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a  b  s  t  r  a  c  t

The  criteria  of fluid  phase  equilibrium  can  be  expressed  in terms  of derivatives  of the  Helmholtz  energy
density,  which  takes  component  densities  (concentrations)  as  its natural  variables.  The  resulting  formu-
lation is  very  symmetric,  avoids  shortcomings  of other  approaches,  and  leads  to a  very efficient  computer
algorithm  for  the  calculation  of  phase  envelopes  of multicomponent  mixtures.

The  new  algorithm  does  without  inverting  the  equation  of  state  (calculate  the density  from  pressure
eywords:
luid phase equilibrium
alculation
lgorithm
quation of state

and  temperature)  at each  iteration  step,  and thus  achieves  a significant  acceleration  of  phase  diagram
computations  with  noncubic  equations  of  state.  The  estimation  of  initial  values  for  the  iteration  is  reduced
to a  1-dimensional  search  problem  even  for  multicomponent  mixtures.

© 2012 Elsevier B.V. All rights reserved.
elmholtz energy density

. Introduction

The task we are considering in this article is the computation of
he composition of a fluid phase in equilibrium with a fluid phase of
iven composition at a fixed temperature, plus the determination
f the equilibrium pressure.

The problem is as old as the techniques of distillation and extrac-
ion, and many solution strategies been proposed during the last
entury. The thermodynamic conditions of phase equilibrium were
lready concisely formulated by Gibbs and his followers by the end
f the 19th Century [1].  While already van der Waals and his school
ealized that the application of these conditions to a real-gas equa-
ion of state could lead to a uniform and consistent description of
apor–liquid and liquid–liquid equilibria [2],  this became practi-
ally feasible only after electronic computers became available to
he public around 1960. Still, it takes more than merely a fast com-
uter to solve the systems of nonlinear equations which describe
he equilibrium between fluid phases: The convergence of itera-
ive schemes is not always granted, and sometimes is too slow for
omfort. The need for fast and reliable algorithms became even
ore pressing with the arrival of noncubic equations of state and
ultidimensional corresponding states schemes.

The work of Michelsen [3,4] is considered an important land-

ark in the “art” of computing fluid phase equilibria. It summarizes
he thermodynamic conditions of equilibrium and phase stability,

∗ Corresponding author. Tel.: +49 221 470 4543; fax: +49 221 470 4900.
E-mail address: ulrich.deiters@uni-koeln.de (U.K. Deiters).

378-3812/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.fluid.2012.05.023
and proposes highly efficient strategies to determine the equilib-
rium compositions. Michelsen’s work is based on the analysis of
the Gibbs energy surface proposed by Baker et al. [5].

We will show in this work that an analysis of another surface,
namely the Helmholtz energy density surface, can lead to even
more efficient algorithms. Incidentally, the usage of this surface
leads to a rather “symmetric” and esthetically satisfying formula-
tion of the phase equilibrium conditions.

2. Theory

2.1. Phase equilibrium and stability criteria

In order to have an equilibrium between two  phases, here
denoted as ′ and ′′, it is necessary that they have the same temper-
ature and the same pressure; furthermore, the chemical potentials
of each component must have the same value in the coexisting
phases:

T ′ = T
′′

p′ = p′′

�′
i
= �

′′
i

i = 1, . . . , N

(1)

In addition, it is necessary that the phases fulfill some stability

criteria, namely

CV

T
> 0, (2)

dx.doi.org/10.1016/j.fluid.2012.05.023
http://www.sciencedirect.com/science/journal/03783812
http://www.elsevier.com/locate/fluid
mailto:ulrich.deiters@uni-koeln.de
dx.doi.org/10.1016/j.fluid.2012.05.023
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Fig. 1. Gibbs energy Gm as a function of mole fraction x1 for the system {methane
S.E. Quiñones-Cisneros, U.K. Deiters

hich is the condition of thermal stability,

∂2
A

∂V2

)
T

> 0 (3)

hich is the condition of mechanical stability, and, for binary mix-
ures,

∂2
Gm

∂x2
1

)
p,T

> 0. (4)

q. (4) is often called the criterion of diffusion stability. It can be
hown that mixtures — with the exception of azeotropic mixtures —
each the limit of diffusion stability before reaching the mechanical
tability limit, Eq. (3).

These stability criteria of pure fluids and azeotropic mixtures on
ne side, and general mixtures on the other, have been known for a
ong time. Still, it may  strike one as odd that two different criteria,
nvolving two  different thermodynamic potentials, must be used
or practically the same phenomenon.

For a multicomponent mixture, the diffusion stability criterion
equires the Hessian matrix of the molar Gibbs energy to be positive
efinite, i.e.,

v · G · v > 0 with

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2
Gm

∂x2
1

∂2
Gm

∂x1∂x2
· · · ∂2

Gm

∂x1∂xN−1

∂2
Gm

∂x2∂x1

∂2
Gm

∂x2
2

· · · ∂2
Gm

∂x2∂xN−1

...
...

