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We study the resonant tunneling effects through double barrier graphene systems (DBGSs). We

have considered two types of DBGSs in order to take into account or rule out Klein tunneling

effects: (1) the well-known and documented electrostatic-barrier structures (EBSs) created by means

of electrostatic probes that act perpendicularly to the graphene sheet; and (2) substrate-barrier

structures (SBSs) built sitting the graphene layer on alternating substrates, such as SiO2 and SiC,

which are capable of non-open and open an energy bandgap on graphene. The transfer matrix

approach is used to obtain the transmittance, linear-regime conductance, and electronic structure for

different set of parameters such as electron energy, electron incident angle, barrier, and well widths.

Particular attention is paid to the asymmetric characteristics of the DBGSs, as well as to the main

differences between Klein and non-Klein tunneling structures. We find that: (1) the transmission

properties can be modulated readily changing the energy and angle of the incident electrons, the

widths of the well and barrier regions; (2) the linear-regime conductance is easily enhancing,

diminishing, and shifted changing from symmetric to asymmetric DBGSs configuration overall in

the case of non-Klein tunneling structures; (3) the conductance shows an oscillatory behavior as

function of the well width, with peaks that are directly related to the opening and opening-closure of

bound-state subbands for EBSs and SBSs, respectively. Finally, it is important to mention that

electrostatic DBGSs or substrate DBGSs could be more suitable depending on a specific application,

and in the case of non-Klein tunneling structures, they seem possible considering the sophistication

of the current epitaxial growth techniques and whenever substrates that open an energy bandgap on

graphene, without diminishing the carrier’s mobility, be experimentally discovered. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4757591]

I. INTRODUCTION

Since the birth of semiconductor quantum structures,1

resonant tunneling has played a preponderant role to modu-

late the transmission and transport properties of devices

based on these structures.2 This phenomenon arise when the

energy of impinging electrons coincides with the energy of

confined states of a quantum structure, typically a quantum

well or series of quantum wells.2 To this respect, new materi-

als with confinement properties, such as graphene,3 are not

the exception.

Graphene4 a two-dimensional honeycomb lattice of car-

bon atoms has attracted a lot of attention due to its unusual

fundamental properties,5–13 because it serves as natural bridge

between solid state physics and quantum electrodynamics,14–16

as well as its potential device applications.17–20 These novel

properties-minimum conductivity,4–6 Klein tunneling,7–13 and

odd-integer-Hall-effect4,6–8 rely on the gapless linear disper-

sion relation,21 E ¼ 6�hvFk, close to the Dirac points as well

as the chiral nature of charge carriers in graphene. In particular,

Klein tunneling results from suppression of backscattering due

to carriers pseudo-spin conservation.12 This conservation is

also manifested in bilayer graphene with the total reflection

phenomenon.12 A key element to test the aforementioned

novel effects as well as to understand the transmission and

transport properties in graphene-based structures is the physi-

cal mechanism to generate potential barriers on graphene.

From a theoretical perspective, mechanisms such as electro-

static field,22–25 magnetic field,26–30 breaking-symmetry sub-

strates,31,32 and mechanical deformation33–35 can be used for

that purpose. Some of them preserves the Dirac cone struc-

ture,22–30 supporting Klein tunneling, and others modify the

dispersion relation, open a bandgap and even shift the Dirac

points,31–35 ruling out Klein effects. Despite the peculiarities

of each case, there is a common factor in all these systems,

which is an oscillatory behavior of the transport properties, in

particular the linear-regime conductance. Likewise, most of

these reports claim that the peaks that show up in the conduct-

ance are related to resonant tunneling caused by confined

states. Some effort has been undertaken to understand the os-

cillatory nature of the transport properties of graphene-based

structures.36 However, as far as we can see this study is not

conclusive, since the correlation found between the number of

conductance peaks and the number of quantum wells that form

the structure, which is created by electrostatic probes, does not

explain the energy location of the peaks and even more the

role played by Klein tunneling. Additionally, it is important to

a)Author to whom correspondence should be addressed. Electronic mail:

isaac@fisica.uaz.edu.mx.
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highlight that both, bound states and transmission probability

depend intrinsically of the transversal wave vector,3,22 which

turns out in a plenty of propagating, bound, and quasi-bound

states that can contribute to the transport properties. Most

importantly, which of those states correspond to conductance

peaks, and what is the reason that makes those states special.

