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We consider a nonlinear system formed by a thin nematic slab immersed in vacuum,
submitted to the action of a high-intensity normally-incident plane electromagnetic
wave. We solve simultaneously, by using a numerical scheme, the director’s orienta-
tional configuration and Maxwell’s equations for this system using homeotropic soft
boundary conditions. For a given field intensity, we find multiple equilibrium direc-
tor’s configurations. In addition, we study the reflectance versus the wavelength and
the field intensity.
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1. Introduction

The giant optical nonlinear response-a factor of 6–10 orders of magnitude larger
[1,2] than that of doped glasses – makes feasible to consider the deformation
provoked in the nematic fiber by the same electromagnetic field which is propagated.
Several systems for which a nematic is submitted to a large intensity optical field
whose configuration is not anchored to waveguide boundary conditions, give rise
to spatial patterns and solitons [3–5]. The basic mechanism which governs these time
independent patterns is the balance between the nonlinear refraction (self-focussing)
and the spatial diffraction of the nematic. A study of these experiments using separ-
ation of scales [6,7] shows that the field amplitude at the center of a gaussian beam
(inner solution), follows a nonlocal non linear Schroedinger equation which is able
to describe the undulation and filamentation observed in the experiments.

Laser beam propagation in azobenzene liquid crystals in waveguiding configur-
ation has been considered in [8]. They found that spatial solitons can be formed at
microwatt power levels of a He-Ne laser beam and they analyzed several well-known
processes of nonlinear propagation such as undulation of solitons, their interaction
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and merging. Cis-trans isomerization of azobenzene molecules and related change in
the LC order parameter is the underlying mechanism of optical nonlinearity that
makes possible formation of solitons. In [9], it is shown that optical reorientation
nonlinearity in twisted nematic liquid crystalline waveguides is large enough to
observe spatial solitons with milliwatts of light power.

It is important to stress that in general nematicons [7] and other spatial solitons
found in nonlinear systems are coherent structures formed in regions of the system
where both orientational and optical fields have lost influence from the boundary
conditions. In this sense, all these balanced and robust profiles of energy, called soli-
tons, are asymptotic solutions which are not to be forced by strict boundary con-
ditions but they have to satisfy only certain mean-field matching conditions.
Indeed, as long as the confining cell of the liquid crystal turns to be larger, the
bias-free confinement is more notorious [10]. In this manuscript we are interested
instead in analyze the role played by the boundary conditions within the optical-
orientational non linear coupling of a nematic slab.

There are some pioneering studies in the literature [11–13] where nonlinear
electromagnetic modes in nematic liquid crystal confined under different geome-
tries are considered. For a slab waveguide [11] and starting from Maxwell’s equa-
tions and from the torque equation for the nematic director, it was derived a set
of nonlinear differential equations and it was exactly solved by a numerical tech-
nique based on the continuation method for the case of planar initial alignment
of the nematic director. The director reorientation induced by the guided light
itself gives rise to such strong nonlinear effects as self-confinement and intrinsic
optical bistability. In our work, we instead solve simultaneously the orientational
and electromagnetic boundary value problems parameterized by the optical field
intensity.

Most of the optical calculations in nematic systems have been done by
assuming hard anchoring boundary conditions for the nematic director. This is
inconsistent with the high intensity of the electromagnetic field since in the plates
the electric force can be stronger than the surface elastic force as has been shown
before [14]. Moreover, when liquid crystals are confined to small cavities, its effect
is found to be significant, particularly when elastic energies imposed by the confin-
ing volume compete with molecular anchoring energies [15]. Hence we cannot
ignore surface elastic terms compared with both bulk elastic terms and electric bulk
contributions.

The purpose of the present paper is to analyze the nonlinear effects produced by
a high intensity plane wave impinging the nematic homeotropic slab by assuming
soft anchoring boundary conditions. The outline of the paper is as follows: in
Sec. 2, we find the nematic configurations assuming arbitrary anchoring conditions,
in Sec. 3, we consider the case of transverse magnetic field, in Sec. 4 we present
the results of the calculation, and finally, in Sec. 4, we discuss and summarize our
results.

