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We obtain an analytic expression that allows to determine the static η and high-frequency η∞
viscosities as function of the volume fraction φ of a concentrated suspension of soft spherical
particles in a liquid of viscosity η0. The particles consist of a hard core of radius a covered
by a porous layer of thickness d. Suspensions of hard spheres and homogeneous porous parti-
cles are limiting cases of the model. The proposed expression incorporates the results for the
intrinsic viscosity obtained on the basis of a cell model [H. Ohshima, Langmuir 26, 6287 (2010)]
into a recently obtained relation for the effective viscosity of concentrated colloidal suspensions
[C. I. Mendoza and I. Santamaría-Holek, J. Chem. Phys. 130, 044904 (2009); J. Colloid. Interface
Sci. 346, 118 (2010)]. In this model, the correlations between the particles due to crowding effects
are introduced through an effective volume fraction φeff which is then used as integration variable
in a differential effective medium procedure. The final expression is simple, accurate, and allows to
collapse all the data in a universal master curve that is independent of the parameters characterizing
the system. The only difference between the static and high-frequency cases is that in the later case
φeff also incorporates hydrodynamic interactions arising from the so-called relaxation term. We
have tested the accuracy of our model comparing with experimental results for spherical polymeric
brushes and simulations for the high-frequency viscosity of homogeneous porous particles. In
all cases the agreement with the data is extremely good. © 2011 American Institute of Physics.
[doi:10.1063/1.3623472]

I. INTRODUCTION

The ability to tune the viscosity of suspensions of
colloidal particles plays a major role in many technological
applications, where the precise control of the flow properties
is essential. When particles are suspended in an homogeneous
isotropic fluid, the viscosity of the resulting suspension is
larger than the viscosity of the original liquid. In the case of
dilute suspensions of hard spherical particles, the viscosity
η(φ) as a function of the volume fraction φ of the particles
was first derived by Einstein1 and is given by the expression

η(φ) = η0

(
1 + 5

2
φ

)
, (1)

where η0 is the viscosity of the original fluid. Various
extensions of Eq. (1) to calculate the viscosity of dilute
suspensions of particles other than rigid spheres have been
proposed. Among them we can mention the case of solid
ellipsoidal particles,2 emulsions of spherical droplets,3 homo-
geneously porous rigid spheres,4–8 and uncharged spherical
soft particles.9

In particular, the reason to study soft particles stems from
the desire to explore the behavior of a number of complex
fluids composed of nonrigid structures such as polymerically
stabilized colloidal spheres,10 block copolymer micelles,11
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star polymers,12 hard spheres with a grafted polymer brush,13

dendritically branched polymers,14 and others. Additionally,
soft particles are particularly important for biological systems
because they can be a model for biological cells such as red
blood cells and bacteria.15

For nondilute systems, the suspension rheology is de-
termined by the interplay between the direct particle-
particle interactions and the solvent-mediated hydrodynamic
interactions.16 Their many body nature impose a formidable
difficulty for the calculation of rheological quantities such as
the shear viscosity of the system. In addition, the fact that
many particles are solvent-permeable to some extent com-
plicates the calculation. Thus, for concentrated suspensions,
simplifying strategies have been devised to include in an ap-
proximate way all these contributions. A very successful ap-
proach consists in treating the hydrodynamic interactions by
means of a recursive differential procedure in which particles
are progressively incorporated to the suspension while the di-
rect excluded-volume interactions due to crowding effects are
contained in an effective volume fraction φeff . This procedure
leads to an universal representation of all experimental results
in a master curve for η vs. φeff indicating that φeff is a nat-
ural variable for these systems.17 This differential effective
medium technique (DEMT) has been applied to suspensions
of hard spheres,17 emulsions of spherical droplets,18 suspen-
sions of arbitrarily-shaped hard particles,19 and suspensions
with power-law matrices20 with excellent results.
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The purpose of the present work consists in extend-
ing the previous recursive model to incorporate the results
for the intrinsic viscosity of soft particles recently obtained
utilizing a cell model.9 We also extend the formalism to
treat the case of infinite-frequency viscosity. In this case
we have found that φeff contains hydrodynamic interac-
tions arising from the so-called relaxation term, in addition
to the crowding effects. We compare the resulting expres-
sions with experimental data for the low-shear viscosity of
surfactant coated particles and with existing numerical sim-
ulations for the high-frequency viscosity of homogeneous
porous particles,16, 21 finding an excellent agreement in both
cases.