From the experimental standpoint, even simple systems such

as single electrostatic-barriers, devoted to test Klein tunneling,

show conductance oscillations.37 The authors argue that possi-

bly confinement effects can be responsible for the conductance

peaks as result of the finite size of the system.

Within the mentioned context, the present work

addresses the main differences between Klein and non-Klein

graphene tunneling structures. For this purpose, we have

considered two double barrier systems: (1) electrostatic-

based barriers that sustain Klein tunneling and (2) substrate-

based barriers that rule out Klein tunneling. The transfer

matrix method is implemented to analyzed in detail the

transmission, transport, and electronic structure for the men-

tioned structures. The oscillatory nature of the linear-regime

conductance and its relation to the spectrum of confined

states with and without Klein tunneling contribution is one

of the main concerns of the present study. The rest of our

work is organized as follows: the electrostatic and substrate

double barrier structures as well as the formalism for the cal-

culation of the transmittance, linear-regime conductance,

and bound states are described in Sec. II; the numerical

results will be presented and discussed in Sec. III; and

finally, a conclusion will be given in Sec. IV.

II. METHODOLOGY

In order to obtain the main differences between Klein

and non-Klein graphene structures, we have considered sim-

ple, versatile, and useful double barrier graphene systems

(DBGSs), Fig. 1. These systems allow us to have a simple

way to correlate the transport properties with the spectrum of

confined states by simply changing from open boundary con-

ditions to hard-wall conditions, or in other words from dou-

ble barriers to a single quantum well, and in this way

avoiding, for example, the intrinsic complexities of multiple-

barrier systems.36 Likewise, among the different mecha-

nisms that can be used to taking into account or rule out

Klein tunneling, electrostatic-field and breaking-symmetry-

substrate effects are more suitable due to their theoretical

simplicity3,31 as well as their possible experimental

realization.37,38

In the case of electrostatic structures, an electrostatic

field is applied perpendicularly to the graphene sheet, which

is typically sitting on non-breaking-symmetry substrate

(SiO2). From a experimental standpoint,37 this can be

achieved through electrostatic probes above (top gate) the

graphene sheet and below (back gate) the SiO2 substrate.

The top gate controls the electrostatic-field strength (V0) and

the width on which it acts, whilst the back gate (together

with the substrate doping) manage the Fermi energy of the

impinging electrons on the barrier, for further details about

the experimental setup see Ref. 37. The main effect of the

electrostatic potential is a shifting of the Dirac cones propor-

tional to the field strenght V0. This shiftting can be obtained

through the massless Dirac equation,

½vFðr � pÞ þ VðxÞ�wðx; yÞ ¼ Ewðx; yÞ; (1)

where the components of pseudospin r ¼ ðrx; ryÞ are Pauli

matrices, p ¼ ðpx; pyÞ is the in-plane momentum operator,

and VðxÞ ¼ V0 is the one-dimensional potential along the x
direction and w represents the bispinor function. This equa-

tion can be readily solved giving the following dispersion

relation,

E� V0 ¼ 6�hvFq; (2)

where vF is the Fermi velocity of Dirac electrons in graphene

(vF ¼ c=300), q is the two-dimensional wave vector, and

“6” states electrons and holes, respectively. Here, we

change the notation of the wave vector from k to q to

FIG. 1. Schematic representation of the cross-section, dispersion-relation

distribution, and energetic representation of (Top) EDBGSs and (Bottom)

SDBGSs. EDBGSs are obtained placing two electrostatic probes (EP) or top

gates (TG) upon the graphene sheet, which at the same time is sitting on

SiO2 substrate (red slab), turning out in a shifting of the Dirac cones and

generating the energy band profile depicted in the third row of top part. For

SDBGSs, the graphene layer is placed on an alternating substrate with

regions of SiO2 (red slabs) and SiC (blue slabs), resulting in regions with

gapless and gapped linear and parabolic dispersion relations, respectively.

