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a b s t r a c t

In this work, the rheology of complex fluids, i.e., surfactants of varying concentration in a Lennard–Jones
fluid, is analyzed with non-equilibrium molecular dynamics simulations. The molecular model considers
that the surfactant molecule is composed of a hydrophilic head, affine to solvent, and a hydrophobic
tail made of four monomers. The solvent is modeled by a Lennard–Jones fluid, which shows mostly
a Newtonian behavior, but at relatively high shear rates, a slight shear-thinning followed by a slight
shear thickening are exhibited. The intermolecular potential produces an equilibrium configuration, in
which the surfactant molecules self-assemble in a wormlike micelle. With the aim to analyze the sys-
tem behavior with various stress fields, two flows are simulated under non-equilibrium conditions: (1)
simple shear and (2) Poiseuille’s flow. In simple shear, by keeping the velocity of the upper plate of
the flow cell constant, a monotonic flow curve is predicted within a range of shear rates. At low shear
rates, a concentration-dependent Newtonian region of viscosity �0 corresponds to an isotropic condi-
tion in which the wormlike micelle preserves its equilibrium conformation. At intermediate shear rates,

the solution exhibits a slight shear thinning, generating bands placed normal to the gradient direction
(gradient banding). At high shear rates the solution exhibits shear-thickening, with bands now gener-
ated normal to the vorticity direction. These predictions by molecular models explain, to our knowledge
for the first time, experiments in shear-thickening wormlike micellar solutions, where shear-thickening
appears simultaneously with bands generated perpendicular to the vorticity axis. In Poiseuille’s flow, we
also find agreement between predictions of the model with theoretical developments and experiments

ors.
performed by other auth

. Introduction

Due to their unique viscoelastic properties, wormlike sur-
actants are used in many industrial applications, like viscosity

odifiers, emulsifiers, lubricants and drilling fluids in the oil indus-
ry. The surfactant molecules possess polar head groups that have
ffinity to the solvent (hydrophilic) and non-polar tail groups that
re hydrophobic. They self-assemble to form aggregates of rel-
tively large size. The complex rheological behavior of micellar
olutions is a consequence of micellar growth, micellar interactions
nd dynamics of orientation under flow [1]. In addition, its rheo-
ogical behavior is related to the continuous processes of breakage

nd reformation of the giant micelles [3–6]. Micelles grow with
ncreasing surfactant concentration according to thermodynamic
onsiderations [2]. It is convenient to distinguish three concen-
ration regimes: dilute, semi-dilute and concentrated. The dilute

∗ Corresponding author. Tel.: +52 241 41 72544; fax: +52 241 41 75844.
E-mail address: j castillo tejas@hotmail.com (J. Castillo-Tejas).

377-0257/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.jnnfm.2010.11.009
© 2010 Elsevier B.V. All rights reserved.

regime ends at the so-called overlapping concentration c*, and the
semi-dilute concentration spans from c* to concentrations where
the entangled network has mesh sizes larger than the persistence
length, typically around 10 wt.% for common surfactant systems.
Above c*, the long and flexible wormlike micelles can form entan-
glements similar to polymer solutions. Under flow, one of the
most interesting rheological phenomenon is that related to the
appearance of banding transitions, one along the gradient direction
(“gradient banding”) and another one directed along the vortic-
ity direction (“vorticity banding”). Gradient banding is associated
to the shear thinning region in the flow curve, stress versus shear
rate, where two spatially different flow bands with different shear
rates coexist in the stationary state. In each of the two bands, the
velocity gradient is essentially constant, independent of position
[7]. Experimentally, shear-banding flow has been studied mostly

in solutions of giant micelles with flow visualization techniques,
NMR and rheometry. Rehage and Hoffmann [6,8] found a stress
plateau which was also observed in various flow geometries [9–16].
Salmon et al. [17], using dynamic light scattering, found that the
viscosity drop in the system is due to the nucleation and growth

dx.doi.org/10.1016/j.jnnfm.2010.11.009
http://www.sciencedirect.com/science/journal/03770257
http://www.elsevier.com/locate/jnnfm
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f a highly sheared band. Usually, shear banding is attributed to
n underlying shear-induced transition from a given microscopic
rganization of the fluid structure into another one. Shear induced
ransitions are often associated to very complex phenomena [18].
or example, in concentrated wormlike solutions like CTAB/D2O,
hree-dimensional flow patterns were found [19]. Boundary condi-
ions and temperature affect the velocity profiles, gradient-banding
nd modify the rheological behavior of the system [20–22]. In
ressure-driven Poiseuille’s flow, experiments on flow visualiza-
ion show regions of turbidity [23], lying almost parallel next
o the wall, growing toward the channel center with increasing
all shear rate. These layers can be associated with a secondary
ow comprising velocity rolls [24]. Finally, the molecular origin of
radient-banding is suggested to be associated to orientation, dis-
ntanglement of the micellar aggregates and micellar growth [25],
articularly in concentrated solutions, but a microscopic account
f the fluid configuration in each band is still lacking.

The other banding transition, know as “vorticity banding”, occurs
hen the system forms bands normal to the vorticity direction. This
henomenon has been observed when the flow curve tends to a
hear-thickening regime. In the cetylpyridinium chloride–sodium
alycilate solution (CPyCL and NaSal), Fischer et al. [26] and Herle
t al. [27,28] report the formation of bands normal to the vor-
icity direction. The flow curve below a critical shear stress �c

xhibits Newtonian behavior followed by shear-thinning. Above
c, the solution exhibits shear-thickening with alternating turbid-
ransparent bands along the vorticity axis. Using small-angle
eutron-scattering under flow (Rheo-SANS) and video imaging,
erle et al. found anisotropic patterns in both bands, indicating

trong alignment of the structures; notwithstanding, the micellar
lignment does not correspond to the lower viscosity band. Vor-
icity banding has also been observed in colloids [29–31], wherein
xperiments suggest the association of vorticity banding to an elas-
ic instability similar to the Weissenberg effect [31], implying a
elation between the band apparition and normal stresses along
he gradient axis. The vorticity structuring has been also associated
o velocity rolls stacked along the vorticity direction [32]. In sum-

ary, vorticity banding is less understood and no theoretical tools
re yet available to predict its apparition and its relation to the flow
eld.

