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In the ideal Fermi gas a physical interpretation can be given to a curious ‘‘hump’’ that develops in the

chemical potential mðTÞ as a function of absolute temperature T for any spatial dimensionality do2,

integer or not. This contrasts with the more familiar monotonic decrease for dZ2. The hump height

increases without limit as d decreases toward zero where m¼ þ1. This positive divergence at d-0 is

argued to be a clear manifestation of the Pauli Exclusion Principle in configuration space, whereby two

spinless fermions cannot sit on top of each other. The observed hump is thus an obvious precursor of

this manifestation, otherwise well understood, say, in the 1s level of the H atom. The ideal Bose gas for

do2 is also reexamined and found impossible to be confined at all in d-0 as it exhibits the opposite

divergence m¼�1 there. Both divergences are seen to follow from the Heisenberg Uncertainty

Principle.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

The ideal Fermi gas (IFG) possesses a peculiar nonmonotonic
‘‘anomaly’’ for all dimensions do2 [1–4]. The anomaly seems to
be intimately connected with the Pauli Exclusion Principle
(PEP) [5]. The PEP plays a well-known role in constructing the
Periodic Table; in ionic and covalent bonding in molecules and
solids; in metals, insulators, semiconductors, superconductors; in
nuclear shell structure and binding energy including neutron
stability when in a nucleus, to name just a few applications. The
PEP has been shown [6,7] to be responsible even for the fact that
ordinary bulk matter is stable and occupies volume. This is in
addition to the easily established remarkable fact that already the
simplest atom H is 99.9999999999999% empty space [8].

On the other hand, it is known that the nonrelativistic ideal
Bose gas (IBG) undergoes a Bose–Einstein condensation (BEC) only

for any dimensionality d42, integer or not, with a cusp singu-
larity in the temperature-dependent heat capacity for 2odo4
and a finite jump discontinuity for all d44, see, e.g., Refs. [9–11].
Since its theoretical prediction by Einstein in 1925 based on the
work in 1924 by Bose on photons, and after languishing for seven
decades as a mere academic exercise in textbooks, BEC has been
observed in the laboratory in laser-cooled, magnetically trapped
ultra-cold bosonic atomic clouds of 87

37Rb atoms [12], 7
3Li [13], 23

11Na
[14], 1

1H [15], 85
37Rb [16], 4

2He [17], 41
19K [18], 133

55 Cs [19], 174
70 Yb [20]
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and 52
24Cr [21]. Here, the upper and lower prefixes are the nuclear

mass number (of nucleons in the atomic nucleus) and proton
numbers, respectively. BEC in gases of excitons [22] and of
magnons [23–25] has also been reported. It has even been
observed in lower dimensions: Görlitz et al. [26] report BEC of
23
11Na atoms in 1D or 2D; Schreck et al. [27] observe it with 7

3Li
atoms in 1D; and Burger et al. [28] study the phase transition in a
cloud of 87

37Rb atoms in quasi-2D.
The discovery of the quasi-2D superconductors such as the

cuprates [29–31] or the quasi-1D superconductors like the
organo-metallic (or Bechgaard) salts [32–34] and carbon nano-
tubes [35], have further motivated studying low-dimensional
quantum gases, with or without interatomic interactions. Cuprate
superconductors are well-known to have a laminar structure
along directions, say a and b which are perpendicular to direction
c. Resistivity r anisotropies rc=rab where ab denotes the CuO or
BaO or SrO planes, as the case may be, can be as high as 105 in
Bi2þ xSr2�yCuO6þd [36] if not higher, even though only about 102

in YBa2Cu3O7�d ðYBCOÞ. In the Drude 1900 resistivity model [37, p.
7] r¼m=ne2t for current carriers of charge e, effective mass m

and number density n, while t is some average time between
collisions. Thus, if rc=rab ¼mc=mab is 1 one has a precisely 2D
situation; if it is 1 we have the perfectly isotropic 3D case. Hence,
the large but finite ratio 105 observed implies ð2þeÞD or ‘‘quasi-
2D’’ behavior, with e small. Even for YBCO the value dC2:03 has
been extracted independently by two groups [38,39] and sug-
gested to be more realistic than d¼ 2, since dC2:03 reflects
inter-CuO (or BaO or SrO as the case may be) -layer couplings.

