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a b s t r a c t

We study electron pairing in a one-dimensional (1D) fermion gas at zero temperature under zero- and
finite-range, attractive, two-body interactions. The binding energy of Cooper pairs (CPs) with zero total
or center-of-mass momentum (CMM) increases with attraction strength and decreases with interaction
range for fixed strength. The excitation energy of 1D CPs with nonzero CMM display novel, unique prop-
erties. It satisfies a dispersion relation with two branches: a phonon-like linear excitation for small CP
CMM; this is followed by roton-like quadratic excitation minimum for CMM greater than twice the Fermi
wavenumber, but only above a minimum threshold attraction strength. The expected quadratic-in-CMM
dispersion in vacuo when the Fermi wavenumber is set to zero is recovered for any coupling. This paper
completes a three-part exploration initiated in 2D and continued in 3D.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction is hc/2e rather than the originally expected hc/e and it is never
Now just over a half-century old, the 1957 Bardeen, Cooper and
Schrieffer (BCS) theory of superconductivity [1] is rightly regarded
as one of the most striking achievements of theoretical many-body
physics. It has been ranked along with the band theory of solids
and the Landau theory of Fermi liquids, both single-particle for-
malisms. The central concept of the BCS theory is that of fermion
pairings. In the original model of Cooper [2] they were simply
two-electron bound states relative to a full Fermi sea of the
many-electron system. In the BCS theory this original concept
was incorporated into a many-body ground-state variational trial
wavefunction in which all electrons share ‘‘pairing correlations.’’
The theory, though valid only for weak-coupling, not only provided
a microscopic model for superconductivity, but it also made many
highly specific and quantitative predictions including explaining
the isotope effect, predicting the T = 0 energy gap D(0) obeying
the universal relation, 2D(0) ’ 3.53kBTc where the transition tem-
perature Tc is the smallest solution of D(Tc) = 0, and in explaining
T-dependences of ultrasonic attenuation and nuclear magnetic res-
onance relaxation rates [3]. Stronger coupling would not guarantee
higher-than-pair clusterings, e.g., tetramers, etc., since these high-
er-order charge clusters have not been detected at all in magnetic-
flux quantization measurements in either conventional supercon-
ductors (specifically tin [4] and lead [5]) or in so-called ‘‘high-Tc’’
compounds such as YBaCuO [6]: the smallest flux unit observed
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smaller than hc/2e.
For many decades the BCS theory, including its extensions into

the strong-coupling regime, appeared to be capable of explaining
all of the then known superconducting elements and compounds.
This situation continued while the highest Tc value for any super-
conductor (SC) was 23 K, until the discovery [7] in 1986 of the first
high-Tc cuprate SC La2�xBaxCuO4 having a Tc ’ 35 K. The discovery
[8] of superconductivity at 92 K in YBa2Cu3O7�d was followed by a
search for materials with even higher Tcs and lead, within just se-
ven years to the highest-Tc superconductor known and fully con-
firmed to date, the HgBaCaCuO cuprate [9] with a Tc ’ 164 K
under very high pressure (’310,000 atm).

Almost a quarter century after the discovery of high-tempera-
ture SCs in cuprate materials, it is clear that many important ques-
tions still remain to be answered. As well as the still unresolved
problem of the pairing dynamical mechanism and many-body
excitations in the normal state of the high Tc cuprate materials,
there are now also many other recently discovered materials
where it is unlikely that BCS theory is applicable, at least in its ori-
ginal form. These include oxide materials (such as the cubic
bismuthate Ba1�xKxBiO3), borides (such as MgB2), borocarbides
(e.g., YNi2B2C), carbon-based materials (including fullerides, nano-
tubes, intercalated graphite, and organic conductors), and new
high pressure phases of elements [10] (such as Fe, S and Ca) and
simple binary and ternary compounds. All of these classes of mate-
rials have shown superconductivity above 10 K, including several
up to nearly 40 K. Superconductivity at up to 84 K has even been
reported in a cubic ruthenate [11–13].