During the recent decade, molecular simulation has emerged
s an important theoretical tool in material science and in rhe-
logy of complex fluids. Qualitative understanding of polymeric
ystems has been improved and quantitative account of transport
rocesses in simple molecules such as alkenes has been described.
olecular simulation techniques are becoming widely used for the

tudy of rheological and structural properties in system formed by
omplex molecules, such as polymers [33–37] and alkanes [38–40].
on-equilibrium molecular dynamics (NEMD) simulations aim to
stablish a connection between the molecular structure of the sys-
em and its rheological response. In simple shear simulations for
inear molecules [41], the static structure factor calculations show
greement with experiments. On the issue of shear-induced par-
icle structures, there is a notorious similarity between the SANS
ispersion patterns for polymer solutions under simple shear and
oiseuille’s flows and NEMD simulations for a soft sphere model
uid [42].

In micellar systems, Kröger and Makhloufi [43] suggested that
he FENE-C model can be used to predict the rheological behavior
f systems of giant micelles, in which the breakage–reformation
rocess of the micelles is included. Non-equilibrium molecular

ynamics simulations predicted the dependence of the micellar

ength distribution on the flow. Using the same model, Padding
nd Boek [44] studied the flow-induced formation of micellar
ings and wormlike micelles. Predictions show that at low con-
entrations, ring-like micellar structures predominate, while linear
Fluid Mech. 166 (2011) 194–207 195

chains dominate at high concentrations. However, the model pre-
dicts a shear-thinning viscosity with slope of −0.4, different to the
expected slope of −1 in micellar systems. In a latter paper, Padding
et al. [45] used Brownian dynamics to predict flow curves of such
systems. Recently, coarse-grained molecular models have been
used to predict structural properties of solutions of giant micelles
[46–48].

It is important to mention that the selected molecular model
for giant micelles must be able to describe three basic issues:
the interaction among the various micellar aggregates to form
a wormlike micelle, alignment of the aggregates along the flow
direction with a migration process to form bands, and the
entanglement–disentanglement dynamics. In this work, the flow
of micellar solutions, in simple shear and Poiseuille’s flows, is
analyzed using non-equilibrium molecular dynamics simulations.
The main objective is the prediction of the banding transitions,
observed in the experiments, and to establish the relation between
molecular organization and rheological behavior. It is impor-
tant to point out again that the molecular model used here
addresses the dynamics of interaction, orientation and migration
under flow. For the system size selected, it does not consider
the entanglement–disentanglement process in more concentrated
solutions. The manuscript is organized as follows: Section 2
presents the molecular model and the equations of motion to sim-
ulate the flow. Section 3 includes a description of the system,
geometry and simulation conditions and presents calculations of
the rheological properties. Section 4 discusses the flow behavior of
the solutions under simple shear and Poiseuille’s flow and shows
results about the banding formation along gradient and vorticity
directions. An analysis of the structural changes is provided as func-
tions of the shear rate. Finally, in Section 5, the main conclusions
are presented.

2. Theory and simulation method

2.1. Equation of motion

In a system where positions and velocities evolve at constant
volume and temperature (using a Nosé–Hoover thermostat), the
equations of motion are:

dri

dt
= vi (1)

dvi

dt
= Fi

mi
− �vi (2)

d�

dt
= 1

Q

[∑
i

pi
2

2mi
− LT

]
(3)

where ri, vi, Fi are the position, velocity and force on a particle i,
T is the objective temperature of the system, L the degree of free-
dom, Q the thermostat mass and � is the thermodynamic friction
coefficient. Solution of Eqs. (1)–(3) allows knowing the position
and velocity of a particle at any instant and under equilibrium con-
ditions. Under non-equilibrium conditions and taking into account
the concept of peculiar velocity, the degrees of freedom of the ther-
mostat are given by L = 2N, where N is the number of segments in
the system. An important parameter related to the efficiency of the
thermostat is its mass Q. This is defined as Q = LT�2, where T is the
temperature and � is the relaxation time of the system [49].

With the aim to analyze the system behavior with various stress

fields, two flows are simulated under non-equilibrium conditions:
(1) simple shear and (2) Poiseuille’s flow. In molecular dynamics,
the flow condition is simulated by adding an external term (exter-
nal perturbation) to the equations of motion or by modifying the
system boundaries. In this work, a Poiseuille flow is generated by
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Fig. 1. Schematic representation of the surfactant molecule.

dding the term iFe to the right of Eq. (2). The unit vector i repre-
ents the flow direction and Fe is an external force field (equivalent
o the pressure gradient). For a simple shear flow, the flow is gen-
rated by modifying one of the system boundaries, as detailed in
ection 3.2.

Finally, the solution of the system of differential equations is
erformed with the reversible explicit system propagator algorithm
RESPA) [49], where the factorization of the Liouville operator is
arried out according to Xu et al. scheme [36]. Likewise, the velocity
stablished by the Liouville operator for the dynamic variables of
he thermostat occurs within the same time scale of the reference
ystem.

.2. Molecular model

Dense macromolecular systems, such as the systems given
ttention here, are difficult to implement due to the variety of
hemical species that form the molecule, which imply numerous
nd different interactions among those species contributing to the
alculation of the system energy. With the aim to reduce the com-
lexity of the molecular model, in this work we use a model of the
oarse-Grained type [46]. With this molecular model is possible to
enerate a wormlike micelle that is stable and independent of the
eriodic boundary conditions [47]. Surfactant molecules present a
ouble character, a hydrophilic head affine to polar solvents and
hydrophobic chain affine to organic solvents. The model pro-

osed here assigns to the hydrophilic head a diameter of 41/3�,
hile the hydrocarbon hydrophobic chain is composed of four sites

ach one with diameter � (see Fig. 1). To reproduce the chemical
ond between sites or monomers forming the molecule, a harmonic
otential is used:

enl(rij) = 5000(rij − �ij)
2 (4)

here ε is an energy-level parameter, and �ij is calculated using
he Lorentz–Berthelot combining rules given by the following
quation �ij = 0.5(�ii + �jj). The solvent is modeled according to a
ennard–Jones-type potential corresponding to a soft sphere of
iameter �. The solvent–solvent, solvent–hydrophilic head, and
ydrophilic head–head interactions and those between hydropho-
ic tails is modeled again according to a Lennard–Jones potential
iven by

lj(rij) = 4ε

[(
�ij

rij

)12

−
(

�ij

rij

)6
]