The paper is organized as follows. Section II describes
the model and introduces the basic equations for the calcula-
tion of η. In Sec. III we compare the results of our calculation
for the low-shear zero-frequency viscosity of concentrated
suspensions of soft spheres with other expressions.15 We test
our model with experimental data for sterically stabilized
particles in Sec. III A. In Sec. III B we extend our method
to the case of the high-frequency viscosity and use our
expressions to calculate the infinite-frequency viscosity
of porous particles and compare the results with recent
numerical simulations.16, 21 Finally, in Sec. IV we present our
conclusions.

II. SYSTEM AND BASIC EQUATIONS

For dilute suspensions, the viscosity η can in general be
written as

η(φ) = η0(1 + [η]φ), (2)

where [η] is the intrinsic viscosity, which is a single parti-
cle property that depends on factors such as shape and poros-
ity. Its calculation is in general difficult, however, recently,
Ohshima9 proposed a theory that allows to calculate [η] for
suspensions of soft particles. Its cell model is depicted in
Fig. 1 where a soft particle is modeled as a spherical hard
core of radius a coated with a surface soft layer of thickness
d. The soft layer may represent a grafted polymer brush22 as
represented in Fig. 1. Thus, the polymer-coated particle has an
inner radius a and an outer radius b = a + d. The cell model
assumes that each soft sphere is surrounded by a virtual shell
of outer radius c and the particle volume fraction is then given
by

φ =
(

b

c

)3

. (3)

The polymer segments are regarded as resistance centers dis-
tributed in the permeable polymer layer, exerting frictional
forces −γ u on the liquid flowing in the layer, where u is the
liquid velocity relative to the particle and γ is the frictional
coefficient. The result of this model is expressed in the fol-
lowing equation:9

[η] = 5

2

L2(λb, a/b)

L1(λb, a/b)
, (4)

FIG. 1. Schematics of a cell model for a suspension of soft spheres. A hard
core of radius a covered by a porous layer of thickness d that may represent
a grafted polymer brush. The total radius of the particle is b = a + d. The
spherical particle is surrounded by a virtual shell of radius c and the volume
fraction is φ = (b/c)3.

where L1(λb, a/b) and L2(λb, a/b) are given by

L1(λb, a/b) = −20(a/b)2

(λb)2
+

(
1 + 2

3
(a/b)5 + 30

(λb)4

− 30

(a/b)(λb)4
+ 10

(λb)2
+ 10(a/b)3

(λb)2

)

× cosh(λb − (a/b)λb)

+
(

1 + 4(a/b)5 + 30

(λb)4
− 30(a/b)

(λb)2

+ 10

(λb)2
+ 10(a/b)3

(λb)2

)
sinh(λb − (a/b)λb)

(a/b)λb
,

(5)

L2(λb, a/b) =
(

1 + 2

3
(a/b)5 + 30(a/b)3

(λb)4
− 30(a/b)2

(λb)4

+ 3

(λb)2
− 3

(a/b)(λb)2
+ 10(a/b)3

(λb)2

−12(a/b)4

(λb)2
+ 2(a/b)5

(λb)2

)
cosh(λb − (a/b)λb)

+
(

1 − 3(a/b) + 4(a/b)5 − 2(a/b)6

+30(a/b)3

(λb)4
− 30(a/b)4

(λb)2

+ 3

(λb)2
+ 10(a/b)3

(λb)2
+ 12(a/b)5

(λb)2

)

× sinh(λb − (a/b)λb)

(a/b)λb
(6)
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with

λ =
√

γ

η0
. (7)

In order to extend the regime of validity of η(φ) to larger
concentrations we follow the recursive procedure proposed in
Refs. 17–19. In this method, first, we incorporate correlations
between particles due to crowding effects in Eq. (2) by writing
the viscosity as

η(φ) = η0(1 + [η]φeff ), (8)

where the effective volume fraction φeff is defined by

φeff = φ

1 − cφ
, (9)

with c a crowding constant. The fact that the particles can-
not occupy all the volume of the sample due to geometrical
restrictions is taken into account in the crowding factor c.
For example, for a face centered cubic (FCC) arrangement
of identical spheres, the maximum volume that the spheres
may occupy is larger than for a random arrangement of
spheres, thus, the value of c is different in these two situations.
Equation (8) reduces to Eq. (2) at small φ.