2. Nematic Configuration

Let us consider a nematic slab with homeotropic boundary conditions as depicted in
Figure 1. This means that the easy direction for the molecular orientation is the
direction perpendicular to the plates. However, due to the softness of the anchoring
at the boundaries, the nematic is not necessarily perpendicular to the plates.
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The continuous medium description of the nematic is governed by the elastic free
energy, F [16], given by

Fel ¼
1

2

Z
V

½K1ðr � n̂nÞ2 þ K2ðn̂n � r � n̂nÞ2 þ K3ðn̂n�r� n̂nÞ2

� K24r � ½n̂nr � n̂nþ n̂n�r� n̂n��dvþ 1

2

X
i

Z
W0 sin

2 ui dS ð1Þ

Here the unit vector n̂n is the director, the elastic moduli K1, K2, and K3 describe
transverse bending (splay), torsion (twist), and longitudinal bending (bend) deforma-
tions, respectively, and K24 is the surface elastic constant. The last term provides the
interaction between the nematic and the confining plates. There, ui is the angle
between n̂n and the easy anchoring axis at the plate i (i¼ 1, 2), and W0 denotes the
strength of interaction in units of energy per area.

We assume that the optical field ~EE is strong enough, so that the dielectric tensor
of the nematic will depend on the optical field.

The free energy of the nematic also contains an electromagnetic part due to the
incident electromagnetic field. As we have already discussed, the first contribution is
given by Eq. (1). The electromagnetic free energy, Fem is in MKS units,

Fem ¼ � 1

2
Re

Z
V

~DD � ~EE dv

� �
¼ � 1

2

Z
V

�
exxðzÞjExj þ ezzðzÞjEzj2

þ e?jEyj2 þ exzðzÞReðExE
�
z Þ
�
dv ð2Þ

where the dielectric tensor e has elements:

eij ¼ e?dij þ eaninj ð3Þ

where e? and ek are the perpendicular and parallel dielectric constants of the nematic
and ea¼ ek� e? is the dielectric anisotropy. The components of the director are

Figure 1. Schematics of a nematic slab subjected to a normally incidence plane wave.
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n̂n ¼ sin hðzÞex þ cos hðzÞez where ex and ez are the unit vectors along the x and z
directions, respectively. Since n̂n is a position dependent vector, Eq. (3) shows
explicitly that the dielectric tensor is inhomogeneous as well as anisotropic. Using
Eqs. (1)–(3), the total free energy, F , becomes

F ¼ F el þ F em ¼ ð1=2Þ
Z
V

�
K1ðr � n̂nÞ2 þ K2ðn̂n � r � n̂nÞ2 þ K3ðn̂n�r� n̂nÞ2

� K24r � ½n̂nr � n̂nþ n̂n�r� n̂n�
�
dv

þ ð1=2Þ
X
i

Z
W0 sin

2 ui dS � ð1=2ÞjE0j2
Z
V

exxðzÞdv ð4Þ

which can be transformed in:

F=K1 ¼
Z 1

0

dh
df

� �2

ðsin2 hþ g cos2 hÞdfþ r sin2 hð0Þ=2

þ r sin2 hð1Þ=2� e?