The ongoing debate about the pairing dynamical mechanism
in cuprate high Tc materials has broadly led to two main schools
of thought. On the one hand Anderson argued from the very
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beginning [14] that cuprate materials are in a completely different
class from other superconducting materials, and as such they must
have a completely new pairing mechanism quite different from the
BCS theory. In addition to his original ‘‘resonating-valence-bond’’
(RVB) model a large range of theories have focussed on supercon-
ductivity driven chiefly by repulsive interactions dominated by the
on-site Coulomb-repulsion Hubbard U. These include gauge theo-
ries [15], spin-fluctuation theories [16–18], and the ‘‘Gossammer
superconductivity’’ picture of Laughlin [19]. The discovery of a
dx2�y2 symmetry order parameter [20,21] is generally consistent
with pairing mechanisms deriving from a large positive U, and
there is some numerical evidence for a dx2�y2 symmetry ground
state in the two-dimensional square lattice Hubbard model [22].
However, it remains unclear whether the positive U Hubbard mod-
el alone can describe the hugely complex normal and supercon-
ducting state phenomenology of the cuprate materials [23]
including the characteristic doping dependences, pseudogaps,
marginal Fermi liquid normal state, isotope effects, and lattice
inhomogeneities such as stripes.

On the other hand, many others have taken the view that it is
not a completely new theory that is needed, but rather that the
BCS theory should be extended and/or generalized to describe
these new materials. This approach has the advantage of building
upon the foundations of BCS, and furthermore does not necessarily
imply that cuprate superconductivity is in a completely new class
of SCs. Rather, they may be related to other materials but just in a
new parameter regime where the usual approximations of BCS
(even including Eliashberg strong-coupling corrections) may not
be adequate. Some of the many theoretical models which have
been examined in this context include: boson–fermion models
[24–29], bipolarons [30], the ‘‘pre-formed pair’’ or BCS–BEC cross-
over scenario [31–35], non-adiabatic superconductivity [36], and
generalized Bose–Einstein condensation of Cooper pairs [37–39].

In this work we study electron pairing in a 1D Fermi gas under
zero- and finite-range, two-fermion interactions to address some
novel and unique properties of CPs in 1D as compared with the
2D [40] and 3D [41] cases. In Section 2 we review the Cooper pair-
ing mechanism in a simplified model where two particles near a
static Fermi level interact at T = 0. In Section 3 we obtain exact
solutions for different types of separable interactions. The proper-
ties of the bound pairs are discussed in Section 4 where we derive
the dispersion relation for arbitrary values of the center-of-mass
momenta (CMM) ⁄K. Section 5 presents results for pairs of particles
interacting in a more general case where a range parameter is
introduced. Section 6 discusses our conclusions.
2. Cooper pairing

To define the original Cooper-pair (CP) problem [2] consider a
system of N identical fermions in d-dimensions interacting through
an attractive two-body potential to study the effects of pairing at
nonzero total or center-of-mass momenta under different types
of interaction. At zero temperature, we assume that the back-
ground (N � 2)-particle system is in the ground state of an ideal
Fermi gas with interactions occurring only in the vicinity of the
Fermi level. The Schrödinger equation for two particles in momen-
tum space is

ðp2
1=2mþp2

2=2m�EÞUðp1;p2Þþ
X
p012R

X
p022R

Vðp1;p2;p01;p
0
2ÞUðp01;p02Þ¼0 ð1Þ

where R denotes the region of available states above the Fermi level
and V is the two-body interaction. Introducing the CMM P and rel-
ative momentum p as

P � �hK ¼ �hk1 þ �hk2 and p � �hk ¼ 1
2

�hðk1 � k2Þ ð2Þ
the equation of motion for two particles above the Fermi level
becomes

�h2k2
=mþ �h2K2=4m� EK

h i
Uðk;KÞ þ

X
k0>kF

VK
k;k0Uðk

0
;KÞ ¼ 0; ð3Þ

where U(k,K) is the two-particle wavefunction. When the interac-
tion VK

k;k0 � VðK=2þ k;K=2� k; K=2þ k0;K=2� k0Þ commutes with
the CMM operator associated with �hK, U(k,K) = u(k)W(K) and the
center-of mass wavefunction W(K) can be factored out. In 3D VK

k;k0

can be expanded in partial waves as in the case of the Cooper model
interaction where already the l = 0 contribution leads to a correlated
ground-state with paired particles at the Fermi surface providing
the crucial ingredient in the formulation of the BCS theory [1] of
superconductivity.