In contrast to bosons with singular behavior above2D (the
well-known BEC), fermions exhibit what is arguably nontrivial
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anomalous behavior below2D [1–4]. Low-dimensional Fermi sys-
tems have found a host of practical electronic-device applications
[40–43] with quantum ‘‘wells’’ (2D), ‘‘wires’’ (1D) and ‘‘dots’’
[44] (0D).

Noninteger or fractal dimensions are used, e.g., to compare the
complexity fractals of two curves or two surfaces [45]. In
materials science a noninteger dimension is directly related to
‘‘roughness’’ [46] and leads to basic applications in stereology
[47], powder technology [48,49], geology [50], metallurgy [51],
computer graphics [52–54], and so on. Since ‘‘fractal’’ means
‘‘broken’’ or ‘‘fractured’’ noninteger dimensions falls within this
definition, and can otherwise be associated with an irregular
measurement between integer dimensions. For instance, it is
known that Brownian motion is a type of random walk [55]
which is fractal. Fractals occur in a wide range of phenomena,
from river levels and landscape topography to computer network
traffic and stock-market indicators [56]. Indeed, Mandelbrot [56,
p. 85] cites an empirical fractal dimension d¼1.23 for the
distribution of galaxies in the observable universe. Thus, a fractal
geometry for Bose and Fermi gases at low dimensions is possibly
applicable.

It is well-known from textbooks that the IFG chemical poten-
tial mðTÞ as function of absolute temperature T monotonically
decreases with T for both d¼2 and 3 from its T¼0 value, the Fermi
energy EFp‘ 2n2=d=m (with n and m the fermion particle density
and mass, respectively). But for 1D a peculiar a rise from its T¼0
value of EF appears in mðTÞ at low temperatures before decreasing
to the classical limit that diverges negatively as �T ln T. A
nonmonotonic ‘‘humped’’ shape can then be surmised from a rise

of mðTÞ for d¼1 as reported [2] in a figure without further
comment. They determined this peculiar rise from the Sommer-
feld low-T series expansion [37, pp. 45ff.] which for da2 begins
with [1–4]

mðTÞ=EF �!
T=TF-0

1�ðd�2Þðp2=12ÞðT=TF Þ
2
þOðT4Þ, ð1Þ

where TF � EF=kB is the Fermi temperature. Thus, the first correc-
tion to unity is positive for all do2. For d¼2 the density of states
is energy-independent, which allow deriving the exact explicit
expression

mðTÞ=EF ¼ T=TF ln½expðTF=TÞ�1��!
T-0

1: ð2Þ

In contrast with all da2, this is not expandable in powers of T=TF

as expðTF=TÞ evidently has an essential singularity at T¼0.
A well-developed hump behavior in the IFG mðTÞ for any do2

has indeed been found numerically and reported in greater detail
in Refs. [3,4]. The hump height rises without limit as d-0. This
same behavior then showed up in the heat capacity and is
reminiscent of the Schottky effect [2,57,58] in paramagnetic salts
at low temperatures. Though not singular behavior as such in the
IFG, it still remained an intriguing anomaly. May [9] has investi-
gated the peculiar role of the specific value d¼2 dividing
behaviors in the IFG and the IBG, showing how their specific
heats are identical for all T at precisely d¼2 itself. This holds for
quadratically dispersive particles.

Even fermionic atomic gases like 40
19K [59] and 6

3Li [60] exhibit
what seems to be a BEC, in what some consider the ‘‘sixth’’ state
of matter—if BEC is the ‘‘fifth’’. The sixth state results when some
of the fermions presumably Cooper-pairing [61] into bosons
undergo BEC. The IFG has been thoroughly treated in general by
many authors [1–4,58] and detailed studies of the quantum
behavior in any dimension at sufficiently low temperatures in
these systems has also gained interest as possible precursors of
the presumed paired-fermion condensate at lower temperatures,
in hopes that it might shed light on the phenomenon of super-
conductivity supposedly presaged by the pairing of some
electrons (or holes) to form a boson-fermion binary mixture with
a subsequent BEC of the bosonic Cooper-pair subsystem (a brief
survey for ternary mixtures including hole pairs is in Ref. [62]; a
more extensive treatment is Ref. [63]).