. . .
...

∂2
Gm

∂xN−1∂x1

∂2
Gm

∂xN−1∂x2
· · · ∂2

Gm

∂x2
N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

or any non-zero vector v in composition space, while the deriva-
ives of Gm( x ; p, T) are computed at constant pressure and
emperature. The molar Gibbs energy, however, can have more than
ne value for a given pressure, and is therefore not a true function.
ence Eq. (5) is not really well-defined. Furthermore, because of

his multiplicity, the criterion is not sufficient to ensure global sta-
ility, as even mechanically unstable phases can result in a positive
efinite G [6,7].

This is not merely a matter of mathematical esthetics. Because
f the peculiar behavior of Gm( x ; p, T), it is not generally possible
o search for two-phase regions by looking at the local curvature
f the Gibbs energy surface. This problem is illustrated in Fig. 1 for

 simple case of a two-component mixture: At high temperatures,
n the vicinity of the critical curve of the system, the Gibbs energy
urve Gm(x1) exhibits the “classical” S-shape with two  inflection
oints (spinodal states) and a region of concave curvature between

hem (case A). At low temperatures, however, the Gibbs energy
function” has got three branches. If the subroutine for the Gibbs
nergy calculation always returns the lowermost (=the most stable)
alue, the concave region may  be inaccessible (case B). But it may
appen that no concave region exists at all (case C).

Provided that the condition of thermal stability, Eq. (2),  is sat-
sfied everywhere, one way to avoid the problems associated with
he use of Gm is formulating the stability criterion in terms of the

olar Helmholtz energy, Am( x, Vm ; T): the Hessian of Am( x, Vm ; T)
as to be positive definite:

(1) + propane (2)}, calculated with the Peng–Robinson equation of state. For clarity,
a  linear function x1Gm,1 + x2Gm,2 has been subtracted. —: mechanically stable branch,
-  - -: mechanically unstable branch, and �: spinodal.
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v · A · v > 0 with

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2
Am

∂x2
1

∂2
Am

∂x1∂x2
· · · ∂2

Am

∂x1∂xN−1

∂2
Am

∂x1∂Vm

∂2
Am

∂x2∂x1

∂2
Am

∂x2
2

· · · ∂2
Am

∂x2∂xN−1

∂2
Am

∂x2∂Vm

...
...

. . .
...

...

∂2
Am

∂xN−1∂x1

∂2
Am

∂xN−1∂x2
· · · ∂2

Am

∂x2
N−1

∂2
Am

∂xN−1∂Vm

∂2
Am

∂x1∂Vm

∂2
Am

∂x2∂Vm
· · · ∂2

Am

∂xN−1∂Vm

∂2
Am

∂V2
m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(6)

nd v denoting a non-zero vector in ( x, Vm) space.
Now this criterion has the problem of combining variables of

ifferent units and magnitudes, potentially leading to large asym-
etries (depending on the system of units chosen) and causing

umerical difficulties.
The problem can be circumvented by defining a scaling factor

hat makes Vm dimensionless. This, however, introduces an arbi-
rariness into thermodynamic calculations which should rather be
voided.

In this work we propose another, esthetically more satisfy-
ng solution to the problem, namely a “symmetric” formulation of
hase stability and equilibrium criteria.

.2. Isochoric thermodynamics

Instead of treating the N − 1 independent mole fractions, x1, x2,
 . .,  xN−1 and the molar volume, Vm, as primary variables, we pro-
ose to treat the total volume, V as fixed and use the amounts of
ubstance, n1, n2, . . .,  nN. This is equivalent to introducing com-
onent densities or concentrations, �1, �2, . . .,  �N, as primary
ariables:

i = ni

V
= xi

Vm
(7)

his approach may  therefore be called “isochoric thermodynamics”
r “density-based thermodynamics”. It is, of course, not a new con-
ept; for instance, Sengers and Levelt Sengers [8] used it in 1978 to
iscuss critical phenomena in fluid mixtures.

The re-conversion to molar volumes and mole fractions is
ccomplished by

� =
∑

i

�i = 1
Vm

xi = �i

�

(8)

The total differential of the Helmholtz energy is

A = −S dT − p dV +
N∑

i=1

�i dni. (9)

ecause of V = const, the second term on the right-hand side is zero.
ividing by V then yields

� ≡ d
(

A

V

)
= − Sm

Vm
dT +

N∑
�i d�i, (10)
i=1

here � ≡ A/V is the Helmholtz energy density, which was pro-
osed by Sengers and Levelt Sengers as primary thermodynamic
otential [8]. Evidently, the densities �i are natural variables of � .
 Phase Equilibria 329 (2012) 22– 31

From Eq. (10) one can see that the chemical potentials can be
written as

�i =
(

∂�

∂�i

)
V,T,�j /=  i

, (11)

and therefore the phase equilibrium criterion of equal chemical
potentials becomes(

∂� ′

∂�i

)
=
(

∂�
′′

∂�i

)
, i = 1, . . . , N. (12)

For clarity, we omit the constant properties in the partial deriva-
tives here and in the following equations, as they are always the
same.