− Ulj(rc) (5)

Likewise, the hydrophobic tail–solvent interactions and the
ead–hydrophobic tail interactions are simulated according to a

epulsive potential given by

rep(rij) = ε

[
1.05�ij

rij

]9

(6)
Fluid Mech. 166 (2011) 194–207

The parameter 1.05�ij is fixed taking into account that the
hard-core repulsion is approximately as strong as repulsive part
of Lennard–Jones potential (for more details see Ref. [46]). The
non-bonding interactions given by the Lennard–Jones potential are
truncated and smoothed at a cut-off radius of rc = 2.5�ij.

3. Simulations details and methodologies

3.1. Reduced properties

The system variables are expressed in terms of reduced quan-
tities with respect to the mass (mi), energy (ε) and length (�), to
which a value of one is assigned (ε = � = mi = 1.0). This formula-
tion has the advantage that the principle of corresponding states
can be applied [50]. The mass is expressed in units of atomic
mass, the energy is given in units of the depth of the well poten-
tial and the lengths are referred to the particle diameter. The
reduced expressions for the relevant parameters are [51]: �* = ��3,

T* = kBT/ε, U* = U/ε, P* = P�3/ε, t∗ = t(ε/m�2)
1/2

, �̇∗ = (m�2/ε)
1/2

�̇

and �∗ = (�4/mε)
1/2

�, where � is the local density, kB is the Boltz-
mann constant, U is the energy, P is the pressure tensor and t is time.
For simplicity, hereafter the asterisk notation will be omitted.

3.2. System and geometry

The systems analyzed in this work consist of M surfactant
molecules, each one containing five sites, and S solvent particles
affine to the hydrophilic head groups. According to the molec-
ular model, each molecule in turn contains Nc sites connected
by harmonic springs. The total number of sites in the system is
N = MNc + S. For the simulations, the system size N comprises 6000
sites (molecules and solvent sites) with a reduced density per site
of 0.66 and reduced temperature of 1.35. The reduced density � is
the ratio of the total number of sites and simulation volume, and
together with the number of sites in the system, the simulation
domain in defined.

In this work we use a Coarse-Grained-type molecular model, by
which it is possible to assemble various spherical micelles under
equilibrium, and furthermore, a wormlike micellar structure may
also be formed under flow. This choice considers the experimental
measurements of the characteristic length of a spherical micelle,
which varies in the range of 2.5–20 nm [52], and that of the per-
sistence length of a wormlike micelle, which varies from 15 to
150 nm [53,54]. In molecular dynamics, the size of the computa-
tional domain must be sufficiently larger than the characteristic
molecular lengths of the system under study. On the basis of the
molecular model and the concept of reduced units, the reference
molecular segment may include up to three or more CH2 groups. As
a first approximation, the reference segment would have a size of
0.9 nm, such as one side of the simulation domain would be around
19 nm. This length scale is appropriate to the characteristic length
of the spherical and wormlike micelles.

Five study cases have been selected, with site concentrations of
0.0, 0.05, 0.10, 0.15 and 0.20. The concentration per site 	 is the
ratio of the solute number of the sites and the total number of the
sites (solute and solvent) used in molecular simulations works on
micellar solutions [43,44]. To define the concentration regime, the
overlap concentration c* is that corresponding to twice the solvent
viscosity. On the basis of the flow curves shown in Section 4.1.1,
only the solutions with concentrations of 0.05 and 0.10 are found

in dilute regime.

The geometry of the simulation region is shown in Fig. 2, with
dimensions given in terms of � units. Walls are found parallel to
the x–y plane normal to the gradient axis. The two flows are gen-
erated along the x axis, with the velocity gradient placed along the
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each slice and then we average over the number of particles in that
slice at each time step. Finally, velocity profiles are obtained by
computing the time average velocity for each slice during the sim-
ulation. Similar considerations are made for the density and stress
profiles.
Fig. 2. Schematic representation of the simulation region betw

direction and the vorticity axis placed along the y direction. The
eriodic boundary and minimal image conditions are applied only
long the flow and vorticity directions.

To simulate the effect of the fixed surface (lower wall in sim-
le shear and both walls in Poiseuille’s flow), a particle crossing
ny of the walls located in the x–y plane is reflected to the flow
omain. The surface roughness is simulated assigning the parti-
le with a random velocity scaled at the system temperature [55].
owever, the moving boundary in simple shear is simulated by
onsidering that any particle exiting the upper wall is reflected to
he flow domain with a velocity �̇impLz , where �̇imp is the imposed
hear rate and Lz is the length of the simulation region with value
f 20.89�. Again in simple shear, the origin is located at the center
f the lower wall, z = 0, and the upper wall is located at z = Lz. For
oiseuille’s flow, the origin is found at the middle of the simulation
egion, such that the walls are located at z = ± 0.5Lz.

In practice, Poiseuille’s flow is generated by a pressure gradi-
nt. However, in molecular simulations the pressure gradient is
ubstituted by an external force Fe. For the Poiseuille’s flow simu-
ations, the magnitude of the external force Fe varies from 0.1 to
.3. In molecular simulations, the magnitude of Fe to generate the
ow depends on the fluid type, confinement distance, density and
eometry. However, it is important to mention that the peak veloc-
ties obtained in previous works [56,57] is similar and independent
f the magnitude of the external force within this range. For the
imple shear flow simulations, the magnitude of the imposed shear
ate �̇imp varies from 0.001 to 13.0.