In Section 2 we revisit the polylogarithm function by reex-
amining the IFG of quadratically dispersive fermions in any space
dimension dZ0, integer or not. The hump for all do2 is
interpreted as a precursor of the limitless value taken by the
maximum value of mðTÞ as d-0 is approached, which in turn is
argued to be a manifestation in configuration space of the PEP for
spinless fermions. In Section 3 the Heisenberg Uncertainly Prin-
ciple (HUP) is invoked to shed light on both fermion and boson
divergences; in Section 4 the boson case is discussed and Section
5 presents conclusions.
2. Ideal Fermi gas in dr2

Consider a d-dimensional noninteracting gas of N identical
bosons or N identical fermions of mass m moving freely, i.e., with
a quadratic dispersion relation as implied by the Hamiltonian
H¼

Pd
i ¼ 1 p2

i =2m. This gives rise to eigenvalues ek ¼ ‘ 2k2=2m and
ultimately to the boson or fermion number equation

N¼
X

k

½z�1 expðbekÞþa��1, ð3Þ

where b� 1=kBT , mðTÞ is the chemical potential, and z� exp bmðTÞ
is the real gas fugacity. For bosons a¼�1 while for fermions a¼1
and for ‘‘boltzons’’ a¼ 0. In a cubical ‘‘box’’ of size L of d

dimensions where Ld is the system volume, the summation over
k can be replaced by an integral, namely

X
k

�!ðL=2pÞd
Z

ddk: ð4Þ

Thus, in a volume Ld in any dimension d and in the continuum
limit Eq. (3) becomes

N¼ ðL=2pÞd½2pd=2=Gðd=2Þ�

Z
dkkd�1

z�1 expðbekÞþa
: ð5Þ

Here the volume of a hypersphere of radius R in dZ0 dimensions
[58]

VdðRÞ ¼ pd=2Rd=Gð1þd=2Þ note : V0ðRÞ � 1 ð6Þ

was used. Integrating over x� bek instead of over k in Eq. (5)
introduces the expression

1

GðsÞ

Z 1
0

dx
xs�1

z�1 exp xþa
¼�

1

a

X1
l ¼ 1

ð�azÞl

ls
��aLisð�azÞ 9z9o1:

ð7Þ

Here LisðtÞ ¼
P1

l ¼ 1 tl=ls with ð9t9o1Þ is the polylogarithm func-
tion; it is designated as PolyLog½s,t� in Ref. [64]. This function has
important applications in both physics and mathematics such as
number theory, representation theory of infinite dimensional
algebras, exact soluble models, conformal theories, d-dimensional
analysis, etc. [65–72]. The limitation 9z9o1 in convergence arises
from the small-z binomial expansion of the integrand on the lhs of
Eq. (7), which is then integrated term by term to get the infinite
summation. For fermions we shall need to go beyond this unit
circle of convergence in the z-plane, in fact the case z-1 will be
required. For a¼�1 Eq. (7) is the Bose integral gsðzÞ which for
z¼1 and sZ1 becomes the Riemann Zeta function zðsÞ of order
s. For a¼1 Eq. (7) is the Fermi integral fsðzÞ. Both integrals are
extensively discussed in Ref. [58, Appendix].



Fig. 1. Chemical potential mðTÞ (in units of Fermi energy EF) of an IFG in d¼ 3;2,1, 3
4

and 1
2 spatial dimensions as function of absolute temperature T (in units of Fermi

temperature TF � EF=kB). The monotonically decreasing curves for d¼2 and 3 are

the familiar textbook results. They turn negative at T=TF C1:44 and 0.989,

respectively. Inset illustrates rise of mðTÞ with T for all do2, as opposed to its

well-known monotonic decrease for all dZ2.
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Introducing the standard thermal wavelength

l� h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT

p
ð8Þ

where h is Planck’s constant, from Eqs. (5) and (7) with s¼ d=2
one has the reduced (i.e., dimensionless) number density for
spinless fermions

nld
¼

1

Gðd=2Þ

Z 1
0

dx
xd=2�1

expðx�aÞþ1
� Id=2ðaÞ: ð9Þ

Here n�N=Ld and aðTÞ � bmðTÞ � ln z. Letting expða�xÞ � y in Eq. (9)
and calling d=2�1�m one gets the integral representation [73]