For both structures, there is a back gate (BG) that can be used to tune the

Fermi level (upper edge of green regions), together with the corresponding

n- or p-type doping of the substrates. The difference between vertexes of

Dirac cones in EDBGSs, and Dirac cones and Dirac paraboloids in SDBGSs

indicates the height of the energy barrier. The blue circle depicts a Dirac

electron at the Fermi energy.
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differentiate easily the cases without and with electrostatic

field, see Introduction. The corresponding wavefunctions,

normalized to the graphene sheet area, can be written as

w6ðx; yÞ ¼
1ffiffiffi
2
p 1

v6

� �
e6iqxxþiqyy; (3)

with

v6 ¼
6qx þ iqy

E� V0

: (4)

For the case of substrate structures, it is experimentally

reported that SiC substrate breaks the symmetry of the gra-

phene sheet, turning out in a bandgap opening.38 The sub-

strate not only induces a bandgap but also changes the form

of the dispersion relation from linear to parabolic.31 The

Dirac-type equation that describes this system is

½vFðr � pÞ þ t0rz�wðx; yÞ ¼ Ewðx; yÞ; (5)

where t0 ¼ mv2
F is the mass term and rz the z component of

the Pauli-matrix vector. As in the case of electrostatic field,

this equation can be straightforwardly solved giving the par-

abolic dispersion relation,

E2 ¼ �h2v2
Fq2 þ t02; (6)

where t0 is proportional to the bandgap, Eg ¼ 2t0. The

bandgap can be controlled by the number of graphene

layers,38 taking values of 0.26 eV, 0.14 eV, and 0.066 eV for

monolayer, bilayer, and trilayer graphene, respectively.

From now on, t0 will be 0.13 eV since this work deals with

monolayer graphene. The associated wavefunctions keep the

same mathematical form, as in the case of graphene sub-

jected to electrostatic field, but now the coefficients of the

bispinor come as:31

v6 ¼
E� t0

6qx � iqy
: (7)

Knowing the dispersion relations and wavefunctions with

and without electrostatic field or breaking-symmetry sub-

strate, it is relatively simple to compute the transmission,

transport, and electronic structure properties of systems like

ones depicted in Fig. 1. Our double barrier system is com-

posed by left and right semi-infinite regions that enclosed

two barriers of width dB1 and dB2 separated by a interwell

region of width dw. The wave vectors of the barrier regions

are the same q1 ¼ q3 ¼ q, since we consider the same barrier

height on both barriers, whilst the wave vectors of the semi-

infinite and interwell regions are q0 ¼ q2 ¼ q4 ¼ k. Taking

into account the conservation of the transversal momentum,

ky ¼ qy, and imposing the continuity condition to the wave-

function in the different interfaces along the longitudinal

direction (x coordinate), we can obtain a relation between

the coefficients of the forward and backward wavefunctions

of the left semi-infinite region (A0 and B0) and the forward

wavefunction of the right semi-infinite region (ANþ1 and

BNþ1 ¼ 0), through the transfer matrix39,40 as

A0

B0

� �
¼ M

ANþ1

0

� �
; (8)

where the transfer matrix M is given by,

M ¼ D�1
0

YN
j¼1

DjPjD
�1
j

 !
D0; (9)

is defined in terms of the dynamic Dj and propagation Pj

matrices,

Dj ¼
1 1

vþ;j v�;j

� �
; (10)

and

Pj ¼ e�iqx;jdj 0

0 eiqx;jdj

� �
; (11)

here j¼ 1, 2,…, N, which in our case (N¼ 3) represents

the first barrier, the interwell region, and the second bar-

rier, respectively; D0 is the dynamic matrix of the semi-

infinite left and right regions, which in our model are the

same. Likewise, qx;1 ¼ qx;3 ¼ qx is the x-component of the

wave vector of the barriers, and qx;2 ¼ kx corresponds to

the longitudinal component of the wave vector of the

interwell and semi-infinite regions. According to the char-

acteristics of our system turns out that D0 ¼ D2 and

D1 ¼ D3. With the transfer matrix at hand, we can com-

pute readily the transmittance,

T ¼ ANþ1

A0

����
���� ¼ 1

jM11j2
; (12)