Finally, the initial configuration of the non-equilibrium molec-
lar dynamics simulation is equilibrated for the quiescent state in
ectangular simulation regions. The number of integration steps
mounts to 10 million with a time step 
t = 0.001. In Fig. 3, the
quilibrium configuration corresponding to a system with 	 = 0.15
s depicted. Green dashed dots, blue dots and red dots represent
he solvent, hydrophilic heads and hydrophobic tails, respectively.
uch configurations show the spherical micelles assembled, with
ts hydrophobic tails (red dots) pointing inwards repelling the sol-
ent (green dots). It is important to mention that the wormlike
onfiguration is stable and its survival does not depend on the peri-
dic boundary conditions. This configuration is the initial step for
he non-equilibrium simulations. The non-equilibrium simulations
ake 10 million integration steps, of which the first 5 million are
ecessary to equilibrate the system under shear flow. For the range
f shear rates imposed �̇imp and external force Fe considered, the
ime step is fixed to 
t = 0.001.

.3. Stress tensor
The relationship between molecular structure and stress field is
necessary condition to describe the rheological behavior of the

ystem. In this work, the plane method for non-homogeneous flow
56] is used to calculate the pressure tensor in the fluid, according
arallel surfaces: (a) simple shear flow and (b) Poiseuille’s flow.

to the following expression:

Pzx(z) = 1
A

〈
N∑

i=1

pzipzi

mi
ı(z − zi)

〉
+ 1

2A

〈
N∑

i=1

Fxisgn(zi − z)

〉
(7)

where Pzx is the pressure tensor component acting along direction
x through a plane normal to the z axis. A is the area of the plane
normal to the z axis, sgn(zi − z) is equal to one if (zi − z) > 0 and to
−1 if (zi − z) < 0. Moreover, Fxi is the x-component of the force acting
on particle i, and pzi is the z component of the momentum of particle
i, respectively. The stress tensor T is related to the non-equilibrium
components of the pressure tensor such that T = −P. The total stress
T implies the contribution of the pressure and that of the viscous
stress, such that T = pI + �. The plane method allows calculating the
stress components �zx in the computational domain.

4. Results and discussion

Results were obtained for a number of time-averaged fluid prop-
erties. The properties examined here are stress, density and velocity
profiles in the simulation region. To determine an average prop-
erty, we divide the test region into a sufficient number of slices (for
velocity and density profiles) or planes (for stress profiles). Then,
we calculate the time averaged property for each slice or plane.
For example, we add the x-component of the particle velocities in
Fig. 3. Equilibrium configuration for a micellar concentration of 0.15. Green dashed
dots represent the solvent; blue dots represent hydrophilic heads, and red dots
represent hydrophobic tails. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of the article.)
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direction. The shear-thinning is apparently associated to the dis-
ig. 4. Simple shear flow: (a) shear stress versus shear rate and (b) shear viscosity
ersus shear rate for various site concentrations	.

.1. Simple shear flow

.1.1. Simple shear flow curves: stress versus shear rate and
iscosity versus shear rate

The flow curves, �zx versus �̇ , involve 100 planes x–y placed
ormal to the z axis, between the z = 0 and z = Lz surfaces. The
tress �zx(z) and velocity profiles vx(z), are shown in Section 4.1.2.
he shear stress �zx is the mean value of the �zx(z) profile, i.e.,

zx =
Np∑
i=1

�zx,i/Np where Np is the number of normal planes to the

axis. From the regression of the velocity profiles vx(z) the slope
˙ is found, corresponding to the imposed shear rate �̇imp. With the

ean stress �zx and shear rate �̇ , corresponding to each �̇imp, the
hear viscosity � is obtained.

In Fig. 4a the shear stress �zx is plotted with the shear rate �̇
or the four concentrations analyzed here, including the solvent
urve (	 = 0). Maintaining the velocity of the upper plate (�̇impLz)
onstant, the resulting flow curve is monotonic and concentra-
ion dependent. Three flow regions are identified: the first region
t small shear rates is Newtonian and extends up to a shear rate
round 0.2. As the shear rate increases, the behavior of a second
ow region is no longer Newtonian, but power-law, exhibiting
hear-thinning between 0.2 and 1.0. For larger shear rates, a third

egion where shear-thickening is observed is located between 1.0
nd 10. This flow curve is remarkably similar to that obtained by
ecent experimental data by Yamamoto et al. [58] using a solution
f cetyltrimethylammonium bromide (CTAB) and sodium salicylate
Fluid Mech. 166 (2011) 194–207

(NaSal) in the parallel plate geometry. Experimental flow curves
exhibit a Newtonian region at low shear rates, followed by a region
of slight shear-thinning and finally, a shear thickening behavior is
observed at high shear rates.

The variation of the shear viscosity with shear rate is shown in
Fig. 4b for same concentrations of Fig. 4a. The Newtonian and shear-
thinning regions are followed by a quite wide shear-thickening
region. The zero-shear-rate viscosity �0 at low shear rates (0.005
and 0.1) is weakly dependent on concentration. Systems with 0.05
and 0.10 concentrations lie in the dilute regime, whereas those with
larger concentrations (0.15 and 0.20) are found in the semi-dilute
regime.

An interesting result of the simulations is the slight shear-
thinning followed by an also slight shear thickening of the
Lennard–Jones fluid (solvent). Despite the fact that in complex flu-
ids the shear-induced molecular order or deformation produces
shear-thinning, in Lennard–Jones fluids is not clear what produces
such behavior, since the configuration analysis does not show
any molecular ordering. Non-Newtonian behavior in simple fluids
characterized by a Lennard–Jones fluid has been reported [59,60]
using a “configurations thermostat” which does not exert addi-
tional constraints on the flow profiles. Results are in agreement
with experiments on hard-sphere concentrated colloidal suspen-
sions, namely, the Lennard–Jones fluid underwent shear-thinning
for imposed shear rates lower than 7 and shear-thickening for
larger shear rates. All these results seem to suggest than the L–J
fluid is not particularly suitable to describe the rheological behav-
ior of a Newtonian solvent. However, in the present work, we use
this approximation on the basis that is a small contribution to the
overall behavior of the system, and that the solvent is not responsi-
ble of the micelle ordering and deformation in the induction process
of shear bands, as it is shown later.