Imþ1ðzÞ ¼
1

Gðmþ1Þ

Z z

0

dy

yþ1
ða�ln yÞm, 0ozo1, ð10Þ

which is now valid for all nonnegative z. It can in fact be shown
(Ref. [73], Eq. (10)) that the integral defined in Eq. (9) is precisely

ImðzÞ ��Limð�zÞ ð11Þ

where the polylog function Lim(z) can be defined as

LimðzÞ ¼

Z z

0

dt

t
Lim�1ðtÞ, 0ozo1 ð12Þ

or, alternately by the recurrence relation

z
@

@z
LimðzÞ ¼ Lim�1ðzÞ: ð13Þ

This in turn immediately implies that

Li1ðzÞ ¼�lnð1�zÞ and Li0ðzÞ ¼ z=ð1�zÞ, ð14Þ

where the latter expression is to be used in the d-0 for IFG case to
be discussed. From Eqs. (9) and (11) the number density n�N=Ld of
spinless fermions is thus given by

nld
¼ Id=2ðzÞ ¼�Lid=2ð�zÞ: ð15Þ

As mentioned, one sees an anomalous behavior in the chemi-
cal potential of an IFG [4] as d-0. There is another anomaly with
number density as d-0. From Eq. (15) as d-0 and the rhs in
Eq. (14), the IFG number density becomes

nd-0 ¼
z

1þz
: ð16Þ

As n must be T-independent so must z and the only possible
unique solution to Eq. (16) is z� exp bmðTÞ-þ1, implying that
nd-0 �N=Ld-0-1. Hence, in precisely null dimension (0D) only
one spinless Fermi particle (or two for spin 1

2, etc.) can be
accommodated. It is a thermodynamic statement of the PEP in
coordinate space analogous to that in momentum space, viz., the
1s state of the hydrogen atom. From Eq. (16) one obtains as we
exhibit in Fig. 3 bm¼ ln½nd-0=ð1�nd-0Þ� whereas the thermody-
namic limit (TL) holds every step of the way (see Appendix).

The dimensionless internal energy U of the IFG in terms of
polylogs [74] is given by

2bU=dN¼
Lid=2þ1ð�zÞ

Lid=2ð�zÞ
: ð17Þ

The specific heat at constant volume CV ðTÞ ¼ ð@U=@TÞLd is then
given by

2CV ðT ,LdÞ

dNkB
¼ ðd=2þ1Þ

Lid=2þ1ð�zÞ

Lid=2ð�zÞ
�ðd=2Þ

Lid=2ð�zÞ

Lid=2�1ð�zÞ
, ð18Þ

where Eq. (13) was used. A plot of CV(T) for several values of d is
shown in the rhs inset of Fig. 2 as function of T=TF .

Numerical studies [4] of the low-temperature Fermi chemical
potential for 0odo2, Fig. 1, show that the hump observed in 1D

[2] is not an isolated or accidental feature. It seems to be
foreshadowing a deeper physical principle. Its full significance
can only be extracted when d is taken to zero, or 0D. In an effort to
understand the confineability of particles, a study of physical
properties in 0D was made [75, p. 947] by analytically continuing
d to any dimension [76], integer or not. It was possible to do so
since the number density is expressed in the transcendental
function of z and d, namely Lid2ðzÞ: The 0D behavior Eq. (16) is
the limit of the results obtained by the numerical studies just
mentioned. As the density nd-0 it must be T-independent requir-
ing that z� exp bmðTÞ-þ1 at any T, resulting in nd-0-1 for
spinless fermions. The above result [75] is obtained by taking
d-0 first and z-þ1 second, where the second limit is physi-
cally driven. Namely, if d-0, z becomes strongly d-dependent
such that z-þ1. That z� exp bmðTÞ-þ1 implies that this
occurs at any T. Thus in 0D, T is an irrelevant quantity. As noted
in Ref. [73] there are no classical solutions in 0D and only the
ground state is important in Eq. (4). That at 0D, m-þ1 is
precisely the limit that the numerical results of Fig. 1 suggest
for any d, integer or not. We recall that m is the energy required to
bring another Fermi particle into the system volume containing
other Fermi particles. At T¼0 this energy is just the Fermi energy
EF. In 0D it should not be physically possible owing to the PEP.
This impossibility is manifested with m-þ1 as an impenetrable
barrier to other Fermi particles. From Eq. (17) as d-0 one has
2bU=dN¼ ð1þzÞlnð1þzÞ=z. Hence, since z-þ1 implies that the
dimensionless internal energy diverges, 2bU=dN-þ1.