with M11 the (1, 1) element of the transfer matrix M. The

linear-regime conductance is obtained through the Landauer-

Buttiker formula41 as

G=G0 ¼ E�F

ðp=2

�p=2

TðE�F; hÞcoshdh; (13)

where E�F ¼ EF=E0 is the dimensionless Fermi energy with

E0 ¼ V0 ¼ t0; G0 ¼ 2e2LyE0=h2vF is the fundamental con-

ductance factor with Ly the width of the system in the trans-

versal y-coordinate, and h is the angle of the incident

electrons with respect to the x-coordinate. Finally, the spec-

trum of bound states is calculated changing from open

boundary conditions to hard-wall boundary conditions, this

is, the widths of the first and last barrier of the multiple struc-

ture are extended to infinity. Likewise, we have to require a

pure imaginary wave vector for the semi-infinite barrier

regions, which turns out in a transcendental equation

between energy and transversal wave vector of Dirac elec-

trons as,

MBS
11 ðE; ky; qx ! iaxÞ ¼ 0; (14)

where qx is the wave vector along the x-coordinate defined

through Eqs. (2) and (6), and MBS
11 the (1,1) matrix element of
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MBS ¼ D�1
1

YN�2

j¼2

DjPjD
�1
j

 !
D1: (15)

Here, the superscript “BS” has been included to differentiate

Eq. (15) from Eq. (9) as well as to state that it corresponds to

the bound state case.

III. RESULTS AND DISCUSSION

As previously mentioned, the main concern of the present

work is to address the paramount differences between Klein

and non-Klein tunneling structures. So, we carry out a com-

parative analysis of the transmission, transport, and electronic

structures properties for electrostatic DBGSs (EDBGSs) and

substrate DBGSs (SDBGSs). From an energetically stand-

point, the main difference between these structures is that

EDBGSs only present a potential barrier for electrons, if the

polarity of the applied voltages is the same in both barriers,

whilst in SDBGS, potential barriers show up for both elec-

trons and holes, see Fig. 1. This energetic asymmetry will be

manifested directly in the physical properties. For the

moment, we only warn about it, letting the details later on for

each case: transmission, transport, and electronic structure.

In Fig. 2, we show the impact of the second barrier

width, dB2, on the transmission probability or transmittance

as function of the electron energy for (left column) EDBGSs

and (right column) SDBGS. The first, second, and third row

correspond to dB2 of 50a, 100a, and 200a, respectively. Here-

after, “a” will represent the carbon-carbon distance in gra-

phene, which is equal to 1.42 Å. The widths of the first

barrier and interwell region were fixed to dB1 ¼ dw ¼ 50a.

As we can see from this figure, at normal incidence (dotted-

dashed-red lines), a perfect transmission is obtained for

EDBGSs irrespective of the width of the second barrier,

whilst for SDBGSs, the transmittance is very sensitive to

dB2. This remarkable difference between these systems

comes from the suppression of back-scattering process at

normal incidence for EDBGSs, owing to the conservation of

pseudospins.12,42 On the contrary, the transmission probabil-

ity for SDBGSs is greatly suppressed for low positive and

negative electron energy, due to the evanescent character of

the wave functions for both electrons and holes in the bar-

riers.31 For tilted incidence, similarly to SDBGSs at normal

incidence, a transmission gap appears for both EDBGSs and

SDBGSs, dotted-solid-black lines of Fig. 2. This transmis-

sion gap appears in the positive energy range for EDBGSs,

meanwhile for SDBGSs appears for the positive and negative

energy range, in other words, it is perfectly symmetric with

respect to the origin of energies. Other important characteris-

tic is the acute peaks or transmission window,36 in the low

energy range, associated to the resonant tunneling through

DBGSs. The transmission window, small red spots in the

low energy range, is perfectly formed for the symmetric

case, dB1 ¼ dw ¼ dB2 ¼ 50a, diminishing and practically dis-

appearing as the width of the second barrier increases

FIG. 2. Comparison of the transmittance as function

of energy for (left column) EDBGSs and (right col-

umn) SDBGSs. The width of the first barrier and the

quantum-well region is fixed to 50a, meanwhile the

widths of the second barrier considered are: (first

row) 50a, (second row) 100a, and (third row) 200a,

respectively. The dotted-dash (red) and dotted-solid

(black) lines correspond to normal incidence and

incidence at p=4. The labels in magenta indicate the

second barrier width and E0 ¼ 0:13 eV represent the

energy barrier height. A schematic representation of

the cross-section as well as the potential energy pro-

file are also depicted for both EDBGSs and SDBGSs,

insets.
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(dB2 ¼ 100a and dB2 ¼ 200a), due to the exponential de-