4.1.2. Configurational analysis
Structural studies have related the three regions of the flow

curve with structural changes in the internal state of the system. In
equilibrium conditions the molecular structure corresponds to an
isotropic or near-isotropic fluid, where a short-range ordering with
characteristic length of 1� and 2�, becomes disordered for larger
lengths, as seen in homogeneous isotropic fluids (see Fig. 3). In the
Newtonian region, Fig. 5 shows the final configuration for a con-
centration of 0.15 at a shear rate of 0.04. The system has evolved
from an equilibrium configuration (Fig. 3) with numerous micel-
lar structures to a non-equilibrium structure (Fig. 5), illustrating the
interaction dynamics. The final configuration of the system reveals
that the surfactant molecules have formed a wormlike micelle ori-
ented in flow direction (within the first region of the flow curve) and
the solvent presents a random configuration at low shear rates. The
internal structure of the micelle is preserved at this flow strength.

For second and third regions of the flow curve, final configu-
rations of wormlike micelles (	 = 0.15) are depicted in Fig. 6(a–d)
illustrating the spatial position of the micelles for increasing shear
rates located in the shear-thinning region (Fig. 6a and,b) and in the
shear-thickening region (Fig. 6c and d). The left hand-side pictures
represent the velocity-gradient planes and the right hand-side pic-
tures show the gradient-vorticity planes. In the shear-thinning
region (�̇ = 0.96), the wormlike micelle observed in the Newtonian
region (see Fig. 5) has been totally disrupted and single surfactant
molecules migrate to the fixed surface, as shown in Fig. 6a. This dis-
tribution shows a band of molecules extending along the axial and
neutral directions of the simulation region, normal to the gradient
ruption of the wormlike micelles and to their further distribution
in bands parallel to the flow direction. It is noticeable that in the
depleted region most of the chains or agglomerates are disrupted,
unlike in the low shear rate region where most of the micelles
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ig. 5. Final configuration corresponding to the extreme of the Newtonian region f
eads and hydrophobic tails, respectively. (For interpretation of the references to c

hare agglomeration. Along the vorticity axis the same pattern pre-
ails, indicating that the banding produced lies along the gradient
irection (gradient banding) and not along the vorticity direction.
o the end of the shear-thinning region, (�̇ = 1.98), the band is
ully extended axially and contracted in the vorticity direction
Fig. 6b). The banding produced along the gradient direction (left
and-side) where it is observed that the disrupted region at high
hear rate is narrower than that of Fig. 6a, reflecting the growth of
he agglomerate region. The drastic change in configuration arises
long the vorticity direction (right hand-side). This drastic change
n configuration suggests the initial stage of the diffusion of surfac-
ant molecules to the negative y-direction and positive z-direction.
herefore, at this particular shear rate (�̇ = 1.98), simultaneous
radient banding and banding along the vorticity direction (“vor-
icity banding”) are predicted. This is precisely the transition point
rom banding along the gradient direction into banding along the
orticity direction.

It is important to mention that the orientation dynamics under
ow in the shear-banding stage (in the plane of shear and along
he vorticity direction) considering either the shear thickening or
hinning response, is predicted in the semi-dilute regime. This
ynamics can be accounted for by considering few cylindrical
ggregates interacting with each other (growing or decreasing
ize) and orienting themselves under flow, producing migration
nd band formation. This is the situation that we are analyz-
ng in the present work. Shear banding flow has been observed
n many wormlike micellar systems in both the semi-dilute and
oncentrated regimes [61]. Moreover, giant micelles exhibit shear-
hickening even in the dilute regime. In the present work, we are
oncerned with systems that may be governed by the interaction
etween micelles and orientation of the micellar aggregates under
ow. Given the size of the system and the concentration regimes
onsidered, here the dynamics of entanglement–disentanglement
s not accounted for.

Along the shear-thickening region (�̇ = 3.34), the diffusion pro-
ess initiated at the end of the shear-thinning region terminates
long the gradient direction. The molecules are distributed along
band extending axially and along the gradient direction, nor-
al to the vorticity direction (Fig. 6c). The entanglement region

as grown substantially, covering almost the entire flow region.
pon increasing the shear rate to �̇ = 4.82, the system exhibits two

ands normal to the vorticity direction, where the largest magni-
ude of shear-thickening is observed. Final configurations suggest
hat these bands are due to a diffusion process along the vorticity
irection. Finally, Fig. 7(a–d) depicts the effect of concentration in
he formation of bands along the vorticity direction, all figures in
y

0.15. Green dashed dots, blue dots and red dots represent the solvent, hydrophilic
this figure legend, the reader is referred to the web version of the article.)

the shear thickening region. In Fig. 7a, the solvent alone exhibits
an isotropic behavior. As the concentration increases, bands are
formed. However, it is clear that the formation of these bands
requires a minimum value of the concentration, in this case, larger
than 0.1, as shown in Fig. 7c and d.

Shear banding along the vorticity direction has been reported
by Fischer et al. [26] in the aqueous surfactant solution of
cetylpyridinium chloride and sodium salicylate, investigated in a
transparent strain-controlled Taylor Couette flow cell. This partic-
ular wormlike micellar solution exhibits shear thinning at low shear
rates and subsequently, shear thickening at high shear rates. Once
the shear-thickening regime is reached, a transient phase separa-
tion of the solution into turbid and clear ring-like patterns oriented
perpendicular to the vorticity axis are observed. These patterns are
consequences of the structural changes of the oriented micellar
aggregates and can be explained molecularly, to our knowledge
for the first time, in the context of the present molecular model.

The predictions of the present model are in agreement with
other analyses that predict van der Waals loops in the stress, so both
gradient and vorticity banding can occur [29,62]. But in contrast
to these analyses, the prediction of banding normal to the vortic-
ity direction was made here without the condition of multi-valued
flow curve.

Recent research on banding normal to the vorticity axis relates
it with the occurrence of normal stresses along the gradient direc-
tion in polymer systems. The non-uniform stretching of polymer
chains gives rise to normal stresses directed toward the moving
surface. When these stresses are sufficiently large, they can gen-
erate a flow along the gradient direction. Under steady-state this
motion gives rise to bands that are in internal rolling motion [25]. In
the case of wormlike micelles, the non-uniform elastic deformation
of the in-homogeneities (in this case the non-uniform distribution
of micellar entanglement state and deformation) gives rise to hoop
stresses that can generate the rolling motion of the bands. Alter-
natively, normal stresses giving rise to vorticity banding can be
generated within the interface of the gradient banded structure.
In this case, initially a gradient banding structure develops, which
is then followed by the formation of vorticity bands [32]. This is
precisely what is observed in Fig. 6(a–d). The in-homogeneities in
the stretching of the micelles give rise to normal stresses point-
ing toward the moving surface (see the left-hand side of Fig. 6).