Here we focus on some novel and unique properties of CPs in
1D, as compared with the 2D [40] and 3D [41] cases. We start from
a nonlocal, separable interaction given by

VK
k;k0 ¼ �V0gðkÞgðk0Þ ð4Þ

with V0 > 0. This includes all cases of physical interest such as the
Cooper [2], the BCS [1], the zero-range or contact [40–43] model
interactions, as well as the finite-range model interactions as intro-
duced by Nozières and Schmitt-Rink [44] that have been used in the
description of superconductors, superfluids, Bose–Einstein conden-
sates, as well as the BCS–BEC crossover [31–35] picture. The separa-
ble form (4) assumes that such an expression is valid in each
partial-wave channel and may vary for angular momentum states
different from zero in 2D and 3D. In all these cases, (3) has an ana-
lytical solution given by

uðkÞ ¼ V0gðkÞA
�h2k2

=mþ �h2K2=4m� EK

ð5Þ

where

A �
X
k0>kF

gðk0Þuðk0Þ

is a constant. The combination of these two equations provides a
consistency condition that is equivalent to an eigenvalue equation
for EK, namely

1 ¼ V0

X
k>kF

g2ðkÞ
�h2k2

=mþ �h2K2=4m� EK

: ð6Þ

Defining�DK � EK � 2EF as the pair energy with respect to twice the
Fermi energy EF � �h2k2

F=m, the continuous limit for large N and large
volume is

1 ¼ V0ð2pÞ�dLd
Z

ddkg2ðkÞ
�h2ðk2 � k2

F Þ=mþ DK þ �h2K2=4m
ð7Þ

where Ld is the ‘‘volume’’ of the d dimensional system.
When the interaction occurs only in the vicinity of the Fermi en-

ergy EF � �h2k2
F=2m, and since the integrand in (7) is peaked at

k � kF, the integral can be reexpressed in terms of the density of
states (DOS) for one spin at the Fermi level, namely

.dðEFÞ ¼ m
L

2p�h

� �d

cdð2mEFÞd=2�1
; ð8Þ

where cd = 4p, 2p, 2 for d = 3, 2, 1, respectively.
In 1D

.1ðEFÞ ¼
mL

p�h2kF

: ð9Þ

If g(k) is constant around the Fermi level the usual Cooper binding-
energy result can be obtained for any CMM wavenumber K P 0.
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However, this approximation is unnecessary since one can analyti-
cally integrate (7) for most interaction models of physical interest.
For brevity, one can express all energies in terms of the Fermi en-
ergy and all wavenumbers in units of the Fermi wavenumber kF,
namely through dimensionless eK ¼ K=kF ;

~k ¼ k=kF and
~DK ¼ eDK=EF . Then (7) becomes

1 ¼ k
2

Z
d~kg2ð~kÞ

~k2 þ eDK=2þ eK 2=4� 1
ð10Þ

where the dimensionless coupling constant is

k � .1ðEFÞV0 ¼
V0mL

p�h2kF

: ð11Þ
gð~kÞ ¼

h ~k
��� ���� ½1þ eK=2�
� �

contact interaction

h ~k
��� ���� ½1þ eK=2�
� �

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �hxD=EF

p
� eK=2� ~k

��� ���� �
Cooper interaction

h ~k
��� ���� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �hxD=EF

p
� eK=2

h i� �
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �hxD=EF

p
� eK=2

h i
� ~k
��� ���� �

BCS interaction

8>>>><>>>>: ð13Þ
Condition (10) is the effective characteristic equation for the
bound-pair energy DK which can be solved exactly for any form
factor g(k) of physical interest.

3. Cooper pairing in one dimension

Fermi systems in 1D reveal a novel multiphase pairing mecha-
nism that is absent in higher-dimensional systems. When pair
interactions act only in the vicinity of the Fermi energy as in the
case of the Cooper [2] and the BCS [1] model interactions, the avail-
able phase space has at least two discontinuous intervals for the
total or CMM ⁄K, see Fig. 1. When K� 2kF, particles at both ends
of the ‘‘dumbbell’’ feel the attractive interactions because their
energies are close to the Fermi energy EF. As K increases there is
a region where particles no longer interact due to their large mo-
menta, until the condition kF < K/2 < kF + kD is satisfied, where
kD � kF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �hxD=EF

p
� kF as shown in the lower part of Fig. 1.