pendence of the transmission probability with respect to the

barrier width, e�axdB2 . To this respect, the electron will be

fully reflected as dB2 !1, which is the case of total reflec-

tion presented in potential steps.42 In our case, the oblique

angle chosen warranty that for a certain energy range, gap

region, the evanescent character of waves dominates mani-

festing in a reduced transmission probability as the second

barrier width increases. Additionally, it is important to men-

tion the blue shift of the peaks that form the transmission

window as the incidence is tilted for SDBGSs, difference

between dotted-solid-black and dotted-dashed-red lines.

The dependence of the transmittance with respect to the

quantum well width, dw, is shown in Fig. 3. The left and right

column correspond to EDBGSs and SDBGSs, respectively,

the first and second row to quantum well widths of 100a and

200a, and the dotted-dashed-red and dotted-solid-black lines

to normal and tilted incidence. At normal incidence, h ¼ 0,

EDBGSs are completely transparent no matter how large the

quantum well width is, dotted-dashed-red lines in the left

column of Fig. 3. On the contrary, SDBGSs present a little

transmission window at normal incidence, dotted-dashed-red

lines in the right column of Fig. 3. As the quantum well

width doubles its size, the number of acute peaks does in the

transmission window, going from two (dw ¼ 50a) to four

(dw ¼ 100a) and from four (dw ¼ 100a) to eigth

(dw ¼ 200a), see first row and left column of Fig. 2, and left

column of Fig. 3. Likewise, we can readily note that the

quantum well width determines the location and size of the

transmission window.36 To this respect, the tilted incidence

also changes the location and width of the transmission win-

dow for both EDBGSs and SDBGSs, blue shifting (in abso-

lute value) the acute peaks that form the transmission

window and consequently increasing the width of it. It is

also interesting that for large quantum well widths,

dw ¼ 200a, the tilted transmission spectra for EDBGSs and

SDBGSs show a great similarity, being the main difference

the energy shift. This similarity is related to multiple inter-

ference effects, since the quantum well region serves as a

resonant cavity which perfectly fits the resonant condition as

its size is doubled.42 Even for well widths of 100a and 50a,

the similarity shows up in the low energy range.

The angular distribution of the transmission probability

is shown in Fig. 4. As in the preceding figures, the left and

right panels correspond to EDBGSs and SDBGSs, and the

first and second row to the evolution of the transmittance

with respect to the second barrier and quantum well width,

respectively. The solid-black, dotted-blue, and dashed red

lines correspond to: (first row) second barrier width of 50a,

100a, and 200a; (second row) quantum well width of 50a,

100a, and 200a. The energy of the impinging electrons was

fixed to Ei ¼ 0:06 eV as well as the first barrier and quantum

well (second barrier) width, dB1 ¼ dw ¼ 50a ðdB1 ¼ dB2

¼ 50aÞ, for the case of the evolution of the transmittance

with respect to the second barrier (quantum well) width. The

angle is normalized to h0 ¼ p=2. As we can see for

EDBGSs, Klein tunneling manifests clearly at normal inci-

dence irrespective of the second barrier and quantum well

widths, even more the transmittance remains practically

unchanged up to barrier and well widths of 100a showing a

broadening for 200a, with two little peaks for dw ¼ 200a. All

this is related to the propagating character of the incident

electrons when their energy is below half of the potential

barrier height,42 as in this case Ei ¼ 0:06 eV. Likewise, in all

cases as the angle of incidence increases, approaching to per-

pendicular incidence, the transmission probability goes to

zero as well. For SDBGSs turn out that the transmittance

diminishes drastically as the second barrier width increases,

and it is practically negligible with respect to the transmit-

tance of EDBGSs, see first row and second column of Fig. 4.