The diffusion of micelles in the gradient direction reflects the flow
along this direction for increasing shear rates; until the entire flow
cell is covered by agglomerated micelles in the shear-thickening
regime (see Fig. 6d). The diffusion process may generate normal
stresses along the gradient axis giving rise to the rolling motion
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Fig. 6. Lateral and transversal views of the final configuration in: (a and b
nd band formation normal to the vorticity axis, as seen in the
ight-hand side of Fig. 6d. This behavior is analyzed in a forth-
oming publication on predictions of the normal stresses on the
urfaces.
y

shear-thinning region and (c and d) shear-thickening region for 	 = 0.15.
4.1.3. Density and velocity profiles
With the final configurations described in the previous section,

the relationship between the velocity and stress fields is analyzed.
To obtain the density profiles �(z) and velocity profiles vx(z), 100
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Fig. 7. Effect of concentration on the formation of “vorti

− y planes are placed normal to the z axis, between z = 0 and z = Lz.
n Fig. 8, the density is plotted as a function of the confining distance
or a concentration of 0.15. In the Newtonian region (�̇ = 0.0035),

he density profile is symmetric, exhibiting a slight layer ordering
ue to the surface. Along the second flow region (0.57 < �̇ < 0.96)
he density profile between the plates is now asymmetric, revealing
arge fluctuations next to the moving wall (right). These oscillations
re associated to a slight ordering that the solvent exhibits next to
y

nding”: (a–c) dilute regime, and (d) semi dilute regime.

the moving wall (see Fig. 6a). Along this flow regime, the fluid is
distributed in two regions, one of low density next to the fixed wall
and another one with high density next to the moving surface. Sim-

ilar behavior is observed at other concentrations. Finally, along the
shear-thickening region (3.34 < �̇ < 6.17) density profiles are again
symmetric.

Velocity profiles corresponding to the three regions of flow
behavior are shown in Fig. 9(a, b and c, respectively). In the Newto-
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surements. It turns out that in the banding flow region, the spatially
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ig. 8. Density profiles �(z) with concentration of 0.15, for various shear rates under
imple shear flow.

ian region at low shear rates, the velocity profiles are straight lines
ithin 0.0035 and 0.038 of shear rate. In the shear-thinning region
e observe a continuous development of two shear bands as the

hear rate increases, whose slopes are indicated in Fig. 9b. The larger
hear rate corresponds to that near the fixed wall. Finally, along the
hear-thickening region, the velocity profiles become linear again,
ven for the largest value (6.17). Some experimental results reveal
hat under gradient banding, the largest velocity gradient is located
ear the moving wall. However, results here presented indicate
hat the lower velocity gradient band is located next to the mov-
ng wall. These velocity profiles are qualitatively consistent with
hose obtained by Yamamoto et al. [58] for shear-thickening fluids.
n fact, in these fluids, it is observed that a highly viscous structured
riented region forms near the moving wall, generating a low shear
ate layer. The behavior of the velocity profiles is given particular
ttention in a forthcoming publication.

It is possible to establish a relationship between the density
nd velocity profiles. When the density profile is symmetric, the
elocity profile is almost linear. Non-homogeneous density profiles
erive from the shear-induced molecular organization. Along the
ewtonian region, the fluid is isotropic, the velocity profile is linear
nd the density profile is symmetric. In the shear-thickening region,
�̇ ≈ 4.8), the fluid is isotropic again for the lower concentrations
0.0, 0.05 and 0.10, see Fig. 7a–c) and band formation normal to
he vorticity axis for 	 of 0.15 (Fig. 6d) and 0.20 (Fig. 7d). As these
ands extend along the gradient axis, the velocity profile is linear
nd the density profile is symmetric. However, along the shear-
hinning section, the lower density region possesses larger velocity
radients, while the region with higher density corresponds to the
ower velocity gradients. Due to this density differences, it is likely
hat the fluid band normal to the gradient axis is associated to a
iffusion process from the high density region to the low density
omain.

.1.4. Stress profiles
The stress profiles along the flow cell perpendicular to the flow

irection are shown in Fig. 10a and b. In Fig. 10a, for shear rates
ocated in the Newtonian region (0.0035 and 0.04) the stress is
lmost constant. As the shear rate increases within the shear-
hinning region, the two-band structure is reflected in a low and

igh stress profiles. The larger stress corresponds to the high shear
ate band (see Fig. 9b) followed by a smooth transition to the low
tress value corresponding to the low shear rate band. This is clearly
epicted in the stress curves for shear rates of 0.77 and 0.96. The
igher stress value is associated to those sections of the simula-
Fluid Mech. 166 (2011) 194–207

tion domain where the density of surfactant molecules is larger. In
Fig. 9b, the inflection point of the velocity is located approximately
at z = 12 (close to the center of the flow cell). This inflection point
is associated to the fluid band normal to the gradient direction.
The change in the peak stress from 1.5 to approximately 1.0 is also
located at this point. Under homogeneous simple shear flow, the
stress is constant across the gap between the moving and stationary
plates, but under banding flow, the stress is constant within each
 0
 0  5  10  15  20  25

z

Fig. 9. Velocity profiles vx(z) corresponding to the indicated flow regimes under
simple shear for a concentration of 0.15.