In order to derive an expression for the pressure in the density-
based formulation, we combine the definition of the Gibbs energy,

G = A + pV, (13)

and the relation

G =
N∑

i=1

ni�i (14)

to obtain

−p = 1
V

(
A −

N∑
i=1

ni�i

)
. (15)

Inserting Eq. (11) and the definition of � yields

p = −� +
N∑

i=1

(
∂�

∂�i

)
�i. (16)

Hence the equal-pressure criterion, p′ = p′′, becomes

N∑
i=1

(
∂�

′′

∂�i

)
�

′′
i −

N∑
i=1

(
∂� ′

∂�i

)
�′

i = � ′′ − � ′. (17)

or, using Eq. (12),

N∑
i=1

(
∂�

∂�i

)
(�

′′
i − �′

i) = � ′′ − � ′ ≡ ��.  (18)

Using vector notation, the phase equilibrium conditions Eqs.
(12) and (18) can finally be summarized as

�′ = �
′′ ⇒ ∇� ′′ = ∇� ′

p′ = p′′ ⇒ ∇� · ��  = ��  with ��  = �
′′ − �′

(19)

This represents a system of N + 1 equations for the unknown den-
sities �′′ and �′ =

∑
�′

i
.

The geometric interpretation of these equations is that, under
isothermal conditions, � (�) defines a curved surface in � space.
∇� (�) represents the slopes of this surface with respect to the den-
sities of all mixture components. The support plane of � (�) at the
location �′, i.e., the (hyper)plane tangent to the surface, can then
be specified by

L(�, �′) = � ′ +
N∑

i=1

(
∂� ′

∂�i

)
(�i − �′

i) = � ′ + ∇� ′ · (� − �′). (20)

Evidently, the pressure criterion in Eq. (19) can be written as

L(�
′′
, �′) = � ′′ (21)
which means that the point of the � surface representing the coex-
isting phase, � ′′ = � (�′′), is on the same support plane: the support
plane is a double tangent plane to the � surface.
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.3. Generation of initial values

Eq. (19) represents the system of equations that has to be solved
n order to find the component densities of coexisting phases. These
quations are nonlinear and can generally be solved by iterative
echniques only. Then, however, it is necessary to provide good
nitial values for the iteration.

This can be accomplished by considering the total differential of
 , Eq. (10), which we write now for the isothermal case as

� =
N∑

i=1

(
∂�

∂�i

)
d�i = ∇� d�. (22)

ntegration of this equation yields

� =
∫

˝

∇� d�, (23)

here  ̋ denotes an arbitrary path in � space. We  are of course
nterested in a path that runs from the locus of the phase with the
iven composition to the locus of the yet unknown equilibrium
hase. Comparison of this equation with the pressure criterion in
q. (19) shows that the latter can be regarded as the special case of
he path integral for adjacent phases:

�
′′

�′
∇� d� → ∇� · �� (24)

In the general case, however, the path integral value will differ
rom its linear approximation, and the difference can be expected
o depend on the size of ��.  We  therefore write the path integral
xpression to 2nd order as

�
′′

�′
∇� d� = ∇� · ��  + �

2
(��)2 = ��. (25)

Calculating the gradient of this equation, i.e., the outer product
ith the nabla operator, gives

 · ∇� · ��  + ∇� + � �� = ∇(�� ). (26)

he left-hand side of this equation contains the Hessian matrix of
he Helmholtz energy density:

≡ ∇ · ∇� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2
�

∂�2
1

∂2
�

∂�1∂�2
· · · ∂2

�

∂�1∂�N

∂2
�

∂�2∂�1

∂2
�

∂�2
2

· · · ∂2
�

∂�2∂�N

...
...

. . .
...

∂2
�

∂�N∂�1

∂2
�

∂�N∂�2
· · · ∂2

�

∂�2
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (27)

ith regard to the right-hand side of Eq. (26), we observe that � ′

oes not depend on �′′, nor � ′′ on �′. If the gradient is taken with
espect to �′′, one of the terms cancels,

(�� ) = ∇�′′ � ′′ − ∇�′′ � ′︸  ︷︷  ︸
=0

= ∇�′′ � ′′, (28)

nd therefore Eq. (26) reduces to

 ��  = −� ��.  (29)
Evidently, this is an eigenvalue equation for ��.  As ��  is a vec-
or that points from the locus of the given phase to the locus of
he equilibrium phase, the meaning of this equation is that one
as to follow one of the eigenvectors of � in order to arrive at the
 Phase Equilibria 329 (2012) 22– 31 25

equilibrium phase; most likely, the eigenvector associated to the
lowermost eigenvalue will be the correct one.