Although in this expression η(φ) incorporates the ex-
cluded volume corrections, hydrodynamic interactions are ig-
nored and therefore one expects its validity been restricted to
low concentrations. To improve it, further corrections must
appear due to the hydrodynamic interactions between parti-
cles which become increasingly important when increasing
the filling fraction. The mentioned correlations can be ac-
counted for by using DEMT techniques.23 This theoretical
method is based on a progressive addition of spheres to the
sample in which the new particles interact in an effective way
with those added in previous stages.24 The final result ob-
tained with this procedure is17–19

η(φ) = η0(1 − φeff )−[η], (10)

or, using the definition of φeff

η(φ) = η0

[
1 −

(
φ

1 − cφ

)]−[η]

. (11)

From this expression it is clear that c depends on the critical
volume fraction φc which is the concentration at which the
suspension loses its fluidity and is given by

c = 1 − φc

φc

. (12)

Thus, the effective volume fraction (9) approaches the bare
φ at low concentrations and becomes 1 at the divergence of
the viscosity which occurs at φc. Equation (11) together with
Eq. (4) are the basic ingredients to calculate the viscosity of
soft particles.

If we neglect in our model the excluded volume interac-
tions then φeff = φ and one recovers the Brinkman-Roscoe’s
result,25,26 η(φ) = η0(1 − φ)−[η], which contains higher order
corrections to the Einstein-like expression, Eq. (2). Since ex-
cluded volume interactions have been neglected, then these
corrections should be attributed to the hydrodynamic interac-

tions which are implicitly incorporated through the differen-
tial procedure.

Note that our model, Eq. (11), is different from the popu-
lar Krieger-Dougherty expression,27

η(φ) = η0

[
1 −

(
φ

φmax

)]−[η]φmax

, (13)

where φmax is the volume fraction at maximum packing. This
expression underestimates the viscosity of the suspension at
large volume fractions as explained thoroughly in Ref. 19.

It is important to stress that other differential effective
medium theories have been combined previously with effec-
tive volume concepts (see, for example, Refs. 28 and 29, and
references therein). However, in the case of coated particles,
they are usually introduced to take into account the effect of
the stabilizer layer and therefore is a single particle property.
If the thickness of the stabilizer layer tends to zero then it re-
duces to the core volume fraction. In contrast, the effective
volume fraction introduced in Eq. (9) describes crowding ef-
fects which is a collective effect and is present even in the case
of hard spheres in which the stabilizer layer is absent.

III. RESULTS AND DISCUSSION

In Fig. 2 we show η(φ) for several values of the parame-
ters λb at a/b = 0.4 [panel (a)] and at a/b = 0.8 [panel (b)].
It is seen that the viscosity increases with increasing λb and
that this effect is more pronounced for smaller values of a/b.
This means that suspensions of particles with smaller fric-
tional coefficient are less viscous. The limit λb → ∞ corre-
sponds to a very large frictional coefficient and therefore re-
duces to the hard-sphere case. Panel (c) of Fig. 2 shows η(φ)
for several values of the parameters a/b at λb = 1 and panel
(d) at λb = 10. It is seen that the viscosity increases with
increasing a/b and that this effect is more pronounced for
smaller values of λb. This means that particles with thicker
soft coronas present less viscosity. The case a/b = 1 corre-
sponds to hard-sphere particles since the thickness of the soft
corona is zero. The critical volume fraction used in all the
curves corresponds to the random close packing of spherical
particles φc = 0.637.

