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We report on the results of a combined experimental and numerical study on the fluid motion

generated by the controlled approach and arrest of a solid sphere moving towards a solid wall at

moderate Reynolds number. The experiments are performed in a small tank filled with water for a

range of Reynolds numbers for which the flow remains axisymmetric. The fluid agitation of the

fluid related to the kinetic energy is obtained as function of time in the experiment in a volume

located around the impact point. The same quantities are obtained from the numerical simulations

for the same volume of integration as in the experiments and also for the entire volume of the

container. As shown in previous studies, this flow is characterized by a vortex ring, initially in the

wake of the sphere, that spreads radially along the wall, generating secondary vorticity of opposite

sign at the sphere surface and wall. It is also observed that before the impact, the kinetic energy

increases sharply for a small period of time and then decreases gradually as the fluid motion dies

out. The measure of the relative agitation of the collision is found to increase weakly with the

Reynolds number Re. The close agreement between the numerics and experiments is indicative of

the robustness of the results. These results may be useful in light of a potential modelling of

particle-laden flows. Movies illustrating the spatio-temporal dynamics are provided with the online

version of this paper. VC 2011 American Institute of Physics. [doi:10.1063/1.3598313]

I. INTRODUCTION

Particulate two-phase flows are prominent in industrial

applications and natural phenomena, but despite its impor-

tance, a thorough understanding is still deficient. Coal-based

energy systems such as pulverized coal boilers and gasifiers

are of current interest in industry due to the increase in

energy demand. In nature, the movement of sediment bed-

load due to flash-flooding on alluvial fans is also important

because it may place many communities at high risk during

intense and prolonged rainfall.

Particulate two-phase flows have turbulent-like behavior

at lower Reynolds numbers than those observed in single-

phase turbulent flows. This characteristic makes two-phase

flows very attractive in industrial applications.1 Since the in-

terstitial fluid must move around the inclusions that form the

particulate phase, a velocity disturbance (agitation) naturally

arises in the continuous phase. Integral measures (such as

impulse, circulation, and kinetic energy) have been used as

diagnostic tools to study vortical and turbulent flows.2 How-

ever, in the field of dispersed multiphase flows, integral

measures have only been applied in a few instances (see Ref.

3 and references therein), and closure relations that can be

used to predict fluctuations from first principles (without

questionable assumptions) are scarce. There are notable

exceptions, e.g., the case of bubbly liquids at high Reynolds

and at low Weber numbers4,5 and the case of low Reynolds

number suspensions, for which models have been proposed

to predict the hydrodynamic fluctuations for both sediment-

ing particles6 and simple shear flows.7

Perhaps the simplest way to view the agitation phenom-

enon is by relating it to the added mass, because the added

mass determines the necessary work done to change the agi-

tation associated with the fluid motion.8–10 The agitation is

important in situations of flows with non-dilute particle load-

ing.11 Transfer processes, such as dust resuspension (for par-

ticles), heat transfer (by vapor bubbles), or interfacial gas

transfer across a free surface (e.g., bubbles) predominately

arise from the significant agitation afforded by the movement

of discrete elements close to boundaries.12–14 The kinematic

blocking motion caused by a boundary (such as a rigid wall

or free surface) inhibits the effects of external turbulence

(for instance, by convection or the ambient flow) moving

fluid near boundaries. Viscous effects further reduce these

effects by creating boundary layers which are typically much

larger than the discrete elements. The effect of discrete ele-

ments striking or moving near to boundaries creates bound-

ary layers, for instance by sand particles, which are much

thinner and flows faster than those created by external

motions. This is why sand particles enhance dust resuspen-

sion14–16 and vapor bubbles enhance heat transfer.3,12,17

Practical engineering models of boundary transfer proc-

esses (such as heat transfer, dust resuspension, or dilute gas

fluidised beds) require closure relationships that relate the

motion of elements close to boundaries with a degree of agi-
tation of the fluid. Presently, most dispersed multiphase flowa)Electronic mail: rpacheco@asu.edu.
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models are based on the kinetic theory of the discrete and

continuous phases, in addition to Reynolds and phase aver-

aged momentum equations which are analogous to k � e
models of turbulence, techniques common in engineering.2

A practical closure relationship requires single (integral)

measures that can be incorporated into coupled two-phase ki-

netic models. There is a practical and well-established meth-

odology for interior flows, away from boundaries, but a

major pressing question is what conditions need to be

applied near boundaries. In this paper, we undertake detailed

calculations on the fluid motion around a sphere colliding

with a wall immersed in a viscous fluid and establish a new

methodology utilizing integral measures that in part permit

practical closure relationships near walls to be prescribed.