Eq. (29) is true for adjacent equilibrium phases, i.e., phases of
such similar compositions that the path integral can be replaced
by a 2nd-order approximation. This is certainly the case for phase
equilibria in the vicinity of critical points [9],  but Eq. (29) is also
applicable far away from critical points as long as the phase com-
positions are not too different [7].

In the general case, the path from the fixed phase to the other
phase can be broken up into a sequence of short paths, and Eq. (29)
applied to each these paths — with the consequence that � and
hence the direction of the relevant eigenvector change along this
path. The path will therefore appear curved in � space.

It is perhaps interesting to attempt a geometric interpretation:
The matrix � represents the local curvature of the � (�) surface,
expressed in terms of the densities �. The eigenvalues of � rep-
resent principal curvatures in the directions of the eigenvectors.
By following an eigenvector-defined path over the � (�) surface,
we align our search with the “local landscape”. Such a search path,
when originating from a locally stable phase, has previously been
called “lowest ascendant path” [9].

For a stable or at least metastable phase, the local curvature
must be convex, and this implies that all eigenvalues are positive
[9]. Conversely, if at least one eigenvalue is negative, the phase is
unstable; this constitutes a criterion for phase stability.

If we move from one equilibrium phase, �′ to the other one, �′′,
along the double tangent plane, L(�, �′), the curvature along our
path is zero. If the movement is made along the � surface, which
lies above the tangent plane, there must be a region of concave
curvature, and consequently at least one eigenvalue will become
negative there. Monitoring the lowermost eigenvalue is therefore
a good way  to recognize two-phase regions.

A formal proof and a more detailed discussion of stability criteria
based on the principal curvatures of the Hessians of thermody-
namic potentials is already available elsewhere [7,9] and will be
the subject of a forthcoming publication.

2.4. Calculation of �

For completeness’ sake, we  give here the equation which relates
� = A/V = �Am(� ; T):

Am(x, Vm; T) =
N∑

i=1

xi(G
—�
m,i

(T) + RT ln xi) − RT

−
∫ Vm

V —�
m

p(x, Vm; T) dVm (30)

The derivation of this equation can be found in the literature (e.g.,
[10], Sect. 4.2). Here p—� = RT/V—�

m denotes a reference state at such
a large volume that here the ideal-gas law holds. The G—�

m,i
are the

Gibbs energies of the pure components i of the mixture in that state.
In phase equilibrium calculations (unless chemical reactions have
to be accounted for) all these reference terms cancel and therefore
need not be considered here.

p( x, Vm ; T) is an arbitrary pressure-explicit equation of state of
the fluid state. Usually such an equation is created by choosing an
appropriate pure-fluid equation of state and making its substance-
specific parameters composition-dependent.
Splitting the equation of state into an ideal and a residual part,

p = RT

Vm
+ pr, (31)
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of the vapor phase.
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ig. 2. Isothermal phase diagram of the {carbon dioxide (1) + decane (2)} system at
44.26 K. —: computed with the Peng–Robinson equation of state and ©:  experi-
ental data [20].

nd converting from molar volumes and mole fractions to molar
ensities then leads to

 (�; T) =
N∑

i=1

�i

(
G —�

m,i
(T) + RT ln

(
�i

� —�
))

− RT� + �

∫ �

0

pr(�; T)
�2

d�. (32)

he integral in this equation can be evaluated analytically or
umerically, depending on the complexity of the equation of state.

The derivatives of � which are required for ∇� and � (Eqs. (19)
nd (27)) can be obtained most conveniently by numerical differ-
ntiation; usually two steps of Romberg’s or Ridder’s method are
ufficient (see for example [10], Sect. A.8). Alternatively, analyti-
al differentiation can be used, preferably by means of computer
lgebra.

We defer further programming considerations to Section 4 and
ook first at representations of phase equilibria and search paths on

 (�) surfaces.

. Examples of phase diagram calculations

.1. Two-phase equilibria

Fig. 2 shows the “classical view” of an isothermal phase dia-
ram of the fluid mixture {carbon dioxide + decane}  at 344.26 K.
t this temperature, carbon dioxide is supercritical. Consequently,

he phase boundary has the typical loop shape with a binary critical
oint. This example was calculated with the Peng–Robinson equa-
ion of state (with the mixing rules proposed by its authors) [11]
y means of the ThermoC program [12].

Fig. 3 displays the corresponding � (�1, �2) diagram.1 The pseu-
ocolors indicate the “height”, i.e., the � value at each location.
he phase boundary, several connodes, and the critical point are

arked in the diagram. Close to the left side of the diagram, at the

ecane axis, there is an elevation, a region of concave curvature,
hich owes its existence to the vapor–liquid equilibrium of decane.