Recently, Ohshima has extended his cell model to con-
sider concentrated suspensions of spherical soft particles.15

In this case his expression for the viscosity is

η(φ) = η0

(
1 + 5

2
�(λb, a/b, φ)φ

)
, (14)

with

�(λb, a/b, φ) = L2(λb, a/b, φ)

L1(λb, a/b, φ)
, (15)

where L1(λb, a/b, φ) and L2(λb, a/b, φ) are somewhat
lengthy expressions given in the appendix of Ref. 15. In Fig. 3
we compare our expression with the dilute and concentrated
versions of the cell model.15 It is seen that for low concentra-
tions the cell model gives upper and lower bounds for the vis-
cosity but for increasing volume fractions it underestimates
largely the viscosity, particularly for particles with thicker
porous layers.
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FIG. 2. Relative viscosity η(φ)/η0 as function of the particle volume fraction φ for several values of λb at (a) a/b = 0.4 and (b) a/b = 0.8; and for several
values of a/b at (c) λb = 1, and (d) λb = 10. In all cases we assumed for the critical volume fraction the random closed packing value for hard spheres,
φc = 0.637.

A. Low-shear viscosity of sterically
stabilized particles

In this section we apply the DEMT model to the case
of sterically stabilized particles. The modification of the vis-
cosity by an adsorbed layer of thickness d (Fig. 1) of a sur-
factant grafted to a latex particle is studied in Ref. 30. The
system studied consists of a poly(styrene) core latex without
chemically bound charges (radius: a = 73 nm) and a layer of
poly(ethylene oxide) chains (length: 80 ethylene oxide units)
affixed to the surface of the particles through adsorption of the
surfactant Lutensol AT80 (C16-18EO80).

The hydrodynamic thickness of the surfactant layer was
determined by small-angle x-ray scattering to be of approx-
imately d = 12 nm (b = a + d = 85 nm). Since there is no
information about the friction coefficient we consider the lim-
its of infinite friction coefficient for which Eq. (4) reduces
to [η] = 5/2, which means that particles are hard spheres
of radius b, and the limit of zero friction coefficient for
which Eq. (4) reduces to [η] = 5/2(a/b)3, which corresponds
to a hard core surrounded by a perfectly porous shell or
radius b.

In Fig. 4 we plot the zero-shear viscosity as given by our
model in these two limits as a function of the volume fraction

of the coated particle, φ = (b/c)3. We took φc = 0.58 which
corresponds to the glass transition for this system. As can be
seen, the hard sphere limit fits very well the experimental data
while the soft limit lies far below. Thus, our model confirms
the well known fact that surfactant-coated particles behave as
hard spheres. Note that the data are very well described by
our model which predicts the correct divergence in the vis-
cosity at the glass transition in contrast to the well known
Krieger-Dougherty expression,27 Eq. (13), which does not fit
the data very well and predicts a value φc = 0.53, which is too
low.30

In the derivation of Eq. (4) it is assumed that the polymer
layer of thickness d has uniform density. Although this is a
reasonable approximation for a polymer layer adsorbed on a
colloidal particle, it is not the case for a polymer brush (see,
for example, Ref. 31 and references therein). Specifically, the
amount of solvent and its flow through the porous layer will be
different for a uniform and a nonuniform density profiles.32, 33

A more accurate description would consider a distribution of
the resistance centers in the permeable polymer layer depen-
dent on the density profile of the polymer brush. This could be
incorporated into the model by using, for example, a position-
dependent frictional coefficient λ. However, such refinement
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FIG. 3. Reduced viscosity η(φ)/η0 as function of the volume fraction φ

at λb = 1 for a/b = 1 (black lines) and a/b = 0.8 (red lines). The present
model lies between the dilute and concentrated cell model results at low φ

but increases more rapidly for large φ particularly for smaller values of a/b

(thicker porous layers).

does not seem to be needed since one can always absorb its
effects considering a uniform layer with an average value for
λ. A more important effect would arise in systems of polymer-
coated particles in which the length of the polymer layer is of
the order of the core diameter. In this case, the suspension may
present a large relative interparticle penetration, especially
at large concentrations.34 Under certain conditions the result
of these interactions appears as a shoulder in the viscosity-
concentration curves.35, 36 Thus, a direct application of our
model would not fit the experimental data accurately at this
second regime where interparticle penetration is important.

FIG. 4. Relative static low-shear viscosity η/η0 as function of the volume
fraction φ = (b/c)3 for the latex covered by the surfactant Lutensol AT80.
The symbols are the experimental data of Ref. 30. The solid line displays the
result of our model for suspensions of hard spheres. The dashed line shows
our model considering a frictionless soft corona. In both fits φc = 0.58, cor-
responding to the glass transition for this system. The dotted and dashed-
dotted lines correspond to the Krieger-Dougherty model for hard spheres with
φmax = 0.58 and φmax = 0.53, respectively.

