL2Hn dz

�����
����� ¼ 0 ðA:3Þ

where the operators L1 and L2 are defined as

L1 ¼
r
Pr
ð1þ FrÞ d2

dz2 � k2

 !
� d2

dz2 � k2

 !2

L2 ¼ r� d2

dz2 � k2

 !

Determinant Eq. (A.3) is a solvability condition from which R
can be calculated. The first and second approximation of R can be
easily calculated from the determinant Eq. (A.3) and although
these are not presented here they can be obtained from the authors
upon request. In the following sections these approximations are
used to get asymptotic expressions for R and x.

Appendix B. Asymptotics for Pr ? ‘

In this section asymptotic expressions were calculated for R and
x in the case of Pr ?1. Some ideas of Kolkka and Ierley [16] were
used in the expansions of R and x. Note that the formulas are large
and complex because they include the conductivities ratio, not re-
ported before for this viscoelastic problem.

As mentioned above two further approximations for the thick-
nesses ratio were made. These affect the hyperbolic function
appearing in the Biot number. Thus for D ? 0 the Biot number is
approximated as B = (XD)�1 and for D ?1 it is B = qX�1,
respectively.

By using the first order approximation of the Galerkin method
Eq. (A.3) some asymptotic expressions of R and x were calculated.

B.1. Case of Pr ?1, F ? 0 and D ? 0

Here, use is made of the following expansion scheme

x2 ¼ x2
0Pr

3
2 þx2

1Pr þx2
2Pr

1
2 þ Oð1Þ

k ¼ k0Pr
1
4 þ O Pr�

3
4

� 	
and the resulting expressions are

R ¼ C5
C6

F2 þ
1

Fk2
0

ffiffiffiffiffi
Pr
p C6Fk4

0 þ 14þ 320XDþ 2940X2D2
h"

þ 12600X3D3 þ 21600X4D4
i

þ 1

Fk4
0Pr

22þ 400XDþ 2820X2D2 þ 9000X3D3 þ 10800X4D4
� 	h

� Fk4
0 þ C6k4

0 þ 364þ 7440XDþ 62640X2D2

þ 259200X3D3 þ 453600X4D4
i#
þ O

1

Pr
3
2

� �

x2 ¼ 1
1þ 30X2D2 þ 10XD

C6
k2

0Pr
3
2

F
þ ð12F � 1ÞC6

Pr

F2

"

þ 360C6F � 2 1þ 40XDþ 540X2D2 þ 2700X3D3 þ 5400X4D4
� 	h i

�
ffiffiffiffiffi
Pr
p

F2k2
0

� C6 k4
0 þ 4320F

� 	
þ 340þ 6480XDþ 50400X2D2

h

þ 194400X3D3 þ 324000X4D4
i 1

k4
0F2

#
þ O

1ffiffiffiffiffi
Pr
p
� �
B.2. Case of Pr ?1, F ? 0 and D ?1

Here, the expansion scheme was modified in order to include
the effect of the conductivities ratio X as follows

x2 ¼ x2
0Pr þx2

1Pr
1
2 þx2

2 þ O Pr�
1
2

� 	
k ¼ k0 þ OðPr�1Þ

and the resulting expressions are

R ¼ 1498

675k2
0F

3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4

0 þ 24k2
0 þ 504

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12þ k2

0

q
ffiffiffiffiffi
Pr
p

þ
2996X

ffiffiffi
2
p

k6
0 þ 36k4

0 þ 792k2
0 þ 6048

� 	
2025k2

0 k4
0 þ 24k2

0 þ 504
� 	3

4
12þ k2

0

� 	1
4
F

5
4Pr

3
4 1þ Xð Þ

þ O
1
Pr

� �

x2 ¼
k4

0 þ 24k2
0 þ 504

� 	
Pr

12þ k2
0

� 	
F

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4

0 þ 24k2
0 þ 504

� 	
12þ k2

0

� 	
F3

vuuut ffiffiffiffiffi
Pr
p

þ O 1ð Þ

where C5 and C6 are coefficients that depend on the parameters
(X,D), and are defined as follows

C5 ¼
28

3ð3þ 14XDÞ2ð1þ 30X2D2 þ 10XDÞ
C6 ¼ 1þ 20XDþ 160X2D2 þ 600X3D3 þ 900X4D4
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B.3. Case of Pr ?1, F ?1 and D ? 0

This case was calculated independently at a second order
approximation with the Galerkin method Eq. (A.3). It is necessary
to mention that the first order approximation is not good in this
limit. For both cases D ? 0 and D ?1 it was considered first a
two term expansion with respect to Pr ?1 and later the following
expansion with respect to F ?1 was used

x2 ¼ x2
0F�1 þx2

1F�2 þ OðF�3Þ

k ¼ k0 þ OðF�1Þ

Thus, for D ? 0 we have

R ¼ C7 X2D2 þ XD
3
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30
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5k8

0 þ 1056k6
0 þ 104544k4
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B.4. Case of Pr ?1, F ?1 and D ?1

Here, the expressions for D ?1 are
R ¼ C8 5k8
0 þ 1056k6
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� 	h

� 14580k4
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where C7 and C8 are coefficients that depend on the parameters
(F,k0,X,D), and are defined as follows
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The asymptotic results of this appendix are in very good agreement
with those of the numerical analysis.
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Appendix C. Asymptotics for F ? ‘

In this limit, the second order Galerkin approximation Eq. (A.3)
was necessary. Notice that the approximations presented in this
appendix are valid for any Prandtl number. For both cases of
D ? 0 and D ?1 the following expansion scheme for F ?1
was considered

x2 ¼ x2
0F�1 þx2

1F�2 þ OðF�3Þ

k ¼ k0 þ OðF�1Þ
C.1. Case for D ? 0

The expressions for any Prandtl number are
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C.2. Case for D ?1

Here, for any Prandtl number, the solution is
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where C9, C10 and C11 are coefficients that depend on the parame-
ters (Pr,k0,X,D), and are defined as follows
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The results given in this appendix agree very well with those of the
numerical analysis.
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