FIG. 3. Same as Fig. 2 but now the first and

second barriers are fixed to 50a, meanwhile

the quantum-well region is varied: (first row)

100a and (second row) 200a.
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This trend comes from the evanescent character of the inci-

dent electrons on SDBGSs, no matter if their energy is below

or above of half of the potential barrier height. Interesting

to note are the resonances that arise as the quantum well

width increases, dotted-blue (dw ¼ 100a) and dashed-red

(dw ¼ 200a) lines showed in the second row and column of

Fig. 4. These resonances are related to the bound states of

SDBGSs in the case of hard-wall boundary conditions, or

quasi-bound states in this case of open boundary conditions.

To complete our discussion of the angular distribution of the

transmission probability, we consider incident electrons

with energies above E0=2 and below E0, to be specific

Ei ¼ 0:1 eV, see Fig. 5. For this case, it is well known that

electrostatic-barrier structure (EBSs) present the collimation

effect or preference for nearly normal incidence.42 This

effect is enhanced as the second barrier width is increased,

whilst it is worsen as the quantum well width increases, even

more, some resonances associated to bound states appear for

tilted incidence far from normal incidence, see left panel of

Fig. 5. For SDBGSs, the collimation effect is not present, on

the contrary some resonances arise close to p=4, which

slump as the second barrier width increases with negligible

transmission probability for dB2 ¼ 200a. Additionally, as the

quantum well width increases the resonances shift to higher

FIG. 4. Angular distribution of the trans-

mittance for (left column) EDBGSs and

(right column) SDBGSs. (First row) The

width of the first barrier and the

quantum-well region is fixed to 50a,

meanwhile the widths of the second bar-

rier considered are: (solid-black line)

50a, (dotted-blue line) 100a, and

(dashed-red line) 200a, respectively.

(Second row) The width of the first and

second barrier is fixed to 50a, meanwhile

the widths of the quantum-well region

considered are: (solid-black line) 50a,

(dotted-blue line) 100a, and (dashed-red

line) 200a, respectively. The energy of

the impinging electron as well as the

energy of the potential barrier considered

is Ei ¼ 0:06 eV and E0 ¼ 0:13 eV. The

angle is normalized to h0 ¼ p=2. The

labels in magenta indicate the parameter

that is varied. A schematic representa-

tion of the potential energy profile is also

depicted for both EDBGSs and SDBGSs.

FIG. 5. The same as Fig. 4, but

Ei ¼ 0:1 eV.
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energies (dotted-blue) and eventually more than one reso-

nance arise for electrons and holes, see second row and col-

umn of Fig. 5.

To have a whole picture of transmittance as function of

energy and angle of incidence, (E,h) contour plots of it are

shown in Figs. 6 and 7. The energy and angle of incidence

are normalized to E0 ¼ 0:13 eV and h0 ¼ p=2, respectively.

Particularly, Fig. 6 correspond to the evolution of the trans-

mission probability with respect to the second barrier width

for (left panel) SDBGSs and (right panel) EDBGSs, whilst

Fig. 7 shows the evolution for different quantum well

widths, with same correspondence for left and right panels

as Fig. 6. From this perspective, we can see the big differ-

ence between the transmission properties of EDBGSs and

SDBGSs. From one side, SDBGSs show symmetric trans-

mission contours between electrons (positive energy) and

holes (negative energy), as well as alternating transmission

regions of high and low transmittance of semi-circular

shape. For the symmetric structure, dB1 ¼ dw ¼ dB2, we can

see a transmission window in the low energy range sur-

rounded by very low transmittance regions, this window

narrows as the width of the second barrier increases

(dB2 ¼ 100a), being negligible for dB2 ¼ 200a. From the

other side, EDBGSs present a very different transmission

contours, in which we can see clearly perfect transmission

in the whole energy range for normal incidence and small

angles of incidence, irrespective of the second barrier width,

as result of Klein tunneling and collimation effect.42 It is

also evident how the second barrier enhances the collima-

tion effect as it increases (low energy range for electrons),

as well as redistributes transmission characteristics for

holes, even when no barrier is present for them. In Fig. 7,

we can see readily the impact of the quantum well width on

the transmission properties of DBGSs. First and second row

correspond to quantum well widths of 100a and 200a,

respectively. For large well widths, transmittance shows a

richer structure of transmission windows in the low energy

range for both SDBGSs and EDBGSs. Theses resonances

can affect importantly the transport properties, linear-

regime conductance, of DBGSs as we will see later. Con-

trary to Fig. 6, the collimation effect remains practically the

same, no matter how large the quantum well is.