B. High-frequency viscosity
of porous-particle suspensions

In this section we probe the accuracy of our model
with recent simulation results16, 21 for the low-shear high-
frequency viscosity, η∞, of a monodisperse suspension of
nonoverlapping porous spherical particles as a function of
volume fraction and porosity.

The high-frequency viscosity, η∞, is related to the
static viscosity by means of the relation η = η∞ + �η.
Here, the so-called relaxation term �η > 0 is an additional
contribution arising from the time integrated relaxation of
the shear-distorted particles microstructure and depends on
both, the direct and hydrodynamic interactions.21 Thus, at
low volume fractions one can write

η∞/η0 � 1 + [η]φeff − �η/η0, (16)

where we have used Eq. (8) to include crowding effects. Since
the relaxation term arises from the interactions between par-
ticles, then, the leading-order term in an expansion in powers
of φ should be quadratic.37, 38 Therefore, to leading order in φ,

�η/η0 � [η]αφ2, (17)

with α a porosity-dependent positive coefficient. Substituting
Eqs. (9) and (17) in Eq. (16) we find

η∞/η0 � 1 + [η]φ + [η](c − α)φ2, (18)

where we have kept up to second-order terms in φ. The last
equation can be approximated by

η∞/η0 � 1 + [η]
φ

1 − (c − α)φ
. (19)

This equation can now be used as starting point of the DEMT
procedure exactly as before if we define a new effective
volume fraction

φ∞
eff = φ

1 − c∞φ
, (20)

where

c∞ = c − α. (21)

The resulting expression for η∞/η0 is

η∞(φ) = η0(1 − φ∞
eff )−[η], (22)

or, using Eq. (20)

η∞(φ) = η0

(
1 − φ

1 − c∞φ

)−[η]

. (23)

Equation (22) is identical to Eq. (10) but with φ∞
eff replacing

φeff . It is important to remark that c∞ contains hydrodynamic
contributions in addition to the direct excluded volume inter-
actions and since α is positive then c∞ does not necessarily
has to be positive in contrast to c which is always positive.

In the simulations,16, 21 each particle is modeled as a rigid
sphere of radius b and constant Darcy porosity k, with the
fluid flow inside the particle described by the Debye-Bueche-
Brinkman equation.4, 5 The many-body hydrodynamic inter-
actions are fully accounted for by using a precise hydrody-
namic multipole method. The results of these simulations for
porosity values that span the range from nonporous to highly
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FIG. 5. Low-shear high-frequency viscosity, η∞/η0, of uniformly porous
spheres for porosities as indicated (x = ∞ corresponds to nonporous hard-
spheres). Simulation results (symbols), the present model in the porous
sphere limit, with x given by the simulations and c∞ the only fitting pa-
rameter, Eqs. (23) and (24) (dotted lines), and with x as an additional fitting
parameter (solid lines).

porous particles are shown by the symbols in Fig. 5. The in-
verse porosity is given by x ≡ κb, where κ−1 = √

k is the hy-
drodynamic penetration depth.16 In the zero-penetration limit
x → ∞, hard-spheres with stick boundary conditions at the
surface are recovered.

Taking the limit a → 0 in Eqs. (5) and (6), the intrinsic
viscosity Eq. (4) reduces to the homogeneous porous particle
limit4, 5

[η] = 5

2
�v(x) = 5

2

G(x)

1 + 10G(x)
x2

, (24)

where

G(x) = 1 + 3

x2
− 3 coth(x)

x
, (25)

and we have made the identification21 x ≡ λb. These expres-
sions agree with the results of Natraj and Chen39 for the ef-
fective viscosity of a dilute suspension of uncharged porous
spheres of radius b. Tabulated values of [η] calculated us-
ing Eq. (24) are shown in Table I. Equation (23) combined
with Eq. (24) gives the prediction of our model for the high-
frequency viscosity of homogeneous porous spheres. Substi-
tuting the values of x corresponding to the simulations we
obtain the dotted curves shown in Fig. 5. Here, we used c∞ as
the only fitting parameter and it is shown in Table II. The fact
that c∞ is negative implies that the high-frequency viscosity
in the regime described by our model does not diverge, as it is
clearly shown in the simulations. The viscosity as function of
the inverse porosity x for three different values of φ is shown