For linearly (as opposed to quadratically) dispersive quantum
particles the dividing d-value associated with the IFG and the IBG,
i.e., above which BEC occurs for bosons and below which a
nonmonotonic mðTÞ for fermions appears, is not d¼2 but rather
d¼1, as already also inferred in Ref. [77]. Pathria [78] has
explicitly associated the dividing d-value with the exponent
s40 in the particle dispersion relation ekpks where k is again
the momentum wavenumber. Examples of s¼1 are:
(i) nonrelativistic bosonic Cooper pairs [79] in a Fermi sea in
leading order in k or (ii) ultrarelativistic bosons [80] in vacuo.
Cooper pairs [61], in contrast to BCS pairs [81], are bosonic [82,83]
in that their energy depends only on their center-of-mass
momenta but not also on their relative momenta as do BCS pairs;
thus Cooper pairs obey Bose statistics. In general, bosons suffer a
BEC only for all d4s below a critical temperature Tcp‘ 2ns=d=kBm

[84]. Only just recently did a nonrelativistic example of s¼1
fermions surface: the so-called Dirac electrons in graphene which
is apparently the first truly 2D actual material (two excellent
reviews are Refs. [85,86]).
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3. Uncertainty principle and l-divergences

As d-0 the volume Ld-1. Since there is then no length scale,
the volume in null dimension is unity, nevertheless TL is still valid
(see Appendix). This suggests a point or a dot. A particle in it can
have no indeterminacy Dx in position so that as d-0, Dx-7 0.
Thus, by the Heisenberg Uncertainty Principle the indeterminacy
in momentum Dp must approach 71 [74]. Also, the time
indeterminacy Dt-7 0 is accompanied by an energy indetermi-
nacy De-7 1.

This holds for the IFG at d-0 while for the IBG there occurs
another indeterminacy Dt from the HUP. For the IBG one has

2bU=dN¼ Lid=2þ1ðzÞ=Lid=2ðzÞ: ð19Þ

Thus, as d-0 the dimensionless internal energy 2bU=dN-

constant because z-0) m-�1. Then 2bU=dN-1, while
z-1) m-0 so that 2bU=dN-0 for spinless bosons. This is
Fig. 2. Inverse of themaximum value of the mðTÞ=EF for an IFG for all do2

displaying how mðTÞ=EF must diverge positively as d-0. Left inset is a semilog

plot. As expected, maximum value of mðTÞ is just EF for all dZ2 (thin horizontal

line at top of both figures). Right inset illustrates on a semilog plot humped

behavior for all do2 of specific heat CV(T) which for dZ2 is monotonic increasing.

Fig. 3. For the IFG we plot lnðzÞ � bmðTÞ vs. number density nd -0, from Eq. (16)

arbitrarily near null dimension (long-dashed curves). For spinless fermions

m-þ1 as nd-0-1 and nd-0-2 for spin s¼ 1
2 and the TL is preserved, i.e.,

nd-0 is finite. Short-dashed extensions below thin horizontal line at

ln ðzÞ � bmðTÞ ¼ 0 are nonphysical as they violate positivity m40 for the IFG as

d-0. This positivity is clearly evident in Inset. For the IBG (solid-line curves) from

Eq. (23) at d-0 as z-0) m-�1 so that the number density converges nd-0-0,

i.e., the TL is preserved, while z-1) m-0 so that number density diverges

nd-0-1 and the TL is not valid in null-d.
depicted in Fig. 4. A finite internal energy U implies from the
HUP that Dt-1. This implies that Dp�mðDx=DtÞ-0 and again
from the HUP that Dx-1. Therefore, bosons cannot be confined
at all in null dimension.