J. Castillo-Tejas et al. / J. Non-Newtonian Fluid Mech. 166 (2011) 194–207 203

 0

 5

 10

 15

 20

a

b

-0.5  0  0.5  1  1.5

z

τzx(z)

γ = 0.0035•

γ = 0.04•

γ = 0.17•

γ = 0.36•

γ = 0.57•

γ = 0.77•

γ = 0.96•

 0

 5

 10

 15

 20

-4 -2  0  2  4  6  8  10  12  14

z

τzx(z)

γ = 0.96•

γ = 1.98•

γ = 2.68•

γ = 3.34•

γ = 4.82•

γ = 6.17•

F
(

t
p
a
[
o
d
t
fl
s
l

4

w
S
fl
p
t
b
i
w
i
t
s
a
m
f
p

 0

 20

 40

 60

 80

 100

 120

 0  5  10  15  20  25

v x
(z

)

γ = 0.1875•

γ = 0.4806•

γ = 1.0744•

γ = 2.2410•

γ = 4.9097•

e e
ig. 10. Shear stress profiles �zx along the gradient axis z for a concentration of 0.15.
a) Newtonian and shear-thinning regions. (b) Shear-thickening region.

he interface, consistent with the change in velocity profile at this
oint (see Figs. 9 and 10b and a). This is experimentally observed as
change in spatially resolved birefringence at the interface (see Ref.

63]) as one goes from a less-ordered structure into a more oriented
ne). In the region where the shear-thickening occurs, Fig. 10b, the
evelopment of the stress profile for increasing shear rates across
he flow cell is more drastic in magnitude and attains an almost
at profile at very high shear rates (6.17). There is, however, a low
tress region next to the walls, reminiscent of a stress boundary
ayer.

.1.5. Density and velocity profiles: Lennard–Jones fluid
As mentioned in Section 4.1.1, the motion of particles modeled

ith a Lennard–Jones potential simulating a solvent is discussed.
ome works have reported a non-Newtonian behavior with this
uid. Heyes [64] reports flow curves for various densities and tem-
eratures. For example, at a reduced density of 0.8 and reduced
emperature of 1.86, this fluid shows a slight shear-thinning
etween shear rates of 0.1 and 1.0. Increasing density with decreas-

ng temperature, shear-thinning appears at lower shear rates. Other
orks [65] associated the shear-thinning to a flow-induced order-

ng. Evans and Morriss [66] established that this ordering is due
o the assumed velocity profile of the thermostat to hold a con-
tant temperature. Thereafter, Refs. [59,60] verified these results,

nd suggested that the molecular ordering is associated to a ther-
ostat artifact even though the fluid experiences shear-thinning

ollowed by shear-thickening between 1 ≤ �̇ ≤ 10, near the triple
oint conditions.
z

Fig. 11. Velocity profiles vx(z) for the Lennard–Jones fluid (	 = 0.0) under simple
shear flow.

It is important to establish that this non-Newtonian behavior in
the solvent particle used here (without ordering) contributes little
to the molecular deformation and bands generated by the micellar
solution. In this work, the Nose–Hoover thermostat is used to main-
tain a constant temperature but this thermostat is applied only to
those components of the velocity vector which develop a pecu-
liar velocity. With this consideration, the final configuration does
not exhibit any ordering molecular in the shear thickening region.
For example, for a shear rate of 4.91 (Fig. 7a), the final configura-
tion exhibits a random and isotropic organization with the absence
of ordering molecular. For similar shear rates, Delhommelle et al.
[59] report a molecular ordering of the fluid (using a PBT thermo-
stat) which vanishes when a configurational thermostat is used. The
configurational thermostat does not require the assumption of the
velocity profile to maintain a constant temperature. In this work,
we do not use a configurational thermostat but it is demonstrated
that if the Nose-Hoover thermostat is applied only to those compo-
nents of the velocity which develop a peculiar velocity, no ordering
in the shear-thinning and shear thickening regions is predicted for
the L–J fluid.

In Fig. 11, the velocity profiles vx(z) are presented for the L–J
fluid. In the Newtonian region (�̇ = 0.18) and shear-thickening
region (�̇ = 4.9) linear velocity profiles are observed. However,
in the shear-thinning region (�̇ of 1.07 and 2.24), three regions
of different shear rates are predicted. Next to the boundaries, the
shear rate is lower than that in the central region, where the fluid
has a higher velocity gradient. The central region corresponding
to high velocity gradient, presents a lower density (not shown).
Apparently, non-homogeneous density profiles are related to dis-
tinct velocity gradients. It is important to mention that the density
profile of the solvent is different to that observed in the micellar
solutions, from which differences in the velocity profiles appear.
For similar shear rates from 0.96 and 1.98 (Fig. 9b), the system with
0.15 concentration exhibits two regions with different velocity gra-
dient, where the fluid exhibits gradient-banding, being independent
of the rheological behavior of the solvent.

4.2. Poiseuille’s flow

This flow is generated between two fixed surfaces by means of
the applied external force F along the x direction. Under F , the fluid

moves along the x axis, with the gradient direction z and vorticity
direction y. The velocity vx(z) and stress profiles �zx(z), follow same
conditions of the simple shear flow. Flow curves display the relation
between �w and �̇w , where �w is the shear stress �zx(z = ± 0.5Lz) eval-
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ig. 12. Poiseuille’s flow. (a) Wall stress and (b) shear viscosity as functions of shear
ate �̇w for various site concentrations.

ated on the walls. Similarly, �̇w is the local shear rate obtained from
he velocity profile and evaluated on the walls �̇w = dvx/dz|z=0.5Lz .

In Fig. 12a the stress at the wall �w is plotted with shear rate
˙ w for three concentrations (0.05, 0.10 and 0.15) and in Fig. 12b
he viscosity is plotted with shear rate. There are two regions of
ow behavior: in region 1, a near-Newtonian behavior is observed

ollowed by a shear-thinning region for shear rates larger than

pproximately 0.7. The shear-thinning is pronounced (slope of
0.83), although it does not approach the slope of −1 correspond-

ng to the plateau. The smaller concentrations flow curves go into
near-plateau in region II, whereas the flow curve with concentra-
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Fig. 13. Poiseuille’s flow. Density profiles �(z) along the gradient direction z for a
site concentration of 0.15.

tion of 0.15 begins to approach a second Newtonian region at the
highest shear rate. In contrast to the simple shear flow curves, in this
case the shear-thickening behavior is not observed in the ranges of
the imposed external force (pressure gradient) and concentrations
considered.