TABLE I. Intrinsic viscosity, [η], as calculated from Eq. (24) and Huggins
coefficient, kH , as obtained from the numerical simulation of Ref. 16.

x 5 10 20 30 50 100 ∞

[η] 1.076 1.701 2.099 2.236 2.344 2.423 2.500
kH 0.5321 0.6270 0.7019 0.7323 0.7587 0.7796 0.8004

TABLE II. Intrinsic viscosity, [η], as calculated from Eq. (24) and Huggins
coefficient, kH , as obtained from our model, Eq. (27), with c∞ as the only fit-
ting parameter. The quadratic order coefficient, [η] α, of the relaxation term is
calculated from Eqs. (11), (16), and (23) assuming c = 0.5698 (φc = 0.637).

x 5 10 20 30 50 100 ∞

[η] 1.076 1.701 2.099 2.236 2.344 2.423 2.500
c∞ −0.5161 −0.3555 −0.1572 −0.0628 0.0336 0.1182 0.2226
[η] α 1.1686 1.5739 1.5259 1.4146 1.2571 1.0946 0.8681
kH 0.4850 0.5850 0.6633 0.6956 0.7276 0.7551 0.7890

in Fig. 6. It can be seen that the agreement between theory
and simulation is excellent.

Although we have presented results only for the high-
frequency viscosity for the given system of rigid porous par-
ticles, the static low- and high-shear viscosity for the same
system can also be computed using Eq. (11). The values that
the fitting parameter c adopts in each case are presumably
the same as for the case of hard spheres. It has been shown17

that the static viscosity of hard spheres at low-shear stress is
well described using c = 0.5698 or equivalently, φc = 0.637,
which is the random close packing of spheres while for high-
shear stress, c = 0.3504 or φc = 0.7405 which corresponds
to the FCC close packing fraction. This difference in φc is
attributed to the fact that in the latter situation the particles
are ordered as a result of the large shear flow. Using these
fitting parameters, the predictions of our model, Eq. (11)
with (24) could be tested with computer simulations when
they become available. Here we only show the relaxation term
�η = η − η∞ as extracted from Eqs. (11) and (23) assuming
a random distribution of spheres c = 0.5698 (φc = 0.637) and
the values of c∞ given in Table II. The results are shown
with thick lines in Fig. 7. The coefficient of the quadratic or-
der of the relaxation term, Eq. (17), can be extracted from
Eqs. (12) and (21). This is shown in Table II where again we
have assumed φc = 0.637. The corresponding relaxation term
to quadratic order is shown with thin lines in Fig. 7.

FIG. 6. Low-shear high-frequency viscosity, η∞/η0, as function of the
porosity for uniformly porous spheres. Simulation results (symbols). The
present model in the porous sphere limit (curves).
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At small volume fractions the viscosity η∞ can be ex-
panded in a virial series as

η∞(φ) = η0(1 + [η]φ + kH [η]2φ2 + ...). (26)

In contrast to [η] that is a single-particle property, the Huggins
coefficient, kH (x) accounts for two-body hydrodynamic inter-

actions. Using their numerical simulation data, in Ref. 16 this
coefficient is calculated to high-precision for porous spheres
at several values of x and the results are tabulated in Table I.
On the other hand, the present model, given by Eq. (23), in the
porous sphere limit [Eq. (24)] gives the following expression
for kH (x):

kH (x) = 40 + 5(x2 − 4)/ (1 + c∞) + 2x4[2 − 1/(1 + c∞)]/[3 + x2 − 3x coth (x)]

10x2/(1 + c∞)
. (27)

Tabulated values of kH , Eq. (27), for this model are also
shown in Table II, where the values of c∞ used to calculate
kH are the ones that best fitted the simulation data shown in
Fig. 5.

It is interesting to ask if our model can give reliable pre-
dictions about the inverse viscosity parameter x if this infor-
mation is not provided and only the data points are given.
This means that in our model x is a second fitting param-
eter. The fitted values of x are shown in Table III together
with the value of kH obtained using Eq. (27) as before. Notice
that this two-fitting variable procedure gives a slightly better
agreement with the experimental data points as shown by the
solid lines in Fig. 5.