Z 1

0

jExj2df� q

Z 1

0

jExj2 sin2 hdf ð5Þ

where g¼K3=K1, LWh=K1, f¼ z=L, Ex ¼ Ex=E0, L is the thickness of the slab, and
q is a parameter defined as

q ¼ eaE
2
0L

2=K1 ð6Þ

and represents the ratio of the electric to the elastic energies; for q<< 1 the influence of
the applied field is weak, while for q>> 1 the field essentially dominates over the elastic
energies. The stationary orientational configuration h(f) is determined by minimizing
the free energy, Eq. (5). This minimization leads to the Euler-Lagrange Eq. [17] in
the bulk

0 ¼ d2h

df2
ðsin2 hþ g cos2 hÞ þ 1

2

dh
df

� �2

ð1� gÞ sin 2hþ q

2
jExj2 sin 2h ð7Þ

with the conditions at the plates:

dh
df

����
f¼0

¼
1
2 r sin 2h

sin2 hþ g cos2 h

����
f¼0

ð8Þ

dh
df

����
f¼1

¼
� 1

2 r sin 2h

sin2 hþ g cos2 h

����
f¼1

ð9Þ

The resulting configuration can be obtained by solving Eq. (7) subjected to the con-
ditions given by Eqs. (8) and (9).

3. Transverse Magnetic Fields

For simplicity, we are going to consider only the transverse magnetic (TM) field case.
The equation governing the propagation of electromagnetic waves through the
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nematic are derived from Maxwell’s equations without sources which in this case
are only z – depend. The most general solution for the TM fields can be written in
the form

Hy ¼ Hyðf; k0Þ exp½�ixt�; ð10Þ

whereHy is the magnetic field, x is the frequency, and t is the time. Inserting Eq. (10)
in the wave equation leads to [12]:

dGx

df
þ k0LHy ¼ 0 ð11Þ

Gx ¼ iEx ¼ 1

e?ejj

ezz
k0L

dHy

df
ð12Þ

Ez ¼
1

e?ejj

iezz
k0L

dHy

df
ð13Þ

4. Solutions

Let us consider a plane wave of amplitude E0 that after traveling through an homo-
geneous isotropic medium impinges normally from the left into the nematic slab
(Fig. 1). Then, one part of the wave is reflected back to the homogeneous medium
with amplitude r. Thus, the electric field in that region can be expressed as

~EE ¼ expðik0LfÞ̂ii � r expð�ik0LfÞ̂ii; f < 0 ð14Þ

where îi is the unit vector along x. Using Faraday’s law, it can be found the corre-
sponding magnetic field

~HH ¼ expðik0LfÞ̂jj � r expð�ik0LfÞ̂jj; f < 0 ð15Þ

On the other hand, at the right side of the slab a transmitted wave of amplitude t will
emerge from the nematic

~EE ¼ t expðik0LfÞ̂ii; f > 1 ð16Þ

whose corresponding magnetic field is

~HH ¼ t expðik0LfÞ̂jj; f > 1 ð17Þ

In order to solve exactly Eq. (11) we shall assume that the nematic slab is surrounded
by vacuum and that there is a perpendicularly incident plane wave. In this way the
electromagnetic fields should satisfy the boundary conditions:

Exjf¼0 ¼ 1� r ð18Þ
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Hyjf¼0 ¼ 1þ r ð19Þ

Exjf¼1 ¼ t ð20Þ

Hyjf¼1 ¼ t ð21Þ

Note that, Eqs. (20) and (21) account for the continuity of the tangential magnetic
Hy and electric Ex fields at the border of the slab. These condition can be rewritten
in the form

Exð1Þ �Hyð1Þ ¼ 0 ð22Þ

Hyð0Þ ¼ 1þ r; Exð0Þ ¼ 1� r ð23Þ

Note that the boundary value problem defined by Eqs. (11)–(13) has two properties:
first, it involves coefficients which are real valued functions, and second it is written
in terms of self-adjoint differential operators. Thus, its eigenvalues and eigenfunc-
tions are real.