The cutoff wavenumber kD is related to the maximum ionic-lattice
vibrational (or Debye) frequency xD through �h2(kF + kD)2/
2m � EF + �hxD. Clearly, for a contact interaction �hxD/EF ?1 so
that kD ?1.

The form factors g(k) of the separable pairing interaction (4) are
given by
Fig. 1. ‘‘Dumbbell’’ picture of BCS or Cooper interaction regions (shaded boxes, not in sc
the total CMM K of a CP. Uppermost part in the left block represents K = 0 where the avai
systems, in 1D there is an interval where the interaction phase space vanishes as K incr
gðkÞ ¼
hð�1;2 � EFÞ contact interaction
hð�1;2 � EFÞhðEF þ �hxD � �1;2Þ Cooper interaction
hð�1;2 � ½EF � �hxD�Þhð½EF þ �hxD� � �1;2Þ BCS interaction

8><>:
ð12Þ

where

hðxÞ �
1 for x > 0
0 for x < 0

�
and �1,2 are the energies of particle 1 and of particle 2 given by

�1;2 � �h2k2
1;2=2m � �h2ðK=2� kÞ2=2m:

In terms of the wavenumber, the form factors in (12) are
where, for definiteness, we have assumed eK > 0 since the eK < 0
sector provides the same results. In what follows we occasionally
drop the tildes.

The BCS interaction poses a problem that was first mentioned
by Schrieffer [3, p. 168] related to the singularities in (10) since
the integration intervals defined in (13) may produce zeros in
the denominator. However, for contact and Cooper interactions
(10) can be solved exactly yielding, for K� 1,

expð�2aK=kÞ ¼
1þK=2�aKð Þ
1þK=2þaKð Þ contact interaction
1þkD�K=2þaKð Þ 1þK=2�aKð Þ
1þkD�K=2�aKð Þð1þK=2þaK Þ

Cooper interaction

8<:
ð14Þ

where kD was defined above and

a2
K � 1� K2=4� DK=2: ð15Þ

For K sufficiently large a2
K becomes negative and the existence

of stable solutions for DK depends on the magnitude of k. For
k� 1 one has, if b2

K � �a2
K ,

bK

k
¼ p=2� tan�1 ð1þK=2Þ=bK½ � contact interaction

tan�1 ð1þkD�K=2Þ=bK½ �� tan�1 ð1þK=2Þ=bK½ � Cooper interaction

(
ð16Þ
ale) in momentum space for pairs of fermions. Dumbbells are laterally separated by
lable phase-space for interactions is maximum. In contrast with higher-dimensional
eases from K = kD to K = 2kF (right block of diagrams).
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Since (14) are transcendental in the CP energy DK (not to be con-
fused with the BCS energy gap [1]), it is customary to consider
the case where the largest number of particles are interacting,
namely when K = 0 as shown in Fig. 1. In this approximation, one
introduces the DOS for one spin .1(�) in (10) and assumes that it
is constant around the Fermi surface. This is strictly true in 2D
and otherwise a good approximation in any D provided that ⁄xD/
EF� 1. Then, the binding energy D0 for K = 0 CPs turns out to be gi-
ven by the familiar limit for the Cooper interaction [2]

D0 !
½k!0�

2�hxD expð�2=kÞ ð17Þ

where k � .1(EF)V0 is the usual dimensionless coupling parameter.
Note that the CP D0 vanishes like exp(�2/k) unlike the BCS gap
[1] which vanishes like exp(�1/k).

For a contact interaction of the form �v0d(x), where x is the sep-
aration between the two fermions, the strength v0 has dimensions
of energy � length and the pair binding energy can again be calcu-
lated using the same approximation, namely taking the DOS at the
Fermi level. After some manipulation the small-coupling limit of
D0 is (see Ref. [42] and esp. Ref. [43] Eq. (17)

D0 !
½k!0�

8EF expð�2=kÞ ð18Þ

where in this case the dimensionless coupling parameter is given by
k � .1(EF)v0/L. This same result also follows from the Cooper inter-
action result in (16) on taking the limit kD ?1.