The problem combines many subjects of interest in fluid

mechanics: the detachment of a wake due to the unsteady

motion of an object,18 the interaction a vortex ring with a

sphere and a wall,19 and the rebound of a particle colliding

immersed in a liquid.15,16,20,21 The numerical methods and

experimental techniques used in this paper are summarized

in Sec. II, all of which have already been used in the analysis

of different but related problems,20–23 and only the salient

aspects are presented. The results from numerical simula-

tions and experiments are analyzed in Sec. III which includes

a definition of the fluid agitation. Summary and conclusions

are presented in Sec. IV.

II. NUMERICAL SCHEME AND THE EXPERIMENTAL
SETUP

Consider the flow in a completely filled cylinder of fluid

with kinematic viscosity � of radius R and height H. The

walls are stationary and the flow is driven by the motion of

the sphere, which is impulsively started from rest at constant

speed normal to the bottom wall and stops after traveling a

distance h. To non-dimensionalize the system, the diameter

of the sphere D is used as the length scale, the velocity scale

is the constant velocity of the sphere before impact Up, and

the time scale is the inertial time D=Up.

In cylindrical coordinates ðr; h; zÞ, the non-dimensional

velocity vector, pressure, and time are denoted by u ¼
ðu; v;wÞ, p, and t, respectively. The system is governed by

four non-dimensional parameters, three geometric and one

dynamic: the radius of the container q ¼ R=D, the aspect

ratio C ¼ H=R, the traveling distance g ¼ h=D, and the

Reynolds number Re ¼ UpD=�. A schematic of the flow ge-

ometry, with an inset showing the azimuthal vorticity at

Re ¼ 400, q ¼ 10, C ¼ 1:5, and g ¼ 8, is given in Fig. 1.

The governing equations are the (non-dimensional)

incompressible Navier-Stokes equations

@u=@tþ ðu � rÞu ¼ �rpþ Re�1r2u; r � u ¼ 0: (1)

The boundary conditions for the velocity field are stress-free

at the top and no-slip on the side=bottom walls. On the

sphere, u and v are zero for all times and w ¼ �1 for t < 0

(prior to impact) and w ¼ 0 for t � 0 (perfect inelastic

collision).

Equation (1) is solved using a fractional-step scheme.

The discretization of both viscous and advective terms is per-

formed by second-order-accurate central finite-difference

approximations. The elliptic equation, necessary to enforce

incompressibility, is solved directly using trigonometric

expansions in the azimuthal direction and the tensor-product

method24 for the other two directions. Temporal evolution is

via a third-order Runge–Kutta scheme which calculates the

nonlinear terms explicitly and the viscous terms implicitly.

The stability limit due to the explicit treatment of the con-

vective terms is CFL <
ffiffiffi
3
p

, where CFL is the Courant, Frie-

drichs and Lewy number.25 A useful feature of this scheme

is the possibility to advance in time by a variable time step,

without reducing the accuracy or introducing interpolations.

We have varied dt in all the simulations in this paper

such that the local CFL � 1:5, where CFL ¼ ðjuj=dr þ jvj=
ðrdhÞ þ jwj=dzÞ dt, with the velocity components averaged at

the center of each computational cell. The smallest such

determined local dt is then used for time advancement (see

Ref. 26 for more details, including the treatment of the radial

axis).

The immersed boundary method (IB) is used in this

study to simulate the sphere. The main advantage of using the

IB consists in solving flows bounded by arbitrarily complex

geometries without resorting to body-conformal grids for

which the motion is prescribed, and, therefore, the solution

technique essentially has the same ease of use and efficiency

as that of simple geometries. The method is second-order in

space and this technique has already been implemented in

many different scenarios and grid layouts, e.g., laminar and

turbulent convection,27–29 turbulent flows and particle colli-

sion,30–33 biological devices,34 and bifurcations.35 The three-

dimensional simulations were conducted using the immersed

boundary method of Ref. 36.

Numerical simulations were conducted with different

grid sizes to verify the grid-independence results and to test

the adequacy of a coarser grid in resolving all the relevant

flow scales. We placed several probes in the neighborhood

FIG. 1. (Color online) Schematic of the flow apparatus. The inset shows the

initial position of the sphere and the vorticity contour of azimuthal vorticity

xh (from numerical simulations) for t > 0 after the sphere has touched the

wall at Re ¼ 400, q ¼ 10, C ¼ 1:5, and g ¼ 8.