Fig. 13 depicts the density profiles in the radial direction (z) for
concentration of 0.15. In the Newtonian region (�̇w of 0.06, 0.29 and
0.68), the density profile is almost symmetric with slight waves in
the central region and some peaks next to the walls. The waves are
due to the micellar structures which preserve the flow conditions
and the peaks are due to a banding characteristic of ordering flu-
ids. In the shear-thinning region (�̇w ≥ 1.27), for increasing �̇w , the
system density increases toward the center of the flow region and
diminishes next to the walls. Again, two regions of different den-
sity are shown in the curve. The region next to the walls where the
density is low spans almost half a radius distance from the walls.
As expected, the micelles tend to migrate to the central regions of
the pipe where the shear rate is small and this effect is more pro-
nounced as the shear rate increases. This growth of the “slip layer”
with shear rate is remarkable.

In Fig. 14, the velocity profiles vx(z) in (a) Newtonian region
and (b) shear-thinning region are presented. In the Newtonian
region (Fig. 14a), velocity profiles are parabolic centered, with a
0.13 ≤ �̇w ≤ 0.68, the fluid exhibits some slipping on the surface.
Increasing the shear rate (Fig. 14b) and in the shear-thinning region,
the velocity profile tends to a plug-flow profile. Notice that the flat
profile section corresponds to the region where the larger density
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s found (see Fig. 13) and the “slip layer” where density is low, cor-
esponds to an almost linear velocity profile spanning almost half
radius distance from the wall.

The stress profiles for the wall shear rates considered are plotted
n Fig. 15. For low wall shear rates, the profile is linear in accordance
o Newtonian behavior. As the wall shear rate increases, the region
ext to the walls begins to present a reversal in the stress values
nd deviations from the linear profile, becoming more noticeable
or the largest shear rates. This “stress boundary layer” is maybe
ttributed to the depletion of micelles in regions next to the wall.
hen the plug flow profile develops, the shear stress is zero in this

egion, and nearly constant for the almost linear velocity profile.
hese predictions indicate that the reversal to low values of the
tress next to the walls corresponds to an inflection in the density
rofiles (see Fig. 13) along this region. It also shows that the “stress
oundary layer” does not coincide with the velocity boundary layer
r “slip layer”.

In the Newtonian region, we observe clusters of micelles in the
entral region or next to the walls that are not greatly deformed
not shown). But, in the shear thinning region, as the shear rate
ncreases, there is an uneven distribution of micellar clusters next

o the walls, and for higher shear rates the micellar distribution in
his region tend to be uniform. In Fig. 16, the final configuration is
resented for 	 = 0.15, with shear rate of 2.88. The molecular orga-
ization of the system exhibits a small deformation of the wormlike
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ig. 16. Poiseuille’s flow. Lateral and transversal views of the final configuration in the r
epresent the solvent, hydrophilic heads and hydrophobic tails, respectively. (For interpr
eb version of the article.)
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micelle at the central region of the pipe, that contrasts with low
agglomeration of the deformed clusters next to the walls.

These predictions of the molecular model presented so far are
in agreement with recent experiments and predictions worked out
by Yamamoto et al. [23]. The flow curve for a micellar solution of
CTAB/NaSal (cetyltrimethylammonium bromide with sodium sal-
icylate) used by these authors is similar to that shown in Fig. 12.
Predictions of the velocity profiles using the MBM model are also in
agreement with those presented in Fig. 14. Furthermore, the behav-
ior of the shear stress next to the wall is remarkably similar to that
shown in Fig. 15, where a maximum followed by a decreasing stress
next to the wall is predicted. Finally, experiments on flow visual-
ization performed by the referred paper show regions of turbidity
associated to a structure, whose size is comparable to the wave
length of light, is formed and scatters the impinging light. These lay-
ers of turbidity lie almost parallel next to the wall, growing toward
the channel center with increasing wall shear rate. This is precisely
what is observed in the simulations presented in Fig. 16.

5. Concluding remarks

One of the main contributions of this work is to establish a
relationship between molecular structure and spatial configuration
with transport properties of a complex system undergoing simple
shear flow. At low shear rates the stress is linear with the shear rate
and the conformation of the system is isotropic, the micelle pre-
serving its equilibrium conformation and the solvent is in random
state.

A second flow region is located at higher shear rates, where shear
thinning manifests, revealing the formation of bands positioned
normal to the gradient direction (gradient banding). Experimen-
tally, to attain stability along this flow region, the flow becomes
inhomogeneous and separates in bands of different shear rates. A
substantial change of the molecular structure of the solution occurs,
where the equilibrium structure of the micelles has been pro-
foundly modified. In this region, non-homogeneous density profiles
derive from the shear-induced molecular organization.

A third region of flow behavior is found at large shear rates,
where the system exhibits shear thickening. Along the gradient
direction, the micelles interact without the presence of shear bands,
generation of bands positioned perpendicular to the vorticity axis is
predicted. In summary, a wormlike chain or micelle is predicted in
the equilibrium state. Molecular interactions are strongly modified
by the flow, inducing deformation and orientation of the micelle.

.88

-15

-10

-5

 0

 5

 10

 15

-15 -10 -5  0  5  10  15

z

y

Transversal view

egion of strong shear-thinning, 	 = 0.15. Green dashed dots, blue dots and red dots
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The overall predictions of the present model are in agreement
ith theoretical analyses that predict gradient banding followed by

orticity banding as the fluid shear-thickens. Also, they agree with
he assumption related to the contribution of normal stresses in the
eneration of the bands normal to the vorticity axis. Furthermore,
greement is also found with experiments performed in a wormlike
icellar solution, where bands perpendicular to the vorticity axis

re observed in a Couette cell, simultaneously to the apparition of
he shear-thickening behavior. In Poiseuille’s flow, the appearance
f an oriented band next to the walls with lower density causes a
eviation in this region, from the expected linear profile for pipe
ow (see Figs. 13, 14b and 15) into a two-banded stress profile. This

s also experimentally observed in the birefringence patterns (see
ef. [23]). Moreover, theoretical and experimental agreement is

ound in Poiseuille’s flow with other works reported in the current
iterature. This is a novel contribution toward the understanding of
omplex flow behavior.
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