4. CP dispersion relation

We analyze the case of a contact interaction where the solutions
are given in (14)–(16). As mentioned, the analytical solutions de-
pend on the strength of the dimensionless coupling k and on the
magnitude of K. When K > 2 one must take into account an addi-
tional restriction due to the integration regions defined in (13 )
since for stronger coupling one would expect larger values for
DK. Therefore, for a particular k we define the value Kc(k) for which
aK jK¼Kc

¼ 0 implying from (15) that K2
c=4 � 1� DKc=2 where DKc is

the CP energy for K = Kc. The transcendental equations for the CP
energy �DK are then, again if b2

K � �a2
K ,
1
k
¼

� 1
2aK

ln½ð1þ K=2� aKÞ=ð1þ K=2þ aKÞ� for K < 2; 0 < k < 2 ðaÞ
1
bK

p=2� tan�1ð½1þ K=2�=bKÞ
� �

for K < 2; 2 < k <1 ðbÞ
� 1

2aK
ln½ð1þ K=2� aKÞ=ð1þ K=2þ aKÞ� for Kc < K < 2; 1 < k < 2 ðcÞ

1
bK
ðp=2� tan�1½ð1þ K=2Þ=bK �Þ for 0 < K < Kc; 1 < k < 2 ðdÞ

1
bK
ðp=2� tan�1½ðK=2þ 1Þ=bK � þ tan�1½ðK=2� 1Þ=bK �Þ for K > 2; k > 0: ðeÞ

8>>>>>>>><>>>>>>>>:
ð19Þ
The existence of analytically different solutions follows from the
graphical construct shown in Fig. 2 where we plot the rhs of (19)
and 1/k as a function of the possible values of the CP energy DK for
different values of K. For convenience, we label as type-I those
solutions that satisfy (19)a and (19)c; the other solutions are la-
beled type-II. Solutions DK only exist at those points where the
K-curves cross the 1/k lines. From this construct three regions
can be distinguished:

(a) Weak coupling 0 < k < 1 and (DK/2 + K2/4 � 1) < 0. In this
region, there will always be a type-I solution for small values
of K.

b) Intermediate coupling 1 < k < 2 where a2
K changes sign and

therefore both types of solution are present.
c) Strong coupling k > 2 and (DK/2 + K2/4 � 1) > 0. In this region,
only type-II solutions are possible.

For K = 0 (19)a reduces to

exp �2
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D0=2

p� �
¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D0=2

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D0=2

p : ð20Þ

As a consistency check we determine the CP energy DK when
the Fermi sea vanishes, i.e., EF ? 0 and kF ? 0 or when the CP is
in vacuo. We note that only (19)e is meaningful in this limit sinceeK < 2 implies K < 2kF in wavenumber units so that K 6 0 when
kF ? 0 which contradicts the assumption made just below
(13) that K > 0.
Introducing in (19)e the value of k defined in (11) in terms of
kF and reverting to explicit energy and wavenumber units one
obtains

bK

k
¼ p=2� tan�1½ðK=2kF þ 1Þ=bK � þ tan�1½ðK=2kF � 1Þ=bK �

or ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DK m=�h2 þ K2=4� k2

F

q
mV0=p�h2 ¼ p=2� tan�1 ðK=2þ kFÞ½ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DK m=�h2 þ K2=4� k2

F

q	 

þ tan�1 ðK=2� kFÞ½ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DK m=�h2 þ K2=4� k2
F

q	 

:
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When kF ? 0 this leads to

�DK ¼ �
mV2

0

4�h2 þ
�h2K2

4m

which is the expected actual energy of a composite object of mass
2m, self-bound via a 1D delta potential of arbitrary strength V0, with
its single-bound-state binding energy [45,46] mV2

0=4�h2 and moving
freely in vacuo.