Thus the internal energy U indeterminacy DU �
P

DenðeÞ, where
nðeÞ is defined in Eq. (3), approaches þ1 for the IFG while for the
IBG is finite. By the Second Law of Thermodynamics m¼ ½DU=DN�S,Ld

where S is the system entropy. Fixing S such that near the ground
state it nearly vanishes (by the Third Law), one concludes that m-7
1 as d-0. In general, a Fermi gas near the ground state has m40,
while a Bose gas must have mr0 for all states to ensure that the
summands nðekÞ in Eq. (3) are never negative. The HUP thus demands
that as d-0, m-þ1 for a Fermi gas and m-�1 for a Bose gas.
Finally, from Eq. (3) nðeÞ-1 for fermions and nðeÞ-0 for bosons. We
now illustrate the case of bosons.
4. Ideal Bose gas in dr2

For bosons (a¼�1) in Eq. (3) so that instead of Eq. (15) one
has [75]

nld
¼ Lid=2ðzÞ ð20Þ

or in general that nld
¼�a�1Lid=2ð�azÞ. When z� exp bm¼

exp bc0¼ 1. If Eq. (8) for T ¼ Tc is lc , in 3D this implies that
nl3

c ¼ Li3=2ð1Þ � zð3=2Þ the Riemann zeta function, which in turn
immediately leads to

Tc ¼ 2p‘ 2n2=3=mzð3=2Þ2=3
ð21Þ

or the familiar BEC critical temperature.
Without loss of generality, we scale the boson number density

n in Eq. (20) with the number density of fermions in an IFG in any
dimension nF � ðk

2
F=4pÞd=2=Gðd=2þ1Þ where kBTF � EF � ‘ 2k2

F=2m

is the Fermi energy of an equivalent system of fermions. Thus

n=nF ¼Gðd=2þ1ÞðT=TF Þ
d=2Lid=2ðzÞ: ð22Þ

The boson chemical potential mðTÞ for any dimension d40
follows from Eq. (22). In Fig. 5 we plot the IBG chemical potential
mðTÞ in units of the EF for several dimensionalities dr2 down to
d¼0.001 as a function of T in units of TF and for n=nF ¼ 1. In the
Inset we fixed the dimension at d¼0.1 and display results for the
five distinct values of n=nF shown.
Fig. 4. Dimensionless internal energy 2bU=dN for IBG and IFG spinless systems as

d-0. For the Fermi gas as z-1) 2bU=dN-1, this is shown in Inset, while

z-1) 2bU=dN is finite. The short-dashed curve violates the positivity of

chemical potential m40. For Bose gas when z-1) 2bU=dN-0, wich is a natural

limit for bosons and as z-0) 2bU=dN-1.



Fig. 5. Quadratically dispersive-boson chemical potential mðTÞ=EF for various dimen-

sionalities dr2 vs T=TF for n=nF ¼ 1. Inset shows for d¼0.1 several values of n=nF .

Fig. 6. Boson fugacity z� exp bmðTÞ shown for various dimensionless number

densities n=nF from 1 down to 0.001 vs T in units of TF. For dimensionalities

0odo1, z-0 and thus m-�1 for all T only provided that n=nF-0 for all T.
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For d-0 (if d¼0 precisely see Appendix A) and a¼�1 one has
from Eqs. (14) and (22) that

n

nF

� �
d-0

¼ Li0ðzÞ ¼
z

1�z
: ð23Þ

Since n=nF is a constant independent of T, so is z� exp bmðTÞ. This
requires that bmðTÞ be constant. As in the IFG case Eq. (16) it would
seem that one might assign any arbitrary value to n=nF which
would imply that Eq. (23) possesses infinitely many solutions.
However, the only true unique solution to Eq. (23) is with n¼0
which implies that z¼0 and consequently that mðTÞ-�1
whereas the TL is still valid (see Appendix). This is shown in
Fig. 3 from Eq. (23) since bm¼ ln ½ðn=nF Þd-0=½1þðn=nF Þd-0��. This
in turn is consistent with the HUP as argued in the preceding
section. This uniqueness is illustrated in Fig. 6 where one observes
that z-0 for any T only when n=nF-0 where temperature has no
meaning. Note that even for n=nF as small as 0:001, z continues to
decrease at T¼0 as d-0. All this means that bosons cannot be
confined at all in null dimension since the chemical potential
there is � 1 and an infinitely large negative chemical potential
indicates nonconfineability of the particles.

5. Conclusions

The ‘‘hump’’ in the low-T chemical potential mðTÞ in the ideal
Fermi gas (IFG) that appears for all do2, grows higher as d

decreases and diverges positively at d-0, i.e., m-þ1. The hump
thus portends the existence of an infinite-potential barrier at 0D

whereby there may be one and only one spinless fermion but no
more. The thermodynamic limit holds always. The single spinless
fermion can be seen to constitute a definition of an ‘‘ideal
quantum dot’’ and is a manifestation of the Pauli Exclusion
Principle (PEP) in configuration space.

