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Abstract. We have studied the effect of cationic disorder on the spin polarization of the double perovskite
system Sr2Fe1+xMo1−xO6 with −1 ≤ x ≤ 1/3. The composition x = 0 corresponds to the well-known
double-perovskite Sr2FeMoO6, which is expected to have complete spin polarization, however all samples
present some degree of Fe/Mo disorder which reduces the tunneling magnetoresistance in granular sam-
ples. We consider an electronic model within the renormalized perturbation expansion Green’s functions,
consisting in a correlated electron picture with localized Fe-ions and itinerant electrons interacting with
the local spins via a double-exchange type mechanism. Our results show the influence of disorder on the
density of states and the ground-state properties, particularly on the spin polarization over the whole range
of x.

1 Introduction

Transition metal oxides have been widely investigated in
view of their attractive properties for potential spintronic
applications [1]. In particular, half-metallic ferromagnetic
oxides have been searched as a source of spin polarized
currents. Additionally, its large magnetoresistance (MR)
could be used in information storage devices. The dou-
ble perovskite Sr2FeMoO6 (SFMO) is a ferromagnetic
half-metal with a high Curie temperature TC ∼ 400 K
and substantial low-field MR [2]. Its enhanced TC , com-
plete spin polarization at the Fermi level and substantially
larger low-field MR as compared to manganites, generate
a great interest in view of its possible magnetoelectronic
applications.

The ordered structure of SFMO consists of corner-
sharing BO6 octahedra with B = Fe, Mo alternating along
the three crystallographic axes of the perovskite struc-
ture, while Sr lies on the dodecahedral sites. The Fe/Mo
positions denoted Fe (S) and Mo (S) can be viewed as a
two interpenetrated BO6 face-centered cubic sublattices.
In the fully ordered structure, ferromagnetism and half-
metallicity in SFMO have been explained [3] making use
of a strongly correlated picture, consisting of Fe3+(3d5)
localized ions in a high-spin S = 5/2 configuration, to-
gether with Mo6+ cores and one itinerant electron per
formula unit (f.u.), which can hop to Fe sites only with
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an antiparallel orientation to the localized spin, stabiliz-
ing a ferromagnetic arrangement of local spins and fully
opposite spin-polarized itinerant electrons. This view is
consistent with ab initio calculations [2,4,5]. Accordingly,
the saturation magnetization per f.u. is MS = 4μB, how-
ever, the measured value in normal prepared samples re-
sults to be invariably lower [2,6,7]. Additionally, a spin
polarization P ≈ 0.85 has been measured [8] in a SFMO-
based tunnel junction device instead of the full polariza-
tion value P = 1 reached with the saturation magnetiza-
tion. This deviation of the theoretical values is attributed
to some degree of cationic disorder present in the samples,
in which Fe and Mo interchange their crystallographic po-
sitions, creating the so-called anti-sites (AS). Magnetore-
sistive properties of SFMO are connected to the amount
of the cationic ordering [8–10].

In view of the difficulty to have a full control of
the disordering process, the off-stoichiometric system
Sr2Fe1+xMo1−xO6 (−1 ≤ x ≤ 0.25) has been pro-
posed to elucidate how the presence of AS defects mod-
ifies the magnetic properties as compared to the ideal
x = 0 composition [11]. The simple idea is to control
atomic arrangements resulting from disorder by control-
ling the composition x. For x = 0, disorder generates
both Fe (S)–O–Fe (AS) and Mo (S)–O–Mo (AS) nearest-
neighbors (n.n) pairs which are the key in determining
the electronic and magnetic properties. The Mo (S)–O–
Mo (AS) bonds open new hopping channels available for
both spin directions, thereby depolarizing the conduction
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band [12,13]. In the Mo-rich regime (x < 0), such Mo (S)–
O–Mo(AS) bonds are favored even in the ordered situ-
ation, although Fe (S)–O–Fe (AS) bonds are also present
due to disorder. On the other hand, in the Fe-rich side
(x > 0), the excess of Fe ions replacing Mo inevitably pro-
duces n.n Fe (S)–O–Fe (AS) pairs. The saturation mag-
netization MS shows the remarkable behavior of first
increasing with x up to x = 0 for x < 0 and then de-
creasing for x > 0 [11], which can be qualitatively un-
derstood in terms of Fe local spins. Basically, for x ≤ 0,
MS increases with x primarily because the number of lo-
cal spins increases in a ferromagnetic background while
the decrease in the regime x ≥ 0 can be explained only
considering that n.n Fe (S) and Fe (AS) local spins are an-
tiferromagnetically coupled [11]. The electronic structure
of ordered Sr2Fe1+xMo1−xO6 has been studied [14] using
first-principles density functional theory DFT+U with an
effective on-site correlation energy only on Fe sites, though
it has been shown [13] that electronic interaction on Mo
sites is also important in determining an appropriate elec-
tronic model with disorder. In this paper we propose a
correlated picture on Fe and Mo sites to investigate the
effect of disorder on the electronic and magnetic proper-
ties of the system over the whole range −1 ≤ x ≤ 1/3. We
will show that the presence of AS, either by cationic disor-
der and/or excess or deficiency of Fe/Mo in the structure,
is detrimental to the half-metallic character of the system.
Our results are compared with experimental data showing
a good agreement.