063301-2 Pacheco et al. Phys. Fluids 23, 063301 (2011)

Downloaded 13 Sep 2013 to 132.248.12.211. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions



where the collision took place and measured the velocities at

different times. We then reduced the grid size using resolu-

tions of up to nh � nr � nz ¼ 96� 301� 601. We find that a

grid resolution of 64� 151� 251 results in a maximum dif-

ference in velocities at the probe locations of less than 1%

compared to the finer grid, and this resolution has been used

in most of the runs presented in this paper. To determine the

azimuthal symmetry of the flow, we have also performed

similar checks as in Refs. 37 and 38 who studied different

but related problems of baroclinic instabilities in the pres-

ence of rotation and stratification.

The experimental setup of the system used for this study

is shown in Fig. 2(a) and consists of a stainless steel sphere

of density 7.9 g=cm3 and diameter 25:4 mm in water at labo-

ratory conditions (�¼ 10.2 mm2 s�1) with an absolute uncer-

tainty of 60:1 mm2 s�1 confined in a rectangular glass

container of 2R� 2R� H ¼ 30� 30� 50 cm3 (� 12� 12

� 20 dimensionless units). The corresponding range of parti-

cle Reynolds number ranged between 50 and 400. A thick

glass plate was placed at the bottom of the container and the

particle release mechanism was placed at the top on the lid

of the container where two fine Nylon threads were glued to

the particle poles to inhibit rotation. The motion of the parti-

cle was controlled by slowly unwinding the threads from the

shaft of a computer-controlled DC motor, allowing the parti-

cle to touch the bottom wall without any noticeable bouncing

after impact.

To visualize and quantify the velocity field around the

sphere during the collision process, an ordinary 2-D particle

image velocimetry (PIV) system (Dantec Flowmap 1500

model) was used. The flow was illuminated with a pulsed

laser sheet of approximately 0.5 mm of thickness. The laser

sheet formed a small angle with the plane made by the two

strings attached to the sphere. Images of the laser illuminated

plane were obtained with a 1000� 1000 pixel digital camera.

The laser and the camera were synchronized by a control

unit that allowed the adjustment of the time between frames

as well as the time between pairs of frames. The typical time

between frames used to calculate the velocities was in the

order of 10 ms. The time between pairs of photographs was

160 ms, the highest allowed by the system. The field of view

of the camera was approximately 75� 85 mm2 (� 3� 3:3
dimensionless units). An adaptive cross-correlation tech-

nique was used, with a final interrogation area of 32� 32

pixels and an overlap of 50% in both directions. Subse-

quently, a peak validation, moving average and spacial filter

routines were applied. The resolution of the optical array

was 12.5 pixel=mm. Using the uncertainty protocol of Ref.

39, the velocity uncertainty was calculated to be about 5.3%.

The experimental setup and a typical PIV image are shown

in Fig. 2, where the velocity field shown was superimposed

on the PIV image. For all cases, the area of the sphere was

masked and only half of the flow field was shown and proc-

essed, because the sphere blocked the laser light.

For a given experiment, the particle was placed origi-

nally at a distance of eight particle diameters from the bot-

tom plate (g ¼ 8), and the voltage was set to a constant value

before energizing the motor. After a very small transient, the

sphere began to descend at constant velocity. Since the parti-

cle Reynolds number was large, a deceleration of the particle

was not observed before it collided with the wall.20

III. RESULTS

The experimental measurements and most of the numer-

ical simulations were conducted for a range of particle Reyn-

olds numbers 100 � Re � 400 and g ¼ 8 to minimize the

possibility of a three-dimensional flow around the sphere.19

Contour plots of the azimuthal vorticity xh at Re ¼ 400,

q ¼ 10, C ¼ 1:5, and g ¼ 8 are shown in Fig. 3 and the asso-

ciated movie 3 shows typical states in this regime. The time

origin has been displaced such that t ¼ 0 corresponds to the

time when the sphere makes contact with the solid surface. It

can be observed that after the collision, the wake (originally

in the back of the sphere) moves forward around the surface

of the sphere (0 < t < 1). At t � 2, the vortex hits the wall

FIG. 2. (a) Experimental apparatus used

to generate controlled collisions of a

sphere with a wall. (b) Typical PIV

image and velocity field at Re ¼ 300;

D ¼ 25:4 mm. The field of view is

approximately 75� 85 mm2 (� 3� 3:3
dimensionless units). The white dashed

lines correspond to the areas used to

evaluate the agitation in the

experiments.
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and begins to spread radially and at t � 4, the center of the

ring remains fixed in space and the fluid motion decreases

gradually due to the viscous dissipation. The nature of the

wake’s motion described above is qualitatively similar for

other values of Reynolds numbers and is in agreement with

other numerical and laboratory studies.16,40,41

A. Fluid agitation

We are interested in quantifying the fluid disturbance

caused by the collision of a single particle. A measure of the

fluid disturbance can be obtained from the velocity fields by

defining an agitation quantity (kinetic energy per unit mass)

within a volume of fluid that excludes the volume of the par-

ticle, as

AðtÞ ¼
ð

V

ðu2 þ v2 þ w2Þ dV; (2)

where V is a control volume over which the agitation is

measured and ðu; v;wÞ are the vector components of fluid ve-

locity in the radial, azimuthal, and vertical directions,

respectively.