Based on the results of their numerical simulations to-
gether with a virial expansion up to third order in φ the au-
thors of Ref. 16 propose an approximate analytic expression
for η∞ in the form of a generalized Saito formula

η∞
η0

= 1 + [η]φ
1 + S

1 − 2
5 [η]φ(1 + S)

, (28)

where the Saito function is approximated by a third-order in
φ polynomial

S(x, φ) = b1(x)φ + b2(x)φ2 + b3(x)φ3, (29)

FIG. 7. Relaxation term �η/η0 as function of the volume fraction φ at dif-
ferent values of x. Thin lines correspond to the quadratic approximation,
Eq. (17), while thick lines are obtained from Eqs. (11), (16), and (23) using
φc = 0.637.

with

b1(x) =
(

kH − 2

5

)
[η], (30)

which is calculated using the values of [η] obtained from
Eq. (24) and from the numerical simulation for kH . Then,
the coefficients b2(x) and b3(x) are obtained from a best fit
of the simulation data for η∞ in the range φ ≤ 0.45 (see
Ref. 16). The curves for the viscosity obtained from this ex-
pression (28) are indistinguishable of the solid lines of Fig. 5
corresponding to our model with two fitting parameters. No-
tice that the curves obtained with the one fitting parameter
version of our model are almost identical with the ones ob-
tained using two parameters. Thus, the use of only one pa-
rameter seems to be accurate enough for any practical purpose
and we think it is preferable over the generalized Saito expres-
sion (28) since this last formula has more fitting coefficients
and is not supported by a theoretical derivation.

A very appealing feature of Eq. (23) is that it allows to
plot η in a universal curve independent of c∞ and x (or in-
dependent of c∞, λb and a/b in the most general case) if we
express it as function of φ∞

eff instead of φ. This is done in
Fig. 8 where φ∞

eff is calculated using Eq. (20) and the values
of c∞ given in Table II. Additionally, we have plotted the ex-
perimental results for the viscosity of the sterically stabilized
particles of Sec. III A. In all cases the data collapses perfectly
into the master curve.

Alternative simple routes to calculate the high-frequency
viscosity of porous particles have been proposed. One of
these simplifying strategies known as effective radius model

TABLE III. Fitted viscosity x, intrinsic viscosity, [η], as calculated from
Eq. (24) and Huggins coefficient, kH , as obtained from our model, Eq. (27),
with c∞ and x as fitting parameters. The quadratic order coefficient, [η] α,
of the relaxation term is calculated from Eqs. (11), (16), and (23) assuming
c = 0.5698 (φc = 0.637).

x 5 10 20 30 50 100 ∞

x (fit) 5.07 10.5 23.8 41.6 100 2604 ∞
[η] 1.090 1.739 2.164 2.311 2.423 2.497 2.500
c∞ −0.5482 −0.4044 −0.2172 −0.1236 −0.0230 0.0704 0.2226
[η] α 1.2031 1.6571 1.6519 1.5505 1.3898 1.2104 0.8681
kH 0.4558 0.5550 0.6307 0.6628 0.6968 0.7284 0.7890
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FIG. 8. Master curve for the viscosity. η represents the zero-shear high-
frequency viscosity η∞ for the case of the homogeneous porous particles of
Ref. 16 and represents the zero-shear static viscosity for the sterically stabi-
lized particles of Ref. 30. In the inset we show the master curve for the latter
case in the whole experimental range of volume fractions. φeff represents
φ∞

eff in the high-frequency case.

consists in introducing a porosity-dependent effective hard-
sphere of radius a and to map the shear viscosity of porous
spheres to that of nonporous ones with a smaller radius and
a smaller volume fraction.40 This strategy however, has no
sound theoretical basis and in general does not lead to sat-
isfactory results.16 The reason for this is that two effective
nonporous particles are allowed to approach each other up
to the center to center distance 2a < 2b. However, the rigid
skeleton of the actual porous particles of radius b does not
allow them to overlap, and the statistical distribution func-
tion of the effective particles should take this into account.
A more refined model,16 referred to as hydrodynamic ra-
dius model takes this fact into account by considering that
the porous sphere of radius b is described as a soft parti-
cle with a hard core of porosity-dependent effective radius
a, and an outer excluded volume of radius b, which enters
into the statistical distribution through the nonoverlap require-
ment. This model gives more accurate results as compared to
the effective radius model but the viscosity must be computed
numerically.