1 For better visual effect, a linear function has been subtracted so that the corners
f  the triangular map  are at zero.
tion was subtracted from � in order to make best use of the color gamut. (For
interpretation of the references to color in this figure legend, the reader is referred
to  the web version of the article.)

The white area in the upper right part of the diagrams represents
the forbidden region, i.e., the region where the molar volume would
be less than the covolume of the equation of state.

We note in passing that (�1, �2) diagrams have a long tradition
in statistical thermodynamics; they are sometimes called Meijer
diagrams. In the original work [13] they appear as (x1, x2) diagrams
of ternary lattice gases with x0 + x1 + x2 = 1, where x0 represents a
“hole species”. The mole fractions of a lattice gas with a fixed lattice
size correspond, of course, to the �i of this work.

Fig. 3 also illustrates the eigenvector-based search algorithm
for initial values. If a liquid phase with x1 = 0.4 is given, the search
follows the path indicated by the eigenvector belonging to the low-
ermost eigenvalue. As can be seen in the figure, this path practically
runs through the equilibrium state at the other end of the connode,
i.e., the equilibrium vapor phase.

Fig. 4 shows the behavior of the lowermost eigenvalue along the
0 0.2 0.4 0.6 0.8 1
–200

x
1

Fig. 4. Computation of a connode of the {carbon dioxide (1) + decane (2)} system at
344.26 K: eigenvalue along the path shown in Fig. 3.
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It turns out, therefore, that the eigenvector search reduces the
roblem of locating the coexisting phase to a 1-dimensional search
regardless of the dimensionality of the problem (=the number of

omponents).
Figs. 5 and 6 show subcritical and supercritical, respectively,

hase diagrams of the {methane + propane} system, again calcu-
ated with the Peng–Robinson equation of state. Figs. 7 and 8 display
he corresponding � surfaces, with the phase envelopes and some
onnodes marked. In the subcritical case, the two-phase region
tretches from one coordinate axis to the other, and the connodes
otate by 90◦ to accommodate this transition. In the supercritical
ase, the phase envelope is terminated by a binary critical point.

In the subcritical case, there is a very deep “canyon” in the �

urface which misleads the search algorithm: The search along the
rst eigenvector, i.e., the one belonging to the lowermost eigen-
alue, �1, follows the canyon and thus goes astray. In such a case
t is advisable to search along another eigenvector and, when the
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ig. 6. Isothermal phase diagram of the {methane (1) + propane (2)} system at 250 K.
:  computed with the Peng–Robinson equation of state.
1 2

lated with the Peng–Robinson equation of state. For an explanation of the symbols
and colors see Fig. 3.

associated eigenvalue passes through a minimum or �1 gets
negative, to switch back to the first eigenvector. The resulting
path has been indicated in Fig. 7: it runs through the other end
of the connode. Alternatively, one can start the search for the
phase equilibrium at the vapor side of the connode; this search
succeeds immediately. In the supercritical case, the search along
the first eigenvector finds the other end of the connode without
any problems (see Fig. 8).

The failure of the first search attempt on the liquid side has got
a physical reason: The search algorithm locates adjacent equilib-
rium phases first, and it turns out that the “canyon” is the region
where at lower temperatures or for larger alkane chain lengths a
liquid–liquid phase separation will take place.

3.2. Three-phase equilibria

Fig. 9 shows an isothermal phase diagram of the system
{carbon dioxide + hexadecane} at 313.15 K, computed with the
Peng–Robinson equation. The system exhibits a liquid–liquid phase
split superimposed on the vapor–liquid equilibrium.

This diagram was  computed with the new algorithms. A run
started at the lower left corner of the diagram (l1g equilibrium)
moves to the right side (l2g) without any problems; only the

“wriggle” of the bubble point curve indicates the presence of a
liquid–liquid phase split (l1l2). A run of the program started at
high pressures finds this phase split and follows it down into the

Fig. 8. � (�1, �2) diagram of the {methane (1) + propane (2)} system at 250 K, calcu-
lated with the Peng–Robinson equation of state. For an explanation of the symbols
and colors see Fig. 3.



28 S.E. Quiñones-Cisneros, U.K. Deiters / Fluid Phase Equilibria 329 (2012) 22– 31

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

x
1

p/
M

P
a

CO
2
 + hexadecane 313.15 K

l
1
+l 2

l
2
+g

l
1
+g

Fig. 9. Isothermal phase diagram of the system (carbon dioxide + hexadecane) at
313.15 K, calculated with the Peng–Robinson equation of state. —: stable phase
b
t
d

m
i

t
c
g
p
T
c

o
v

1

2

F
·
t

20 64 108
0

0.5

1

1.5

2

2.5

3

3.5

4

ρ
1
/(mol/dm 3)

ρ 2
/(

m
o
l/

d
m

3
)

oundaries, - - -: metastable phase boundaries, and · · ·:  three-phase state llg. With
he  present graphical resolution, the dew point curve practically coincides with the
iagram frame.

etastable region. The l1l2g three-phase state is obtained from the
ntersections of these curves.