Ideally, the dimensions of the container should be as

large as possible, because far from the sphere, the velocity of

the fluid is negligible and the walls would have a negligible

influence in the flow dynamics. However, in any laboratory

experiment, there are limitations in the size of the measuring

area (in our case, the field of view of camera in the experi-

ments was approximately 3� 3:3 dimensionless units). We

have measured the agitation in the experiments for two dif-

ferent areas of field view and compared these results with

those from the Navier-Stokes solver for verification of the

correct implementation of the immersed boundary method.

Figure 4 shows the evolution of the agitation from Eq. (2) at

Re ¼ 400 and a comparison with the numerical results. The

region of integration to determine the agitation shown in Fig-

ure 4(a) is from r ¼ 0! 3 and z ¼ 0! 1 and that of Fig.

4(b) is from r ¼ 0! 0:5 and z ¼ 0! 3:3. The sharp

increase in the agitation after the sphere impact shown in

Figure 4(a) is due to the fluid motion in the wake of the parti-

cle before the collision that was excluded in the area of inte-

gration and not by the impact of the sphere. The rise in the

agitation shown in Fig. 4(b) is because the sphere enters the

domain of integration and accounts for a narrow region that

included the wake of the sphere.

In the original quiescent fluid, the flow is generated by

the sphere motion, thence the fluid is already agitated before

impact. Consequently, to quantify the agitation caused by

FIG. 3. (Color online) Contours of azi-

muthal vorticity xh from numerical sim-

ulations at Re ¼ 400, q ¼ 12, g ¼ 8,

C ¼ 1:25 and various t as indicated. The

region shown is �4:5 � r � 4:5 and

0 � z � 9. There are 20 positive (—–)

and negative (����) linearly spaced

contour levels in the ranges

xh 2 ½�1:5; 1:5�. The zero contour is the

grey line. The associated animation is

available online as movie 3 (enhanced

online). [URL: http://dx.doi.org/10.1063/

1.3598313.1].

063301-4 Pacheco et al. Phys. Fluids 23, 063301 (2011)

Downloaded 13 Sep 2013 to 132.248.12.211. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3598313.1
http://dx.doi.org/10.1063/1.3598313.1


the motion of the sphere, the entire volume should be consid-

ered at all times. If measured in this way, there is no increase

in the overall agitation after the sphere touches the wall;

instead, it starts to decrease as soon as the body stops. The

curves of agitation for different limits of integration (but

excluding the particle) are shown in Fig. 5 depicting their as-

ymptotic behavior as the volume of integration is increased.

The sharp drop in the agitation (solid line of Fig. 5) at t ¼ 0

is due to the perfectly inelastic collision of the sphere with

the bottom wall. At t > 0, the energy begins to decay due to

viscous dissipation.

The agitation described above includes both the energy

due to the motion of the sphere as well as the part due to the

impact. To quantify the sole effect of the collision in terms

of an agitation measure, from a flow that is both unsteady

and varying in space, we require to extract the influence of

start-up motion towards steady state and arrest of the sphere

on the wall. To this end, we perform the same simulations

using an extended axial domain with the lower wall mim-

icked (see the right side of Fig. 6) where the sphere is

stopped at the imaginary bottom boundary, but the fluid is

allowed to flow through. We then monitored the agitation in

the extended cylinder within the region delimited by the

boundary of the control volume marked by the grey line of

Figure 6 (the same volume as that of the standard cylinder)

before and after impact, including the vortex ring. As the

particle approaches the wall in the standard cylinder,

the fluid is squeezed out of the gap between the particle and

the wall. This strong shear rate in the gap region is absent in

FIG. 4. Fluid agitation at Re ¼ 400,

q ¼ 10, C ¼ 1:5, and g ¼ 8 for two dif-

ferent regions of integration. The results

from two different experiments are indi-

cated with symbols 	 and ^ and the nu-

merical solution with solid line. The

regions of integration are from

h ¼ 0! 2p and (a) r ¼ 0! 3,

z ¼ 0! 1; (b) r ¼ 0! 0:5, z ¼ 0! 3.