Inserting Eqs. (12) and (13) into Eq. (7) we obtain

0 ¼ d2h

df2
ðsin2 hþ g cos2 hÞ þ dh

df

� �2

ð1� gÞ sin 2h
2

þ q
sin 2h
2

jExj2

We solve this boundary value problem by using the shooting method in which we
employ a Runge Kutta algorithm to solve simultaneously Eqs. (10), (11), and (24)
by using as initial conditions Eqs. (8) and (23), in order to search the value of r
and h(0) for which the condition stated in Eqs. (9) and (22) are satisfied. Numerical
solutions of Eq. (7) for 5CB at TIN�T¼ 10 with TIN¼ 35, g¼ 1.316, r¼ 4,
K11¼ 1.2� 10�11N, Wh=K11¼ 40 mm�1 and K24=K11¼ 1 [17] were calculated by
using the shooting method [18].

Figure 2. Nematic configuration in a planar cell for different intensities (for k¼ 400 nm).

182=[948] C. I. Mendoza and J. A. Reyes

D
ow

nl
oa

de
d 

by
 [

U
N

A
M

 C
iu

da
d 

U
ni

ve
rs

ita
ri

a]
 a

t 0
9:

26
 1

2 
Se

pt
em

be
r 

20
13

 



5. Results

In Figures 2–4 we plot the configuration texture in the cell for different intensities
and wavelengths of the electromagnetic wave. Consistently the textures are more dis-
torted as the intensity of the field is increased. Also, as the intensity grows the values
of the angle in the plates get far from the easy directions. When the wavelength is
larger, from Figures 1 to 3 the configuration is even more distorted. This sequence
of plots shows that the nonlinear interaction between the nematic and optical field is
stronger when the characteristic length of both systems is nearer.

Figure 4. Nematic configuration in a planar cell for different intensities for k¼ 750 nm.

Figure 3. Nematic configuration in a planar cell for different intensities for k¼ 633 nm.
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In Figures 5–7 we depict the reflection coefficient r and the average of nematic
distortion hh2i against the field intensity q. All these plots present a band-like struc-
ture in the sense that there are intervals of q for which r is very small alternated with
regions where r is much larger. The number of these alternating regions augments for
larger values of the wavelength as can be seen by comparing Figures 5–7.

In Figures 6 and 7, we can see that the average of nematic orientation hh2i also
present the same behavior, that is, the distortion is smaller for the same intervals

Figure 6. Reflectance r2 and average of nematic configuration hh2i against intensity field for
k¼ 633 nm.

Figure 5. Reflectance r2 and average of nematic configuration hh2i against intensity field for
k¼ 400 nm.

184=[950] C. I. Mendoza and J. A. Reyes

D
ow

nl
oa

de
d 

by
 [

U
N

A
M

 C
iu

da
d 

U
ni

ve
rs

ita
ri

a]
 a

t 0
9:

26
 1

2 
Se

pt
em

be
r 

20
13

 



of q in which r is small. This implies that the configuration is almost undistorted for
those intervals of intensity for which the cell is near transparent for the electromag-
netic wave. This is reasonable since an undistorted lossless nematic does not absorb
the electromagnetic energy. Notice that Figure 5 corresponds to a wavelength
(400 nm) much smaller than the typical length of distortion for this confined liquid
crystal (5 mm). This makes the nematic to perceive only the spatial average of the
field amplitude and as a consequence the configuration only jumps from zero to
p=2 after a threshold field, except for an interval of q (3.2, 4.8) where the nematic
and electromagnetic field couple to give rise to a stop band where the electromag-
netic wave is mostly reflected.

6. Conclusions

We have considered a nematic liquid crystal confined between two plates in
which an electromagnetic field of high intensity impinges normally to the cell and
propagates nonlinearly within the nematic. This system is mathematically described
by Eqs. (7), (12) and (13) submitted to the boundary conditions expressed by
Eqs. (8), (9), (22) and (23).

We have calculated the nematic textures under arbitrary anchoring conditions,
versus the position for various field intensities q and wavelengths k.

We have obtained a series of stop bands intercalated between transparent
regions, as a function of the intensity field for given values of the field wavelength.
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Figure 7. Reflectance r2 and average of nematic configuration hh2i against intensity field for
k¼ 750 nm.
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