2 Model

Cationic disorder is present in all SFMO samples, but how
AS are distributed through the system is not evident. Dif-
ferent local environments and/or antiphase domains, in
which short-range order exists even in samples with a high
degree of long-range disorder, have been suggested [15,16].
Complexity is added considering the off-stoichiometric
system in which the Fe/Mo proportion is not preserved.
In view of the nanosized characteristics of the domains
evidenced in the stoichiometric compounds [16], in this
paper we assume an uncorrelated distribution of AS de-
fects in Sr2Fe1+xMo1−xO6 (−1 ≤ x ≤ 1/3) defining
the order parameter a (1/2 ≤ a ≤ 1) as the proba-
bility to find Fe and Mo in their correct positions, re-
spectively sublattices α and β of the ordered structure.
In the Fe rich regime (x ≥ 0), we have the proportions
pβ
Mo = a(1−x), pβ

Fe = 1−a(1−x), pα
Fe = x+a(1−x) and

pα
Mo = (1− a)(1− x). Similarly, in the Fe deficient regime

(x ≤ 0), we have pα
Fe = a(1 + x), pα

Mo = 1 − a(1 + x),
pβ
Fe = (1− a)(1 + x) and pβ

Mo = a(1 + x)− x. Preliminary
calculations, in the stoichiometric case, including short-
range order show that this does not modify qualitatively
the present picture.

Following Carvajal et al. [3], we consider a strongly cor-
related description for Fe with the configuration Fe3+(3d5)
forming high-spin S = 5/2 localized spins and Mo6+(4d0)
cores. Aditionally we have n = 1 − 3x nominally Mo

electrons, which are itinerant providing the metallic be-
havior of the system. Therefore, Fe cannot retain its triva-
lent state for x ≥ 1/3, as Mo cannot take a valency
larger than 6+. As discussed above, it is clear that Fe (S)
and Fe (AS) generated by disorder and/or excess of Fe in
the structure are antiferromagnetically ordered [11], so we
consider all Fe (S) local spins lying on sublattice α to be
⇑ (+) and ⇓ (−) for Fe (AS) on sublattice β. On the other
hand, correlations are weak on Mo sites [17], the end mem-
ber SrMoO3 being known as a paramagnetic metal [18],
so that Mo (S)–O–Mo (AS) hopping channels are open for
both up and down spins.

Furthermore, on-site electronic energies EFe and EMo

are different from AS energies E′
Fe and E′

Mo due to dif-
ferent environments. Essentially, in the ideal case an elec-
tron on a Fe3+ site is surrounded by Mo6+ ions and vice
versa. Away from this case, electrons on all sites can be
surrounded both by Fe3+ and Mo6+ ions, then under the
influence of a less or more attractive potential. Diagonal
energies have been estimated by ab initio calculations [12],
finding an energy difference E′

Fe−EFe ≈ 1 eV, and a much
weeker effect of the environment for Mo, so we will take
EMo = E′

Mo. Making a Madelung-like analysis and tak-
ing EFe as a reference energy, we find that on-site energies
for the Fe-rich regime are E′

Fe = EFe + δ(2a − 1)(1 − x)
and EMo = EFe + Δ0 − δ[1 − a(1 − x)], and the corre-
sponding relations for the Fe-deficient regime are E′

Fe =
EFe+δ(2a−1)(1+x) and EMo = EFe+Δ0−δ(1−a)(1+x),
with Δ0 = E0

Mo − E0
Fe the charge transfer energy in the

ideal ordered state. According to band structure calcula-
tions [2], bandwidth w corresponding to Fe–Mo hopping
is about 1 eV, so a good estimate for δ seems to be δ = w.