FIG. 6. Contour plot of the electron trans-

mission through (left panel) EDBGSs and

(right panel) SDBGSs for interbarrier sepa-

ration dB2 of (first row) 50a, (second row)

100a, and (third row) 200a. The quantum-

well region, interbarrier separation of the

first barrier, and the energy barrier height

are dw ¼ dB1 ¼ 50a and E0 ¼ 0:13 eV.
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Now, it is turn to analyze the linear-regime conductance

results. As in all cases presented for transmission probability,

we paid attention to the impact of the second barrier and

quantum well widths on the transport properties, Fig. 8. The

black and blue curves belong to EDBGSs and SDBGSs,

respectively. Likewise, solid, dotted and dashed curves indi-

cate second barrier (quantum well) widths of 50a, 100a, and

200a, top (bottom) of Fig. 8. EDBGSs show a smooth and

broad peak above the barrier height for the symmetric case,

solid-black curve. As the second barrier width increases,

asymmetric configuration, this peak shifts to lower energies,

approaching to the barrier height for dB2 ¼ 200a. It is

also interesting to note the additional peaks in the low

energy range for asymmetric configurations, one peak for

dB2 ¼ 100a (dotted-black) and two peaks for dB2 ¼ 200a

(dashed-black). Moreover, for dB2 ¼ 200a, the low energy

peaks dominate over the peak above the barrier. In the case

of SDBGSs, there is a peak in the conductance below the

barrier for symmetric configuration. This peak presents a

red-shift as the second barrier gets larger and diminishes one

and three orders of magnitude for second barrier widths of

100a and 200a, see right of Fig. 8, which is a zoom of the

FIG. 7. Contour plot of the electron trans-

mission through (left panel) EDBGSs and

(right panel) SDBGSs for interwell separa-

tion dw of (first row) 100a and (second row)

200a. The interbarrier separation of the

first and second barrier and the energy

barrier height are dB1 ¼ dB2 ¼ 50a and

E0 ¼ 0:13 eV.

FIG. 8. Conductance through (black lines)

EDBGSs and (blue lines) SDBGSs for:

(Top) interbarrier separation dB2 of (solid

line) 50a, (dotted line) 100a, and (dashed

line) 200a, respectively; (Bottom) interwell

separation dw of (solid line) 50a, (dotted

line) 100a, and (dashed line) 200a. The right

panel corresponds to a zoom of the left one.
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left part. As we can see, there are no peaks in the low energy

range for SDBGSs, contrary to EDBGSs some peaks show

up above the barrier. In the bottom of Fig. 8, we can notice

the impact of the quantum well width on conductance. Con-

ductance for EDBGSs and SDBGSs show an oscillatory

behavior as the quantum well width increases, with one, two

and four peaks for dw ¼ 50a, 100a, and 200a, respectively.

Apart from the similarities between the transport properties

of EDBGSs and SDBGSs, we want to stress three character-

istics that differentiate the conductance of these systems: (1)

practically in all cases, below EF=E0 ¼ 1:5, the conductance

in EDBGSs is higher than in SDBGSs; (2) there is red shift

of conductance peaks for SDBGSs with respect to EDBGSs;

(3) a slump is presented for conductance peaks of SDBGSs,

which turns out in narrow peaks as compared to EDBGSs.

Aside from multiple reports stressing important effects

that can affect the transport properties of graphene-based

structures such as defects,43,44 ripples,45 vacancies,9 impur-

ities,46 and so on, as far as we know, there are no reports

addressed to explain the oscillatory nature of conductance in

multiple barrier graphene structures. Most of them, mention

that the oscillatory behavior of conductance is related to

resonances, quasi-bound states, and bound states, irrespec-

tive to the mechanism to create the graphene-based struc-

ture.22–35 However, none of them clarify which of the

multiple resonances that underlie in these structures are the

responsible of the conductance peaks, but even, what deter-

mines the differences between the transport characteristics of

EDBGSs and SDBGSs. In order to answer these issues, we

compute the spectrum of bound states for EDBGSs and

SDBGSs, using Eq. (14). Our outcomes are shown in Fig. 9.