When K� 1 we may assume the series expansion
DK ’ D0 + D1K + D2K2 + 	 	 	 in (20). For weak coupling, k ? 0 im-
plies that D0 ? 0 so that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D0=2

p
’ 1� D0=4þ 	 	 	 which leads

to (18) as expected. The same result is obtained using the DOS
approximation given in (17) above. In Fig. 3 we show the exact re-
sult for D0 compared to (18) for weak coupling. The coefficient of
the linear term D1 is of special interest. It can be obtained explicitly
if we assume weak coupling and using the fact that D0 can be ne-
glected in the exponentials, that is, by assuming that exp(�2aK/k)
’(exp(�2/k). The result is

D1 ’ �2tanh2ð1=kÞ: ð21Þ

A similar procedure can be used to obtain the second-order
coefficient

D2 ’ �tanh4ð1=kÞ: ð22Þ

Therefore, the dispersion relation for DK up to second order in K but
for weak coupling k in explicit energy and wavenumber units is

DK ’ D0 � tanh2ð1=kÞ�hvF K � tanh4ð1=kÞ �h
2K2

2m
þ 	 	 	

!
k!0

8EF expð�2=kÞ � �hvF K � �h2K2

2m
þ 	 	 	 ð23Þ

where (18) was used. The negative signs in the first- and second-or-
der terms for a given coupling k implies that the pair will break-up
as K increases beyond a certain value for which DK = 0. However, for
K P 2kF and for sufficiently large k, a pair can become bound again
as shown in Fig. 4 where we plot the gapped excitation energy
EK � D0 � DK as a function of K for different couplings. The special
case of k = 1.5 illustrates this behavior. As K increases from zero,
the excitation energy is essentially linear up to K ’ 1.2kF when
the pair breaks up but for K P 2kF the pair comes back into exis-
tence with an excitation energy that is close to quadratic in the pair
wavenumber K.
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Fig. 3. Exact K = 0 CP energy D0 for the contact interaction as function of coupling k
(full curve) as obtained from (20) compared to the weak-coupling approximation
(18) (dashed curve).
5. Finite-range interactions

In contrast with the cases mentioned above, here we consider a
more general interaction between fermions where a range param-
eter is introduced albeit the interaction form is still separable. In
3D it is customary to introduce a screened interaction of the Yuk-
awa form exp (�r/r0)/r which in momentum space is /[(q2 + (1/
r0)2]�2, where q is the momentum transfer wavenumber. Based
on this criterion and following previous calculations (cf. Ref. [44]
esp. Eq. 10) we write the form factor g(k) in (4) as

gðkÞ ¼ h jkj � ½1þ K=2�ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k2

0

q ð24Þ

where all wavenumbers are again in units of kF. The characteristic
equation for the energy (10) becomes

1
k
¼
Z 1

1þK=2

dk

k2 þ DK=2þ K2=4� 1
� �

k2 þ k2
0

� � : ð25Þ

This equation can be solved exactly and leads to the transcendental
equations for the CP energy

k2
0 þ a2

K

� �
k

¼ � 1
2aK

ln
1þ K=2� aK

1þ K=2þ aK


 

� p

2k0
þ 1

k0
tan�1 1þ K=2

k0


 

;

K=2� 1; a2
K > 0 ð26aÞ

k2
0 � b2

K

k
¼ 1

bK

p
2
� tan�1 1þ K=2

bK


 
� �
� 1

k0

p
2
� tan�1 1þ K=2

k0


 
� �
;

K=2 < 1; a2
K < 0 ð26bÞ

k2
0 � b2

K

k
¼ 1

bK

p
2
þ tan�1 K=2� 1

bK


 

� tan�1 1þ K=2

bK


 
� �
� 1

k0

p
2
þ tan�1 K=2� 1

k0


 

� tan�1 1þ K=2

bK


 
� �
;

K=2 > 1; a2
K < 0 ð26cÞ

Again, there are three regions for the existence of stable pairs. In
Fig. 5 we plot the pair energy as a function of K for weak coupling
and for different values of the range parameter 1/k0. Stronger
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coupling spectra are shown in Fig. 6 where we plot the binding
energies for k = 3 where both, the linear and roton-like modes
are present [47]. The sharp cusp separating phonon-like and ro-
ton-like modes at precisely K = 2kF is a unique characteristic of
the 1D system. It appears to be a precursor of the smooth ‘‘max-
on-like’’ hump in 2D (Ref. [40], Figs. 1 and 3) and less pronounced
in 3D (Ref. [41], Fig. 2).
6. Conclusions