The threefold degenerate t2g orbitals give rise to a con-
duction band described by a tight-binding model. Itin-
erant electrons can hop between Fe and Mo t2g orbitals
by means of O p states with the same symmetry, giving
three degenerate two-dimensional bands with coordina-
tion z = 4 and leading to a intermediate valence configu-
ration, Fe(3−ζ)+ and Mo(5+ζ)+, with 0 ≤ ζ ≤ 1. Figure 1
shows a scheme for the local and itinerant spin configura-
tions in the ideal structure and with AS defects. We con-
sider only n.n hoppings i.e. between the two sublattices.
In the first case, only one itinerant electron spin channel
is open between Fe–Mo because all Fe 3d, let’s say spin
up orbitals, are occupied, so itinerant electrons can hop
to Fe sites only with spin down orientation, stabilizing
a system of spin polarized itinerant electrons moving in
a ferromagnetic background. When Fe (AS) and Mo (AS)
are present, Fe (AS)–Mo (AS) hopping becomes allowed to
spin up itinerant electrons. Note that Fe–Fe hoppings are
not allowed due to the antiferromagnetic orientation of
local spins.

With the aim of calculate the density of states (DOS)
for itinerant electrons we shall obtain the local Green’
functions within the renormalized perturbation expan-
sion (RPE) [19]. In an alternating Bethe lattice in the
limit z −→ ∞ and zt2 scaled as w2/4, the local av-
erage Green’s functions take the dynamical mean-field
(DMF) form G−1

ii,σ = ω − εi −
∑

l�=i t2Gll,σ, where εi is
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Fig. 1. Scheme of the spin configuration for Fe and Mo ions (a)
in a perfect lattice a = 1 and x = 0 (empty circles and squares
respectively) and (b) with AS defects a �= 1 and/or x �= 0 (filled
circles and squares respectively). Large (small) arrows indicate
the localized (itinerant) spin orientation. Allowed hoppings of
itinerant electrons in different environments are also shown.

the corresponding on-site energy and the summation is
over all nearest neighbors sites. In the presence of disor-
der this requires to take an average over the different n.n
atomic configurations, thus simply considering the prob-
abilities pα

Fe, pα
Mo, etc defined above. This averaging pro-

cedure is an extension similar to the usual coherent po-
tential approximation in the case of random alloys [20]. It
includes both the disordering of the site energies and the
difference in hopping parameters. The Green’s functions
for an itinerant electron with spin ↓ are given by

GαFe
↓+ =

1

ω − ẼFe − w2

4 pβ
MoG

βMo
↓

, (1)

GβMo
↓ =

1

ω − ẼMo,↓ − w2

4 pα
FeG

αFe
↓+ − w′2

4 pα
MoG

αMo
↓

, (2)

GαMo
↓ =

1

ω − Ẽ′
Mo,↓ − w′2

4 pβ
MoG

βMo
↓

, (3)

while for spin ↑,

GβFe
↑− =

1

ω − Ẽ′
Fe − w2

4 pα
MoG

αMo
↑

, (4)

GαMo
↑ =

1

ω − Ẽ′
Mo,↑ − w2

4 pβ
FeG

βFe
↑− − w′2

4 pβ
MoG

βMo
↑

, (5)

GβMo
↑ =

1

ω − ẼMo,↑ − w′2
4 pα

MoG
αMo
↑

, (6)

μ = ± denotes the Fe local spin orientation in each sublat-
tice. Bandwidths w and w′, for Fe–Mo and Mo–Mo hop-
pings respectively, are related by w′ = qw with q > 1
because the large extension of the Mo 4d states [21]. The
value q ∼ 2 seems to be compatible with ab initio calcula-
tions. As it was pointed before, it is essential to consider
electronic correlations both on Fe and Mo ions. ẼFe and
ẼMo,σ (Ẽ′

Fe and Ẽ′
Mo,σ) are effective Fe and Mo site (anti-

sites) energies including electronic correlations. Fe itiner-
ant electron energies have no spin dependence because it
is automatically assigned by the localized spin. The intra-
atomic correlations among itinerant electrons are given by

HMo
C =

(
UMo+2JMo

) ∑

i,ν

niν↑niν↓+UMo
∑

i,ν,ν′ �=ν

niν↑niν′↓

+
(
UMo − JMo

) ∑

i,ν,ν′ �=ν,σ

niνσniν′σ, (7)

HFe
C =

(
UFe − JFe

) ∑

j,ν,ν′ �=ν,σ

njνσnjν′σ, (8)

ν and ν′ label the three degenerated t2g orbitals. On Mo
sites both intra and inter-orbitals correlations are present
while on Fe sites intervene only interactions between the
same spin direction on different orbitals. Site energies are
calculated using a mean-field approximation,