Fig. 10 shows the corresponding Meijer diagram. The overall
opology is very similar to that of the {carbon dioxide + decane}
ase, but now the “valley” along the high-density border of the dia-
ram is deeper and has become a “canyon”, which has a concave
ortion along its rim; this gives rise to the liquid–liquid phase split.
he connodes of the three-phase state form a triangle; the gas phase
orresponds to the lower vertex.

Fig. 11 shows the paths taken during the initialization phase
f the phase equilibrium algorithm, for equilibrium phases in the
icinity of the three-phase state:

. The eigenvector path starting at the liquid phase l2 is almost
straight and practically runs into l1. This can evidently be con-
sidered as a case of “adjacent” phases.

. The eigenvector path starting at the gas phase is at first almost
horizontal (vanishing hexadecane concentration), then turns
upwards as the compressed carbon dioxide becomes able to
dissolve more and more of the alkane. A sharp bend in the

path indicates a switch from one eigenvector to the other (the
algorithm follows the eigenvector with the lowest eigenvalue).
Directly at this bend, the eigenvectors are degenerated, and no
clear direction can be given. This is an unusual complication. Still,

ig. 10. � (�1, �2) diagram of the {carbon dioxide + hexadecane} system at 313.15 K.
 · ·: connodes of the three-phase state. See Fig. 3 for an explanation of the colors and
he other lines.
Fig. 11. Search paths for the {carbon dioxide (1) + hexadecane (2)}  system at 313.5 K
at  the pressure of the three-phase equilibrium. �: starting points (liquid phase l2 or
gas phase and �: end point (liquid phase l1.

the path continues, passes the l1 state very closely, and finally
runs almost exactly into l2. The slight inaccuracies seen in Fig. 11
are partly due to the degeneration point, and partly to follow-
ing the eigenvector paths with a finite step size. Depending on
where the search is terminated and the root finder is invoked,
either the l1g or the l2g equilibrium is computed.

Since in a � (�) surface the coexisting phase are always sepa-
rated by unstable regions (�1 < 0), but are themselves stable (�1 > 0),
the middle phase of a three-phase state must be near to a maxi-
mum  of the eigenvalue. This fact can eventually be used to locate
three-phase states.

4. Programming considerations and application

4.1. Orthobaric densities

It should be noted that, in the system of equations Eq. (19), the
pressure does not appear explicitly, and the orthobaric densities �′

and �′′ are obtained as sums of the component densities: There is
no need to invert the equation of state (i.e., calculate the density
from pressure and temperature) at each iteration step.2

This advantage is paid for by having one more unknown in the
main iteration: For a binary mixture, finding a phase equilibrium
in a Gm(x1) representation requires a search along one mole frac-
tion (1 unknown variable), whereas a search of � (�1, �2) evidently
involves two  variables. But this may  still save time, for the inversion
of equations of state, especially noncubic ones, can be computation-
ally costly (see Section 4.3). Furthermore, the additional unknown
is not felt much in calculations for multicomponent systems.

Another point worth noting is that no ambiguities exist within
the phase equilibrium calculation. With the conventional method,

where the pressure is specified and the phase volume calculated,
there may  be more than one solution. In such a case, one has to
select the volume which gives the lowest Gibbs energy, and this

2 This feature is shared by the algorithm of Mikyška and Firoozabadi [14], which
also uses densities, but is based on a different concept. The work came to our atten-
tion after our algorithm had been developed.
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Table 1
CPU time required to compute a supercritical isotherm of the {carbon diox-
ide + decane} system. PR: Peng–Robinson equation of state and XD: Xiang–Deiters.

Equation of state t/s

Gm-based � -based

PR 0.09 0.10

that solves Gm-based phase equilibrium conditions by means of
a Marquardt–Levenberg subroutine.

Evidently, the new algorithm is not faster than the classical
method if the equation of state can be rapidly inverted. But for

Table 2
Parameters of the Peng–Robinson of state used for the computation of the figures.
T*: characteristic temperature, v∗: characteristic volume, and ω: acentric factor. [The
parameters in the original publication are ac = 8RT∗v∗ , b = v∗ .]

Substance T*/K v∗/(cm3 mol−1) ω

CH4 140.15923 26.777108 0.01100
C3H8 271.69933 56.124099 0.15308
C10H22 453.80566 189.990843 0.48840
CO 223.49696 26.654121 0.22800
S.E. Quiñones-Cisneros, U.K. Deiters

eans additional computation steps. With the method described
ere, such ambiguities cannot appear.