Notwithstanding the obvious simplicity of a model consisting of
a many-fermion system where particles interact only in the vicin-
ity of the Fermi level through two-body, attractive, separable inter-
actions in the background of an ideal 1D Fermi gas, it reveals novel,
unique properties, particularly those related to the energy of Coo-
per pairs moving with nonzero center-of-mass momentum (CMM)
K. The fact that one can calculate exact expressions for the pair en-
ergy with different separable interactions allows us to construct
the collective excitation spectrum of Cooper pairs for any coupling
k and any value of K. For K < kF, the excitation energy has a linear
term in K. As the CMM wavenumber K increases the pair eventually
breaks up. However, for sufficiently strong coupling, there is an
additional collective mode for K P 2kF with a roton-like dispersion.
For a contact interaction, the two modes are disconnected if the
coupling is weak but for stronger coupling the excitation spectrum
exhibits both modes. Introducing more realistic interactions that
include screening effects shows a similar behavior.

The sharp cusp separating phonon-like and roton-like modes at
precisely K = 2kF is a unique characteristic of the 1D system. It ap-
pears to be a precursor of the smooth ‘‘maxon-like’’ hump in 2D
(Ref. [40], Figs. 1 and 3) and less pronounced in 3D (Ref. [41],
Fig. 2). The smoothness could be due to angular integrations in
2D and 3D washing out the peaked transition between both modes
found here in 1D.
Acknowledgments

We acknowledge partial support from Grants PAPIIT IN114708,
IN106908 and CONACyT 104917.
References

[1] J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108 (1957) 1175.
[2] L.N. Cooper, Phys. Rev. 104 (1956) 1189.
[3] J.R. Schrieffer, Theory of Superconductivity, Benjamin, Reading, MA, 1983.
[4] B.S. Deaver Jr., W.M. Fairbank, Phys. Rev. Lett. 7 (1961) 43.
[5] R. Doll, M. Näbauer, Phys. Rev. Lett. 7 (1961) 51.
[6] C.E. Gough, M. S Colclough, E.M. Forgan, R.G. Jordan, M. Keene, C.M. Muirhead,

I.M. Rae, N. Thomas, J.S. Abell, S. Sutton, Nature 326 (1987) 855.
[7] J.G. Bednorz, K.A. Müller, Z. Phys. 64 (1986) 189.
[8] M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q.

Wang, C.W. Chu, Phys. Rev. Lett. 58 (1987) 908.
[9] L. Gao, Y.Y. Xue, F. Chen, Q. Xiong, R.L. Meng, D. Ramı´ rez, C.W. Chu, J.H. Eggert,

H.K. Mao, Phys. Rev. B 50 (1994) 4260.
[10] C. Buzea, K. Robbie, Supercond. Sci. Technol. 18 (2005) R1.
[11] M.K. Wu, D.Y. Chen, F.Z. Chien, S.R. Sheen, D.C. Ling, C.Y. Tai, G.Y. Tseng, D.H.

Chen, F.C. Zhang, Z. Physik 102 (1996) 37.
[12] D.Y. Chen, F.Z. Chiena, D.C. Lingb, J.L. Tsengb, S.R. Sheenb, M.J. Wangb, M.K.

Wub, Physica C 282–287 (1997) 73.
[13] H.A. Blackstead, et al., Cubic Ba2YRu1�xCuxO6: a possible strong-coupled SDW

superconductor, unpublished.
[14] P.W. Anderson, The Theory of Superconductivity in the High Tc Cuprates,

Princeton University Press, Princeton, NJ, 1997.
[15] P.A. Lee, N. Nagaosa, X.G. Wen, Rev. Mod. Phys. 78 (2006) 17.
[16] N. Bulut, Adv. Phys. 51 (2002) 1587.
[17] D. Manske, Theory of Unconventional Superconductors: Cooper Pairing

Mediated by Spin Excitations, Springer Tracts in Modern Physics, vol. 202,
Springer, Berlin, 2004.

[18] A.V. Chubukov, D. Pines, J. Schmalian, in: K.H. Bennemann, J.B. Ketterson
(Eds.), The Physics of Superconductors, Conventional and High-Tc

Superconductors, vol. 1, Springer, Berlin, 2003, p. 495.
[19] R.B. Laughlin, cond-mat/0209269;

B.A. Bernevig, R.B. Laughlin, D.I. Santiago, Phys. Rev. Lett. 91 (2003) 147003;
K. Maki, S. Haas, D. Parker, H. Won, B. Dora, A. Virosztek, Phys. Status Solidi 3
(2006) 3156.