ẼFe = EFe +
2
3
UFe

eff

〈
nFe

α↓
〉
, (9)

Ẽ′
Fe = E′

Fe +
2
3
UFe

eff

〈
nFe

β↑
〉
, (10)

ẼMo,σ = EMo +
(

UMo +
2
3
JMo

)
〈
nMo

β,−σ

〉
+

2
3
UMo

eff

〈
nMo

β,σ

〉

(11)

and

Ẽ′
Mo,σ = E′

Mo +
(

UMo +
2
3
JMo

)
〈
nMo

α,−σ

〉
+

2
3
UMo

eff

〈
nMo

α,σ

〉
,

(12)
where UFe

eff = UFe − JFe, UMo
eff = UMo − JMo and we

used that 〈niνσ〉 = 〈niσ〉/3 due to the degeneracy of the
three t2g orbitals. UFe

eff = 3w, UMo
eff = w and JMo = 0.1w

provide a good agreement with experimental data in dis-
ordered samples for x = 0 [13], so we take these values
in the following calculations. The effective charge transfer
energy, which determines the density of states and elec-
tronic properties, is related self-consistently with correla-
tions and disorder. We shall take as a reference the charge
transfer energy in the ideal case (a = 1 and x = 0),

Δ = Ẽo
Mo,↓ − Ẽo

Fe

= EMo − EFe +
2
3
UMo

eff

〈
nMo

β,↓
〉0 − 2

3
UFe

eff

〈
nFe

α,↓
〉0

,

all the superscripts 0 allude to this state. This fixes the
bare charge transfer energy Δ0 = EMo − EFe. It has been
shown that this energy should be quite small [3], to repro-
duce the mixed-valence character ζ ∼ 0.5 observed exper-
imentally [22,23].
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Fig. 2. Evolution of the density of states as a function of the
composition x with a = 1 and a = 0.9 (q = 2). Solid (dotted)
lines correspond to the spin down (up) channel. Dashed lines
indicate the Fermi energy.

3 Results and discussion

In Figure 2 we show our results for the density of states
over the whole range −1 ≤ x ≤ 1/3 taking q = 2. The
paramagnetic metallic behavior and the Mo valency 4+
is correctly reproduced for SrMoO3 (x = −1). Let us
first examine the off-stoichiometric system without dis-
order (a = 1). Note that our results correspond only to
the description of the higher energy part of the t2g bands,
around and above the Fermi energy obtained in the band
structure calculation [14]. We see that our DOS are qual-
itatively in good agreement with those of Zhu et al. In
the Fe-rich regime (x ≥ 0), spin up electrons cannot move
because all α-sites are occupied by Fe ⇑. So, the ground
state remains half-metallic for x > 0 and the itinerant
moment Mi = 1 − 3x as shown in Figure 3a. The spin-
up band above the Fermi level seen in the DOS of Zhu
et al. corresponds to next n.n (n.n.n) Mo–Mo hopping
within sublattice β which, in our case, appears as a level
at ẼMo,↑ since n.n.n hoppings are not included in our cal-
culation. An effective charge transfer energy increases with
increasing x due to the renormalization of the levels reach-
ing Δ0 as x −→ 1/3. At the same time the down-spin
band width is slightly reduced as a result of the increas-
ing number of Fe ⇓ on the β-sublattice restricting the
movement of down-spin electrons. The behavior in the
x ≤ 0 region is quite different, showing the appearance of

Fig. 3. (Color online) (a) Itinerant magnetic moment and (b)
spin polarization over the whole range −1 ≤ x ≤ 1/3 with
q = 2 for several values of the order parameter a.

up-spin states resulting from Mo–Mo hopping only form-
ing a bonding band at the Fermi level. There is an impor-
tant difference between our results and those of Zhu et al.
In the results of Zhu et al. the lower bonding part is al-
most entirely below the Fermi level, therefore this should
give an unrealistic valence lower than 4+ of the Mo (AS),
as discussed in the limit of low concentration of Mo (AS)
(x → 0) [13]. We suspects that this is a consequence of
neglecting correlations on Mo sites. In our case, Mo cor-
relations pushes the effective levels towards higher ener-
gies reducing the electron occupation at these Mo (AS)
to realistic values. This affects both the itinerant mag-
netic moment Mi = 〈n↑〉 − 〈n↓〉 and the spin polarization
P = D↑−D↓

D↑+D↓
, D↑ and D↓ being the DOS at the Fermi

energy for up and down spin electrons, as shown in Fig-
ures 3a, 3b.