FIG. 5. (Color online) Fluid agitation as a function of the measuring vol-

ume. The case shown is a numerical run at Re ¼ 400, q ¼ 12, g ¼ 8, and

C ¼ 1:25. The regions of integration are from h ¼ 0! 2p and (��)

r ¼ 0! 3, z ¼ 0! 1; (� � ��) r ¼ 0! 0:5, z ¼ 0! 3; (� � �)

r ¼ 0! 5, z ¼ 0! 8; (�� � � �) r ¼ 0! 5, z ¼ 0! 8; (—–)

r ¼ 0! 7, z ¼ 0! 12; (^) r ¼ 0! 9, z ¼ 0! 14.

FIG. 6. (Color online) Contours of azimuthal vorticity xh at Re ¼ 400, and

t as indicated, from numerical simulations. The grey lines in the background

are the boundaries of the control volume used to evaluate the agitation. For

the standard cylinder (a) and (c), qs ¼ 10, Cs ¼ 1:5, gs ¼ 8 and region of

integration is from r ¼ 0! 10 and z ¼ 0! 15. For the extended cylinder

(b) and (d), qe ¼ 10, Ce ¼ 2:5, ge ¼ 18 and the region of integration is from

r ¼ 0! 10 and z ¼ 10! 25. There are 20 positive (—–) and negative

(����) linearly spaced contour levels in the ranges xh 2 ½�1:5; 1:5�.
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the extended cylinder and thus the sole effect of the collision

should be the difference between these evolutions.

If we let the subscripts s and e denote the standard and

extended cylinders, respectively, then a quantity with the

subscript c implies the difference between the corresponding

quantities calculated in the standard cylinder and the

extended cylinder, i.e., ð�Þc ¼ ð�Þs � ð�Þe. Thus, the agitation

due to the collision alone may be written as Ac ¼ As � Ae.

Notice that far away from the walls, the agitation produced

by the sphere in both the standard and extended cylinders

would be the same, but as the sphere approaches the solid-

mimicked wall, they would begin to differ.

Figure 6 shows contours of azimuthal vorticity, the

control volume, and the location of the spheres for the

two configurations at two different times (before and after

the sphere stops). The initial time of release of the sphere

was at t ¼ �8. At t ¼ 7, the vortex ring in the standard

cylinder has collided with the wall, whereas in the

extended cylinder, the vortex ring has already crossed the

imaginary lower boundary (dashed grey line correspond-

ing to the bottom wall of the standard cylinder). The

grids in the region of integration for both cylinders are

the same. However, for the extended cylinder, additional

grid points extend below the bottom wall compared to the

standard cylinder.

The time evolution of the agitation from Eq. (2) for both

the standard and extended cylinder and the difference

between the two are shown in Fig. 7 for 100 � Re � 600. In

both cases, there is a sharp decay of the agitation due to the

arrest of the particle as the wake behind the sphere begins to

roll, creating secondary vortices. This sudden arrest gener-

ates two different momentum exchanges with the liquid, in

addition to the velocity dependent drag force. One is due to

the added mass force due to the deceleration of the particle,

while the second due to the unsteady viscous contribution

(history force). Both exchanges are proportional to the decel-

eration of the particle42,43 and both are dependent on the

characteristic deceleration time.44–46 This deceleration time

plays a very important role in the momentum transfer

between the particle and the fluid. In the simulation, the

deceleration of the particle is not solved but imposed to

occur on one time step.

FIG. 7. (Color online) Fluid agitation at

100 � Re � 600 from numerical simula-

tions. For the standard cylinder gs ¼ 8,

As (–), for the extended cylinder

ge ¼ 18, Ae (��), and the difference Ac

(�	�).
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To analyze the forces acting on the sphere approaching a

solid wall through a thin layer would require measurements

of film thickness, impact velocity, and deceleration time,

where the lubrication theory applies. A detailed analysis of

these contributions is outside the scope of this work, but a

few remarks about the features associated with the momen-

tum transfer are appropriate here. We consider only the ways

to parameterize the agitation caused by the collision of the

sphere with the wall. These parametrizations either take the

form of an integral measure of the momentum exchange

(related to the force on the sphere and reaction by the wall) or

an integral measure of (kinetic) energy. And from this, there

are two ways to define the boundaries over which these inte-

gral measures are taken (either Eulerian or Lagrangian). An

integral measure of momentum is nontrivial to apply as mo-

mentum; as a concept, it is not well-defined (for unbounded

flows, see Refs. 47 and 48 and references therein) and it is

non-trivial to interpret (for bounded flows). Kinetic energy on

the other hand is a convergent quantity (in many cases). For

this reason, our approach has taken the route of assessing the

kinetic energy rather than the momentum exchange.