.2. Outline of the algorithm

From Eq. (19), the object function for the phase diagram calcu-
ation can be defined:

=

⎛
⎜⎜⎜⎜⎝

y1

...

yn

yn+1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂�
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∂�1
− ∂� ′

∂�1

...

∂� ′′

∂�n
− ∂� ′

∂�n

� ′′ − � ′ −
∑ ∂� ′

∂�i

(�
′′
i − �′

i)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(33)

 must vanish if �′ and �′′ belong to coexisting fluid phases. The
mplementation of Eq. (33) for solving with a nonlinear root finder,
.g., the Marquardt–Levenberg algorithm, is straightforward.

The new phase equilibrium algorithm can be summarized as
ollows:

A) Initialization
(1) Read the composition of the fixed phase, the temperature,

and an estimate for the equilibrium pressure p.
(2) Check the stability of the fixed phase (e.g., by computing the

density vector, �′, and the eigenvalues of its Hessian, �).
If the fixed phase is unstable (i.e., at least one eigen-

value is negative), change the pressure until a stable state
is obtained. Lowering the pressure toward zero will always
lead to a stable state. But if the fixed phase is supposed to
be a liquid, it might be advisable to increase the pressure.

(3) Set �′′ : = �′, and follow the path pointed out by the eigen-
vector belonging to the lowermost eigenvalue, �1, in the
direction of decreasing eigenvalues, i.e., �′′ : = �′′ +  ̨ u1.
A reasonable choice for the size of  ̨ is 0.1 min  |�′′

i
/u1,i|

(assuming that u1 is a unit vector). Repeat this several
times.

If the eigenvalue begins to increase again without ever
having become negative or if the search path runs into ille-
gal density values, go back and try another eigenvector. If
its associated eigenvalue passes through a minimum or �1
becomes negative, switch to the first eigenvector and con-
tinue to move in the direction of decreasing eigenvalues.

If the lowest eigenvalue gets negative and then positive
again, a two phase region has been located. In this case . . .

(4) Continue to follow the eigenvector path, but monitor the
norm of the object function, y2, for a minimum.

B) Calculation of equilibrium states
(1) At this minimum, run the nonlinear root finder. Print the

result.
(2) Change the temperature or the composition of the fixed

phase.
(3) Extrapolate initial values for the nonlinear root finder, e.g.,

by polynomial extrapolation.
(4) Go to (B.1).

Concerning (A): This is a relatively slow process. It should be
un at the start of the program only, or if the extrapolation of initial

alues fails.

Concerning (A.4): One might save time by going to (B.1) as soon
s the eigenvalue turns positive again, but sometimes this is too
oon for the root finder.
XD 2.45 0.55
PC-SAFT 10.50 0.36

Concerning (B.1): If the estimates for �′ and �′′ are located at
different sides of the concave region, and �′′ is close to a minimum
of y2, convergence is very likely.

Our derivations in Section 2.3 assumed that the starting point
of the search part is known. But if the initial state is not specified in
terms of densities, �′, but mole fractions, x′, its overall density has
to be estimated from the pressure. If the initial state is supposed to
be a liquid, even a more than slightly wrong pressure will usually
not affect the density much. Of course, an initial pressure guess that
is too far off the mark can “spoil the aim” of the initialization algo-
rithm. But again, trying other eigenvectors than the one belonging
to the lowermost eigenvalue may  help.

4.3. Performance

Table 1 contains computing times for a single isotherm (about
40 equilibrium states) of our test system, {carbon dioxide + decane}
at 344.26 K. The following equations of state were used:

1. Peng–Robinson (PR) [11]
This is a cubic equation of state, for which highly efficient

inverting methods are available. The mixing rules used were the
ones proposed by its authors, i.e., 1-fluid theory based on Soave’s
function.

2. Xiang–Deiters (XD) [15]
This is a noncubic equation based on a multidimensional corre-

sponding states approach. Here the mixing rules of Plöcker et al.
[16] were used.

3. PC-SAFT [17,18]
This is a relatively complicated noncubic equation of

states based on statistical thermodynamics. It contains special
concentration-dependent functions.

The substance dependent parameters of these equations of state
are listed in Tables 2–4.

The computations were carried out on a personal com-
puter (Intel Xeon-type processor), using the ThermoC program
package [12]. The reference calculation method was  a program
2

CH4 + C3H8 176.03268 41.544759
CH4 + C10H22 151.65312 108.407434
C3H8 + C10H22 294.92810 123.151630
CO2 + C10H22 185.65633 110.603760
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calculated with the Peng–Robinson equation of state, for x1 = 0.90. Solid curves: iso-
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oncubic equations of state, significant CPU time savings can be
chieved.

We note in passing that the Marquardt–Levenberg algorithm
s not the world’s fastest method for solving systems of nonlinear
quations; instead, its strength is reliability (range of convergence)
ather than speed. It is possible to speed up the calculations sig-
ificantly with a dedicated Newton algorithm [19], but then the
ange of convergence may  be smaller, especially for multicompo-
ent mixtures.