As we have to impose hard-wall boundary conditions, the

different cases presented for second barrier width reduce to

one, so strictly speaking, we only consider three cases, which

correspond to quantum well widths of 50a, 100a, and 200a,

first, second, and third row of Fig. 9. The left panel of Fig. 9

refer to quantum wells created by electrostatic barriers

(EQWs), whilst the right panel to quantum wells obtained

through barriers created by breaking-symmetry substrates

(SQWs). Dashed-red lines delimit the allowed region for

bound states. As we can see, there are one, two, and four sub-

bands for EQWs of width dw, 2dw, and 4dw, respectively.

These subbands, or electron channels, are characterized by a

quantum number, as well as the transversal wave vector, and

for large values of ky are given approximately by3

EnðkyÞ ¼ �hvF½ðnp=dwÞ2 þ k2
y �

1=2
. We want to highlight that

more than electron channels, these subbands represent dis-

persion branches, and it is well known that when a dispersion

channel opens, the transport properties will diminish, with an

inverse effect when a dispersion channel closes.47 These

FIG. 9. Spectrum of confined states vs ky for

(left column) EQWs and (right column)

SQWs. The first, second, and third row corre-

spond to dw, 2dw, and 4dw, with dw ¼ 50a.

The blue arrows point out the opening and

opening-closure of conduction channels for

EQWs and SQWs, respectively.
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fundamentals of the transport properties explain quite well,

from a qualitative standpoint, the number of conductance

peaks for EQWs in each case considered and, from a quanti-

tative perspective, the correspondence between the location

of the mentioned peaks and the opening of dispersion chan-

nels (blue arrows), even when there is a natural difference

between open and hard-wall boundary conditions. Similar

arguments apply for SQWs, however in this case, the

allowed region for bound states reduces as ky increases, due

to the particular dependence between the quantities that

delimit this region, E2 ¼ �h2v2
Fk2

y þ t02. As result of this reduc-

tion, a systematic closure of dispersion branches is pre-

sented, contrary to the systematic opening of electron

channels for EQWs. This alternate opening and closure of

dispersion channels explains the pronounced increase and

reduction in the transport properties, which turns out in acute

and narrow conductance peaks as compared to EQWs.

Finally, it is important to stress that the conductance peaks in

the low energy range for the asymmetric configuration of

EDBGSs, dashed-black curve of the top of Fig. 8, are not

related to bound states, on the contrary obey a redistribution

of transmission probability for propagating states, as we can

see from the corresponding contour plot, third row, and sec-

ond column of Fig. 6.

IV. CONCLUSIONS

In summary, we have studied the transmission, transport,

and electronic structure properties of double barrier graphene

systems. Particularly, a comparative analysis of Klein

and non-Klein graphene structures and electrostatic- and

substrate-barrier structures (SBSs) is carried out. The transfer

matrix approach has been implemented to obtain the main

differences between EDBGSs and SDBGSs. Our results show

that the asymmetric configuration of DBGSs readily modu-

late the transmission and transport properties of both

EDBGSs and SDBGSs, as function of the main parameters of

the system: well and barrier widths, angle and energy of the

incident electrons. Special attention has been paid to the os-

cillatory nature of the linear-regime conductance, showing

that the conductance peaks turn out from the opening and

closure of bound-state energy subbands. To this respect, the

sharpness of the conductance peaks in SQWs comes from the

opening-closure of bound-state energy subbands, meanwhile

for EQWs, a systematic opening of subbands as well as Klein

tunneling effects turn out in smother conductance peaks and

an overall enhancement of the conductance, respectively.

Finally, it is important to mention that electrostatic or sub-

strate DBGSs could be more suitable depending on a specific

application, and in the case of non-Klein tunneling structures,

they seem possible considering the sophistication of the cur-

rent epitaxial growth techniques and whenever substrates that

open an energy bandgap on graphene, without diminishing

the carrier’s mobility, be experimentally discovered.
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