In order to quantify the agitation produced by a single

particle that can be used as boundary condition for kinetic

energy on the walls, it may be useful to define an average

agitation index (units of action per unit mass) as

hAi ¼ 1

Vp

ðT

to

AðtÞ dt; (3)

where Vpð¼ p=6Þ is the volume of the particle, to is the time

the sphere begins to move, and T is the time at which the

fluid motion has nearly ceased. The quantity hAi approaches

a constant value as T approaches infinity. The average agita-

tion index is loosely connected to the notion of “action”

from classical mechanics, which postulates that the path

actually followed by a physical system is that for which the

action is minimized.

The asymptotic behavior of the average agitation index

for the collision from Eq. (3) at different integration times T
is shown in Fig. 8 at 50 � Re � 600. Notice that the average

agitation index due to the collision alone hAci shown in Figure

9 is positive for all values of Re, which guarantees consistency

with certain general properties of the Navier-Stokes equations,

i.e., positiveness of the turbulent kinetic energy.49,50

Figure 9 suggests that hAci trends to zero for Re
 1 as

inertial effects become negligible in this limit. When

Re
 1, the wake behind the sphere is not created, and, as

a consequence, there are not secondary vortices that could

enhance the agitation of the flow. However, the effects of

squeezing the fluid out of the gap between the bottom wall

and the sphere, albeit small, are ubiquitous as long as there

is a solid boundary at the bottom where the sphere stops.

On the other hand, the effects of the bottom boundary at

any Re are not present in the extended cylinder, as the fluid

is allowed to move through the imaginary wall.

For Re� 1, Fig. 9 indicates an asymptotic upper limit

for hAci. However, in this region, we should be careful when

extrapolating the values of hAci to the asymptotic limit that

corresponds to large Re, because the simulations and the

experiments were performed for a range of parameters in

which the flow remained axi-symmetric. It is reasonable to

expect three-dimensional effects to appear as the Re number

is increased beyond a certain critical value, even if the flow

remains in the laminar regime. If the Re is further increased,

the flow may become fully turbulent. Thus, the asymptotic

value suggested in Fig. 9 would be invalid when the axi-

symmetry of the flow is broken.

IV. SUMMARY AND CONCLUSIONS

In this investigation, we undertook detailed calculations

on the fluid motion around a sphere colliding with a wall

immersed in a viscous fluid. Making use of a PIV system,

the agitation was obtained and compared with the numerical

simulations. We found that the average agitation index hAci
increases monotonically with Re for the range of values con-

sidered in this investigation.

Accuracy of the modeling of particulate two-phase flows

depends on how well the hydrodynamics is described. Advan-

ces in computational capabilities allow in some cases the per-

formance of detailed simulations, but in many practical

engineering applications, parts of the flow field are modelled

rather than solved.2 Turbulence and particle submodels are

among these models that may be used to calculate the behav-

ior of particulate two-phase systems. In the two-phase flow

coupled with engineering models (e.g., k � e turbulence

model), the governing equations of fluid phase are generally

described in Eulerian form, whereas the equations governing

the motion of the particle can be either Eulerian or Lagran-

gian. In the Euler-Euler coupling model, the solid phase is

FIG. 8. (Color online) Typical curves of the average agitation index

hAci ¼ 1=Vp

Ð T
to

Acdt as function of the T for the collision only, showing the

asymptotic behavior as function of the integration time T at 50 � Re � 600.

(—–) Re ¼ 50, (��) Re ¼ 100, (� � �) Re ¼ 200, (� � ��) Re ¼ 300, (- 	-)
Re ¼ 400, (- }-) Re ¼ 500, (-h-) Re ¼ 600.

FIG. 9. Relative value of average agitation index due to the collision alone

hAci ¼ hAsi � hAei for 50 � Re � 600 evaluated at T ¼ 200.
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treated as a continuum, with the disadvantage that the proba-

bilistic characteristic of particle motion is ignored.51 Never-

theless, in both Euler-Euler or Euler-Lagrange formulations,

the wall function is usually implemented as a boundary condi-

tions at the walls, where the turbulent kinetic energy k and

energy dissipation e are written in terms of the shear

velocity.52,53

Here, we proposed a new integral measure that in part

permits practical closure relationships near walls to be pre-

scribed. To incorporate these detailed calculations of sub-

grid scale processes into under-resolved models which do not

account explicitly for the particles (k � e models for exam-

ple), it might be useful to use the average agitation index as a

boundary condition for kinetic energy on the walls instead of

the commonly used wall-function. For example, by setting

k ¼ hAcif , where f is the a random frequency (with Gaussian

distribution) of particle collisions on the wall.