It should be noted that azeotropy, the phenomenon of having
wo different phases with the same composition, becomes apparent
nly if mole fractions or mass fractions are used to measure phase
ompositions. But the liquid and the vapor phase of an azeotropic
tate have different molar volumes, and therefore different � vec-
ors. Consequently, an algorithm based on � instead of x is not
isturbed by azeotropy.

The new algorithms were found to work well in the immedi-
te vicinity of critical points. As �′ = �′′ is true not only for a critical
oint, but also for a trivial solution of the phase equilibrium condi-
ions, this case has to be suppressed. But in calculations of isopleths
f supercritical mixtures, the equilibrium algorithm was  found to
ove through the critical region without any sign of convergence

roblems.
That the phase equilibrium algorithm avoids the calculation of

hase volumes for pressure has the interesting consequence that
t is possible to follow phase equilibria into the negative-pressure
omain. An example is given in Fig. 12,  which shows isopleths of
he {methane + propane + n-decane} system with a methane mole
raction of 0.9 and various C3/C10 ratios. For mixtures with a high
ecane content, the isopleths run upwards to high pressures and
hange their character from vapor–liquid to liquid–liquid equilib-
ium [9].  For a small decane content, the isopleths may  pass through

 minimum which can even lie at negative pressures. While such
tates are often regarded as “science fiction”, they play a role in
tudies of phase stability or nucleation phenomena. Furthermore,
ollowing the isopleth through the minimum to positive pressures
s a straightforward way to locate the liquid–liquid phase split at
ow temperatures.

. Conclusion

Using the Helmholtz energy density � (�, T) with densities � as

rguments instead of the Gibbs energy, Gm( x ; p, T) or the Helmholtz
nergy Am( x, Vm ; T) leads to a very symmetric and esthetically
atisfying formulation of the thermodynamic conditions of phase

able 3
arameters of the Xiang–Deiters equation of state used for the computation of
able 1. T*: characteristic temperature, v∗: characteristic volume, ω: acentric factor,
nd 	: asphericity parameter. The mixing rule for T* of Plöcker, Knapp, and Prausnitz
mounts to computing mole fraction averages of T∗

ij
(v∗

ij
)
; here 
 = 1 was used.

Substance T*/K v∗/(cm3 mol−1) ω 	

CO2 304.128 94.1189 0.225 2.38E−4
C10H22 617.7 609.0 0.489 1.65086E−3
CO2 + C10H22 336.3302 359.0595

able 4
arameters of the PC-SAFT equation of state used for the computation of Table 1. T*:
haracteristic temperature of a chain segment, v∗: characteristic volume of a chain
egment, and m: effective number of chain segments.

Substance T*/K v∗/(cm3 mol−1) m

CO2 169.21 6.81269 2.0729
C10H22 243.87 178.32 4.6627
CO2 + C10H22 185.62879 12.322345
pleths (parameter: x2), - - -: vapor pressure curves, ©:  pure-fluid critical points, �:
mixture critical point, and ♦: isopiestic points (where the coexisting phases have
the  same molar densities).

equilibrium. The formulation avoids problems caused by variables
of different dimension.

It should be noted that the phase equilibrium or stability condi-
tions for mixtures can also be applied to pure fluids. In particular,
the stability criterion is that the Hessian of the Helmholtz energy
density, �, is positive definite, which means that all its eigenvalues
are positive. For pure fluids this reduces to ∂2� /∂�2 > 0, which is
equivalent to Eq. (3),  the mechanical stability criterion.

The � (�, T) surface of a fluid mixture has not got any discontinu-
ities or ambiguities like the Gibbs energy surface. Consequently, the
search for phase equilibrium regions can be based on an analysis of
the local curvature. In particular, it can be shown that the eigenvec-
tors of � can be used to locate the coexisting phase of a given (fixed)
phase. Even for a multicomponent mixture, the search for initial
values for the phase equilibrium calculation is a 1-dimensional
problem only.

The evaluation of the phase equilibrium conditions, which is
a nonlinear problem usually requiring iterative solution methods,
can be accomplished with � (�, T) in such a way that there is no
need to invert the equation of state (i.e., calculate the molar vol-
umes from pressure and temperature). Especially with complicated
noncubic equations, this can lead to a significant acceleration of
computations.

The phase equilibrium algorithm proposed in this work is not
affected by azeotropy, and it shows a remarkably robust conver-
gence in the vicinity of critical points. The behavior of � (�, T) near
critical points and the direct calculation of critical states, however,
require some special consideration. These topics will be discussed
in a forthcoming article.

Nomenclature

A Helmholtz energy
G Gibbs energy
N number of components

n amount of substance
p pressure
S entropy
T temperature
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 chemical potential
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