[20] J.F. Annett, N.D. Goldenfeld, A.J. Leggett, in: D.M. Ginsberg (Ed.), Physical
Properties of High Temperature Superconductors V, World Scientific,
Singapore, 1996, p. 375.

[21] C.C. Tsuei, J.R. Kirtley, Rev. Mod. Phys. 72 (2000) 969.
[22] T. Maier, M. Jarrell, T. Pruschke, J. Keller, Phys. Rev. Lett. 85 (2000) 1524.
[23] H. Ott, in: K.H. Bennemann, J.B. Ketterson (Eds.), The Physics of

Superconductors, Conventional and High Tc Superconductors, vol. 1,
Springer, Berlin, 2003, p. 385.

[24] R. Friedberg, T.D. Lee, Phys. Rev. B 40 (1989) 6745.
[25] R. Friedberg, T.D. Lee, H.-C. Ren, Phys. Rev. B 42 (1990) 4122.
[26] R. Friedberg, T.D. Lee, H.-C. Ren, Phys. Lett. A 152 (1991). 417 and 423.
[27] R. Friedberg, T.D. Lee, H.-C. Ren, Phys. Rev. B 45 (1992) 10732.
[28] J. Ranninger, S. Robaszkiewicz, Physica B 135 (1985) 468.
[29] J. Ranninger, R. Micnas, S. Robaszkiewicz, Ann. Phys. Fr. 13 (1988) 455.
[30] A.S. Alexandrov, N.F. Mott, Rep. Progs. Phys. 57 (1994) 1197.
[31] D.M. Eagles, Phys. Rev. 186 (1969) 456.
[32] R. Micnas, J. Ranninger, S. Robaszkiewicz, Rev. Mod. Phys. 62 (1990) 113.
[33] R. Micnas, S. Robaszkiewicz, A. Bussmann-Holder, Struct. Bond 114 (2005) 13.
[34] Q. Chen, J. Stajic, Sh. Tan, K. Levin, Phys. Rep. 412 (2005) 1.
[35] S.K. Adhikari, M. de Llano, F.J. Sevilla, M.A. Solı́ s, J.J. Valencia, Physica C 453

(2007) 37.



R. Mendoza et al. / Physica C 471 (2011) 497–503 503
[36] M. Botti, E. Cappelluti, C. Grimaldi, L. Pietronero, Phys. Rev. B 66 (2002)
054532.

[37] V.V. Tolmachev, Phys. Lett. A 266 (2000) 400.
[38] M. de Llano, V.V. Tolmachev, Physica A 317 (2003) 546.
[39] M. de Llano, V.V. Tolmachev, Ukranian J. Phys. 55 (2010) 79.
[40] S.K. Adhikari, M. Casas, A. Puente, A. Rigo, M. Fortes, M.A. Solı́s, M. de Llano,

A.A. Valladares, O. Rojo, Phys. Rev. B 62 (2000) 8671.
[41] S.K. Adhikari, M. Casas, A. Puente, A. Rigo, M. Fortes, M.A. Solı́s, M. de Llano,

A.A. Valladares, O. Rojo, Physica C 351 (2001) 341.
[42] M. Casas, C. Esebbag, A. Extremera, J.M. Getino, M. de Llano, A. Plastino, H.
Rubio, Phys. Rev. A 44 (1991) 4915.

[43] V.C. Aguilera-Navarro, M. de Llano, Rev. Mex. Fı́s. 40 (1994) 167.
[44] P. Nozières, S. Schmitt-Rink, J. Low Temp. Phys. 59 (1985) 195.
[45] S. Gasiorowicz, Quantum Mechanics, Wiley, NY, 1974. pp. 93.
[46] M. de Llano, Mecánica Cuántica, Las Prensas de Ciencias, UNAM, México, DF,

2002, p. 46 (in Spanish).
[47] R.J. Donnelly, Phys. Today (October) (2009) 34.


	One-dimensional Cooper pairing
	1 Introduction
	2 Cooper pairing
	3 Cooper pairing in one dimension
	4 CP dispersion relation
	5 Finite-range interactions
	6 Conclusions
	Acknowledgments
	References