Finally, there are many aspects of integral measures

applied to disperse flows which require more exploration,

and this study provides the framework for further investiga-

tions. One of them is the implementation of the boundary

condition at the wall in a two-phase turbulent model as sug-

gested above and another is the motion of a sphere approach-

ing a solid wall through a thin layer with focus on the

momentum exchange due to inertia and viscous effects,

which will be addressed in forthcoming papers.
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boundary conditions in convective and diffusive heat transfer with

immersed boundary methods,” J. Heat Transfer 129, 1506 (2007).
29G. Stringano, G. Pascazio, and R. Verzicco, “Turbulent thermal convec-

tion over grooved plates,” J. Fluid Mech. 557, 307 (2006).
30S. Kang, G. Iaccarino, and F. Ham, “DNS of buoyancy-dominated turbu-

lent flows on a bluff body using the immersed boundary method,” J. Com-

put. Phys. 228, 3189 (2009).
31J. Kim, D. Kim, and H. Choi, “An immersed-boundary finite-volume

method for simulations of flow in complex geometries,” J. Comput. Phys.

171, 132 (2001).
32A. Cristallo and R. Verzicco, “Combined immersed boundary/large-eddy

simulations of incompressible three dimensional complex flows,” Flow

Turbul. Combust. 77, 3 (2006).
33M. Uhlmann, “An immersed boundary method with direct forcing for the

simulation of particulate flows,” J. Comput. Phys. 209, 448 (2005).
34M. D. de Tullio, A. Cristallo, E. Balaras, and R. Verzicco, “Direct numeri-

cal simulation of the pulsatile flow through an aortic bileaflet mechanical

heart valve,” J. Fluid Mech. 622, 259 (2009).
35J. R. Pacheco, J. M. Lopez, and F. Marques, “Pinning of rotating waves

to defects in finite Taylor–Couette flow,” J. Fluid Mech. 666, 254

(2011).
36E. A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof, “Combined

immersed-boundary finite-difference methods for three-dimensional com-

plex flow simulations,” J. Comput. Phys. 161, 35 (2000).
37R. Verzicco, F. Lalli, and E. Campana, “Dynamics of baroclinic vortices

in a rotating stratified fluid: A numerical study,” Phys. Fluids 9, 419

(1997).
38S. A. Smirnov, J. R. Pacheco, and R. Verzicco, “Numerical simulations of

nonlinear thermally-stratified incremental spin-up in a circular cylinder,”

Phys. Fluids 22, 116602 (2010).
39L. Lourenco and A. Krothapalli, “On the accuracy of velocity and vorticity

measurements with PIV,” Exp. Fluids 18, 421 (1995).

063301-8 Pacheco et al. Phys. Fluids 23, 063301 (2011)

Downloaded 13 Sep 2013 to 132.248.12.211. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1007/s10494-007-9096-0
http://dx.doi.org/10.1098/rspa.2008.0134
http://dx.doi.org/10.1098/rspa.2008.0134
http://dx.doi.org/10.1063/1.869481
http://dx.doi.org/10.1023/A:1000856308915
http://dx.doi.org/10.1063/1.869948
http://dx.doi.org/10.1017/S0022112004009577
http://dx.doi.org/10.1017/S0022112004008602
http://dx.doi.org/10.1146/annurev.fluid.32.1.659
http://dx.doi.org/10.1017/S0022112009992084
http://dx.doi.org/10.1017/S0022112009992084
http://dx.doi.org/10.1115/1.4001604
http://dx.doi.org/10.1115/1.4001604
http://dx.doi.org/10.1016/j.powtec.2005.04.036
http://dx.doi.org/10.1016/j.powtec.2005.04.036
http://dx.doi.org/10.1063/1.3083318
http://dx.doi.org/10.1017/S0022112099007120
http://dx.doi.org/10.1098/rsta.2008.0024
http://dx.doi.org/10.1098/rsta.2008.0024
http://dx.doi.org/10.1146/annurev.fluid.30.1.199
http://dx.doi.org/10.1017/S0022112087002027
http://dx.doi.org/10.1063/1.1427920
http://dx.doi.org/10.1017/S0022112097007647
http://dx.doi.org/10.1017/S0022112093002903
http://dx.doi.org/10.1090/S0002-9904-1964-11105-8
http://dx.doi.org/10.1007/BF01448839
http://dx.doi.org/10.1006/jcph.1996.0033
http://dx.doi.org/10.1080/10407790590935975
http://dx.doi.org/10.1080/10407790590935975
http://dx.doi.org/10.1115/1.2764083
http://dx.doi.org/10.1017/S0022112006009785
http://dx.doi.org/10.1016/j.jcp.2008.12.037
http://dx.doi.org/10.1016/j.jcp.2008.12.037
http://dx.doi.org/10.1006/jcph.2001.6778
http://dx.doi.org/10.1007/s10494-006-9034-6
http://dx.doi.org/10.1007/s10494-006-9034-6
http://dx.doi.org/10.1016/j.jcp.2005.03.017
http://dx.doi.org/10.1017/S0022112008005156
http://dx.doi.org/10.1017/S0022112010004131
http://dx.doi.org/10.1006/jcph.2000.6484
http://dx.doi.org/10.1063/1.869136
http://dx.doi.org/10.1063/1.3505025.1
http://dx.doi.org/10.1007/BF00208464