With disorder, in the x ≥ 0 case the situation changes
drastically: Mo (AS) starts to appear and the DOS re-
sembles qualitatively the ordered x ≤ 0 case, the system
loosing its half-metallic character. However, the up spin
Mo states at the Fermi level are now hybridized with the
Fe (AS) states as the Mo are with Fe (S) in the down spin
channel. In the x ≤ 0 regime, no qualitative changes are
expected since Mo (AS) were already present in the or-
dered case, the existence of Fe (AS) just modifies quanti-
tatively the results. Of course, the Mi and P are reduced
by the disorder, Figures 4a, 4b, and Mi = 0 in the fully
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Fig. 4. (Color online) Behavior of (a) itinerant magnetic mo-
ment and (b) spin polarization as a function of a with q = 2
for both stoichiometric and off-stoichiometric systems.

disordered system (a = 0.5) because of the α − β, ↑ − ↓
symmetry in that case.

Of course, we cannot avoid a more detailed compar-
ison with the experimental results of Topwal et al. [11].
MS has two contributions: namely the one (MFe) from
localized moments of Fe and the one (Mi) from the
itinerant electrons. For the local moment contribution,
MFe = 5(pα

Fe − pβ
Fe) we get MFe = 5(2a − 1)(1 + x) and

MFe = 5(2a − 1)(1 − x) respectively for x ≤ 0 and x ≥ 0.
This is the main contribution to the total magnetization
since −1 ≤ Mi ≤ 0. We see that Mi remains always op-
posite to the local magnetization MFe and |Mi| follows
qualitatively the same trend as MFe and the experimen-
tal MS as function of x. In Figure 5, we show Mi and
MS = MFe + Mi calculated for the reported values of
the degree of order, a, in the different samples studied by
Topwal et al. [11] i.e. 0.65, 0.83, 0.92, 0.89, 0.91, 0.90, 0.86
and 0.83 for x = −0.5, −0.25, −0.1, −0.05, 0, 0.05, 0.1
and 0.25 respectively. Our calculated values of MS com-
pare remarkably well with the measured ones using q = 2
and the agreement is even improved considering a slightly
smaller Mo–Mo bandwidth w′(q = 1.6).

Finally, it is also interesting to comment on the itin-
erant moment μMo

β = 〈nMo
β,↑〉 − 〈nMo

β,↓〉 at Mo (S) and
μMo

α = 〈nMo
α,↑〉 − 〈nMo

α,↓〉 at Mo (AS) shown in Figures 6a
and 6b respectively. In the whole range of concentration
the moment at Mo (S) shows a similar trend as the total
itinerant moment. It is always opposite to the Fe local

Fig. 5. Comparison of calculated and experimental saturation
magnetic moment. Contribution of itinerant electrons is also
shown.

Fig. 6. (Color online) Itinerant magnetic moment for all com-
positions in (a) sites and (b) antisites positions with and with-
out disorder.

moment on the correct α site, its amplitude remains quite
large in a wide range of order and composition, varying
between 0, (for x = −1 and x = 1/3) and −0.5 (for x = 0
and a = 1). It is reduced by the disorder. On the other
hand, on the AS the moment is rather small, always �0.12.
The precise value of the moment depends critically on the
position of the ↑-spin states due to the renormalization of
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the Mo-level. Accordingly, the precise value and, of course,
the sign of μMo

α should not be taken too seriously, the
only point that we should remember is that it is small. Of
course, for a = 0.5, the moments on Mo (S) and Mo (AS)
are just opposite, μMo

α being positive and negative μMo
β ,

consistent with Mi = 0. Basically, the magnetic picture
is quite simple: Fe (S)–Mo (S) electron hopping keep the
moment on Mo sites antiparell to the local moment on Fe
sites as in the stoichiometric case, while on Mo antisites
the moment results from the strong Mo (AS) character of
the ↑-channel bonding states below the Fermi energy giv-
ing an important contribution to 〈nMo

α,↑〉 which may almost
compensate the ↓-spin part.

In summary, our approach based on a strongly cor-
related description for Fe with localized spins S = 5/2
and n = 1 − 3x itinerant electrons reproduces extremely
well the experimental behavior of the magnetization in
the Sr2Fe1+xMo1−xO6 (−1 ≤ x ≤ 1/3) family [11], pro-
viding deep theoretical grounds for the understanding of
these double-perovskite materials. At the same time, this
shows that it is rather reasonable to consider the disorder
as random. Our results also confirm clearly the impor-
tance of the Mo correlations, although moderate ∼1 eV,
in determining an appropriate electronic scheme in these
systems, off-stoichiometric and/or disordered.
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