For the ideal Bose gas its specific heat has either a cusp or a
jump singularity for all d42, this being a sign that it undergoes
the well-known Bose–Einstein condensation. But in 0D, mðTÞ has
only one solution, namely m-�1 which forces bosons over the
edges of a potential-energy chasm that prevents ideal bosons
from being confined at all in null dimension.

Thermodynamics implies that both divergences, m¼7 1 are
a manifestation of the Heisenberg Uncertainty Principle. The
additional anomaly of ideal quantum gases at precisely d¼0 arises
because the polylogarithm function as a complex function of d has
a pole at precisely d¼0 which is an essential singularity [75]. This
was already encountered in Eq. (2) as a function of T and
prevented the existence of a Sommerfeld low-T series expansion
for d¼2 that was otherwise possible for all da2.
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Appendix A. Thermodynamic limit for d-0

The thermodynamic limit (TL) corresponds to number of
particles N-1 and system volume V-1 while the number
density n�N=V remains constant. Since V ¼ Ld we can fix d and
let L-1. On the other hand from Eq. (5) for the IBG and the IFG
(a¼ 81, respectively), we have

N¼�al�dLdLid=2ð�azÞ, ðA:1Þ

which when evaluated at d-0 becomes Eqs. (16) and (23). One
can thus take the TL in null-d as follows. For the IFG one has from
Eq. (A.1) with d-0 that N¼ zðzþ1Þ�1 so that (i) N-1) z-1

this implies that the chemical potential m-1 at d-0; this is
shown in Fig. 3 where nd-0-1 for a spinless fermions and
nd-0-2 for a fermions with spin s¼ 1

2. Thus the TL is preserved,
i.e., nd-0 is finite. Or (ii) if N-1) ð1þzÞ-0 then z-�1) mo0
but this violates positivity m40 for the IFG (see dotted curves
violating positivity in Fig. 3).

For the IBG from Eq. (A.1) at d-0 one gets N¼ z=ð1�zÞ, since
z� exp½bm� and taking natural logarithms on both sides leads to
bm¼ ln½N=ð1þNÞ�. In the TL (i) if ð1þNÞ-1 then m-�1 so then
number density converges, nd-0-0. This is illustrated in Fig. 3 (solid
lines for spinless bosons and bosons with s¼1, s¼2). Or (ii) N-1

implies m-0 so that nd-0-1 and z-1 meaning that the TL does
not hold since number density diverges. Hence only the two instances
of (i) are valid for either IBG or IFG systems to determine the number
density nd-0 at d-0 and both preserve the TL.
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The dimensionless internal energy U for IBG and IFG systems is
(19) as d-0 one has the limit ð2bU=dNÞd-0 ¼ lnð1þazÞð1þazÞ=z

where as before a¼ 81 for Bose and Fermi, respectively. The specific
heat CV for the quantum ideal gases is ð@U=@TÞLd if one approaches
null dimension one has the same limit for U, i.e., for the Fermi gas:
(i) z-0) m-1 and then 2CV=dNk-1; or (ii) z-1) m-0
implying that 2CV=dNk-const. For the Bose gas: (i) z-0)
m-�1 and then 2CV=dNk-0; or (ii) z-1) m-0 and then
2CV=dNk-const. When d-0 the specific heat diverges for fermions
since only one particle can be confined in null-d . But it converges for
the Bose gas and is equal to zero since no bosons can be confined in
null dimension.

In the grand canonical ensemble (GCE) one takes a volume V

with N particles. As d-0, V-1 and the ‘‘cubical box’’ of size L and
d dimensions shrinks in size even as L-1 while d-0. As one
approaches d¼0 only one fermion can be accommodated in this
box. The length L of each cell in the GCE does not shrink but one
now takes N single-cells (NSC) each of volume V¼1 with just one
fermion each so that NSCfermions-1 so that the TL is preserved. In
the Bose gas, on the other hand, one cannot confine any bosons as
d-0 such that every single-cell each with V¼1 of the GCE is
empty and Nbosons-1, so that the TL is valid.
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