40T. Leweke, M. C. Thompson, and K. Hourigan, “Touchdown of a sphere,”

Phys. Fluids 16, S5 (2004).
41M. C. Thompson, T. Leweke, and K. Hourigan, “Sphere-wall collisions:

Vortex dynamics and stability,” J. Fluid Mech. 575, 121 (2007).
42P. Gondret, E. Hallouin, M. Lance, and L. Petit, “Experiments on the

motion of a solid sphere toward a wall: From viscous dissipation to elasto-

hydrodynamic bouncing,” Phys. Fluids 11, 2803 (1999).
43R. Mei and C. J. Lawrence, “The flow field due to a body in impulsive

motion,” J. Fluid Mech. 325, 79 (1996).
44J. O. Marston, W. Yong, and S. T. Thoroddsen, “Direct verification of the

lubrication force on a sphere travelling through a viscous film upon

approach to a solid wall,” J. Fluid Mech. 655, 515 (2010).
45A. Mongruel, C. Lamriben, S. Yahiaoui, and F. Feuillebois, “The approach of

a sphere to a wall at finite Reynolds number,” J. Fluid Mech. 661, 229 (2010).
46M. A. T. van Hinsberg, J. ten Thije Boonkkamp, and H. J. H. Clercx, “An

efficient, second order method for the approximation of the Basset history

force,” J. Comput. Phys. 230, 1465 (2011).

47B. U. Felderhof, “Transient flow caused by a sudden impulse or twist

applied to a sphere immersed in a viscous incompressible fluid,” Phys.

Fluids 19, 073102 (2007).
48I. Eames, “Disappearing bodies and ghost vortices,” Philos Trans. R. Soc.

London Ser. A 366, 2219 (2008).
49C. G. Speziale, “On nonlinear K� l and K� e models of turbulence,” J.

Fluid Mech. 178, 459 (1987).
50J. L. Lumley, “Computational modeling of turbulent flows,” Adv. Appl.

Mech. 18, 123 (1978).
51P. Oresta, R. Verzicco, D. Lohse, and A. Prosperetti, “Heat transfer mech-

anisms in bubbly Rayleigh-Bénard convection,” Phys. Rev. E 80, 026304

(2009).
52Z. H. Zhao and H. J. S. Fernando, “Numerical simulation of scour around

pipelines using an Euler-Euler coupled two-phase model,” Environ. Fluid

Mech. 7, 121 (2007).
53Z. H. Zhao and H. J. S. Fernando, “Numerical modeling of a sagging pipe-

line using an Eulerian two-phase model,” J. Turbul. 9, 1 (2008).

063301-9 Fluid velocity fluctuations in a collision Phys. Fluids 23, 063301 (2011)

Downloaded 13 Sep 2013 to 132.248.12.211. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.1773854
http://dx.doi.org/10.1017/S002211200600406X
http://dx.doi.org/10.1063/1.870109
http://dx.doi.org/10.1017/S002211209600804X
http://dx.doi.org/10.1017/S0022112010001266
http://dx.doi.org/10.1017/S0022112010003459
http://dx.doi.org/10.1016/j.jcp.2010.11.014
http://dx.doi.org/10.1063/1.2748709
http://dx.doi.org/10.1063/1.2748709
http://dx.doi.org/10.1098/rsta.2008.0024
http://dx.doi.org/10.1098/rsta.2008.0024
http://dx.doi.org/10.1017/S0022112087001319
http://dx.doi.org/10.1017/S0022112087001319
http://dx.doi.org/10.1016/S0065-2156(08)70266-7
http://dx.doi.org/10.1016/S0065-2156(08)70266-7
http://dx.doi.org/10.1103/PhysRevE.80.026304
http://dx.doi.org/10.1007/s10652-007-9017-8
http://dx.doi.org/10.1007/s10652-007-9017-8