A similar approach can be done using the model pro-
posed in the present work. Indeed, if we consider that
the outer core of the soft sphere do not exert frictional
forces on the liquid flowing through it, that is, λ = 0, then
Eqs. (5) and (6), simplify considerably and one gets

[η] = 5

2

(a

b

)3
. (31)

If we define the porosity dependent effective radius a by
(a

b

)3
= �v(x), (32)

then one recovers Eq. (24). In other words, in our model, the
shear viscosity of a porous homogeneous particle of radius b

and inverse porosity x is identical to that of a soft particle with
a hard core of porosity-dependent radius a given by Eq. (32)
with a nonfrictional outer core or radius b. Thus, in our ap-
proach, the hydrodynamic radius model is an exact represen-
tation of a homogeneously porous particle. In Fig. 9 we show

FIG. 9. Ratio of the soft to core radii a/b, for the hydrodynamic radius model
as calculated using Eq. (32) (curve) and as obtained from our model in the
two fitting parameter case (dots).

with solid lines the result for a/b as obtained from Eq. (32)
and the dots represent the values obtained when x given in
Table III are substituted in Eq. (32).

IV. CONCLUSIONS

In this paper we have presented a simple model for
the calculation of the static and high-frequency viscosities
as function of particle concentration for suspensions of soft
spherical particles consisting of a hard core of radius a cov-
ered with a porous layer of thickness d = b − a.

The model considers excluded volume correlations be-
tween the particles through an effective filling fraction φeff ,
whereas the hydrodynamic interactions between particles are
taken into account through a differential effective-medium
approach.17–19 Additionally, a cell model15 is used to calcu-
late the intrinsic viscosity [η] of the soft particles as func-
tion of the friction parameter λb and the ratio a/b. The limit
λb → ∞ or a/b → 1 corresponds to the intrinsic viscosity
of hard spheres while the limit a → 0 reduces to the intrin-
sic viscosity of a homogenous porous particle of porosity
x = λb. Our results are summarized by Eqs. (4) and (11). Al-
though the model contains three parameters, λb, a/b, and φc,
in principle λb and a/b could be determined experimentally
leaving φc as the only fitting parameter.

We have applied our model to the case of the
zero-frequency low-shear viscosity of sterically stabilized
particles30 and found that a hard-sphere limit is enough to
describe the data accurately with a φc = 0.58, corresponding
to the glass transition volume fraction. This result improves
the one obtained with the Krieger and Dougherty expression
which underestimates largely the value of φc.

In the case of the high-frequency viscosity we have
shown that φeff contains hydrodynamic interactions arising
from the relaxation term in addition to the crowding effects.
We have also tested the accuracy of our model with recently
obtained numerical data for the high-frequency viscosity of
homogeneous porous particles16, 21 with excellent results.
Additionally, we have found that the homogenous porous
particle limit of our model is completely equivalent to a
hydrodynamic radius model in which the homogeneous
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porous particle is replaced by a core-shell particle with a/b

given by Eq. (32). Let us stress that the form of the expression
for the viscosity as function of φeff given by our model,
Eq. (10), leads to an universal representation that may be
used to reduce both experimental and theoretical results to a
master curve17–19 which is independent of the experimental
details or the softness of the particles.

Although in the present paper we have considered a
suspension of uncharged soft particles, the case of charged
soft spheres suspended in an electrolyte can also be treated
with the proposed method by replacing the intrinsic viscosity,
Eq. (4), by

[η] = 5

2
(1 + p)

L2(λb, a/b)

L1(λb, a/b)
, (33)

where p is the primary electroviscous coefficient.15 Our
method can also be used to calculate other transport proper-
ties like the diffusion coefficients. Work along this line is cur-
rently under progress. As a final remark, let us mention that a
direct application of the present model to systems of particles
coated by a thick polymer layer would only give approximate
results since interactions between the outer segments of the
polymers that belong to different particles are being ignored.
However, such interactions can also be modeled and will be
the subject of a future work.
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