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Spin-polarons are obtained using an Ising-like exchange model consisting of double and
super-exchange interactions in low-dimensional systems. At zero temperature, a new
phase separation between small magnetic polarons, one conduction electron self-trapped
in a magnetic domain of two or three sites, and the antiferromagnetic phase was pre-
viously reported. On the other hand the important effect of temperature was missed.
Temperature diminishes Boltzmann probability allowing excited states in the system.
Static magnetic susceptibility and short-range spin–spin correlations at zero magnetic
field were calculated to explore the spin-polaron formation. At high temperature Curie–
Weiss behavior is obtained and compared with the Curie-like behavior observed in the
nickelate one-dimensional compound Y2−nCanBaNiO5.
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1. Introduction

Phase transition in a given physico–chemical system is characterized by parameters

like the range of the microscopic interactions, the space dimensionality d and the

dimensionality of the order parameter, often referred to the spin dimensionality s.

There are features whose qualitative nature is determined by the universality class

to which the system belongs. Short-range interactions, double and super-exchange

nearest-neighbor type, classical and quantum spins s in d-dimensional systems have

been studied.1–17 Double-exchange (DE) interaction or indirect exchange, is the

source of a variety of magnetic behavior in transition metal and rare-earth com-

pounds.18 The origin of DE lies in the intra-atomic coupling of the spin of itinerant
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electrons with localized spins Si. This coupling favors a ferromagnetic (F) back-

ground of local spins and may lead to interesting transport properties such as

colossal magnetoresistance. This mechanism has been widely used in the context of

manganites.1–3,19,20 This F tendency is expected to be frustrated by antiferromag-

netic (AF) inter-atomic super-exchange (SE) interactions between localized spins

Si as first discussed by de Gennes4 who conjectured the existence of canted states.

In spite of recent interesting advances, our knowledge of magnetic ordering resulting

from this competition is still incomplete.

Although it may look academic, the one-dimensional (1D) version of this model

is very illustrative and helpful in building an unifying picture. On the other hand,

the number of pertinent real 1D systems as the nickelate one-dimensional metal

oxide carrier-doped compound Y2−nCanBaNiO5
21,22 is increasing. Haldane gap

(∼ 9 meV) has been observed for the parental compound n = 0 Ni2+ (S = 1)

from susceptibility and neutron scattering measurements. In these compounds, car-

riers are essentially constrained to move parallel to NiO chains and a spin-glass-like

behavior was found at very low temperature T . 3 K for typical dopings n ≈ 0.04,

0.1 and 0.15. At high temperature Curie-like behavior of the magnetic suscepti-

bility was found. The question is how physical properties change by introducing

n holes in the system. In the doped case the itineracy of doped electrons or holes

plays an important role taken into account by the DE mechanism. Recently, it

has been shown that three-leg ladders in the oxyborate system Fe3BO5 may pro-

vide evidence for the existence of spin and charge ordering resulting from such a

competition.23

Naturally, the strength of the magnetic interactions depends significantly on the

conduction electron band filling, x = 1 − n. At low conduction electron density, F

polarons have been found for localized S = 1/2 quantum spins.9,10 “Island” phases,

periodic arrangement of F polarons coupled antiferromagnetically, have been clearly

identified at commensurate fillings both for quantum spins in one dimension12,13

and for classical spins in one11 and two dimensions.14 Phase separation between

hole-undoped antiferromagnetic and hole-rich ferromagnetic domains has been ob-

tained in the Ferromagnetic Kondo model.5,6 Phase separation and small ferromag-

netic polarons have been also identified for localized S = 3/2 quantum spins.15 In

addition to the expected F–AF phase separation appearing for small SE coupling,

a new phase separation between small polarons ordered (one electron within two

or three sites) and AF regions for larger SE coupling was found.16,17 These phase

separations are degenerate with phases where the polarons can be ordered or not

giving a natural response to the instability at the Fermi energy and to an infinite

compressibility as well. Wigner crystallization and spin-glass-like behavior were also

obtained and could explain the spin-glass-like behavior observed in the nickelate

1D doped compound Y2−nCanBaNiO5.
16

In this paper, we present a study of the parallel static magnetic susceptibility in

an Ising-like exchange model. Short-range spin-spin correlations are also presented.
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Our results are compared with the Curie-like behavior observed at high temper-

ature in the nickelate one-dimensional compound Y2−nCanBaNiO5.
21,22 The pa-

per is organized as follows. In Sec. 2 a brief description of the model is given. In

Sec. 3, results and a discussion are presented. Finally, our results are summarized

in Sec. 4.

2. The Model

The DE Hamiltonian is originally of the form,

H = −
∑

i,j;σ

tij(c
+
iσcjσ + h.c.)− JH

∑

i

Si · σi , (1)

where c+iσ(ciσ) are the fermions creation (annihilation) operators of the conduction

electrons at site i, tij is the hopping parameter and σi is the electronic conduction

band spin operator. In the second term, JH is the Hund’s exchange coupling. Here,

Hund’s exchange coupling is an intra-atomic exchange coupling between the spins

of conduction electrons σi and the spin of localized electrons Si. This Hamiltonian

simplifies in the strong coupling limit JH → ∞, a limit commonly called itself the

DE model. In this strong coupling limit itinerant electrons are now either parallel

or anti-parallel to local spins and are thus spinless. The complete one-dimensional

DE+SE Hamiltonian becomes,

H = −t
∑

i

(

cos

(

φi,i+1

2

)

c+i ci+1 + h.c.

)

+ J
∑

i

Si · Si+1 , (2)

φi,i+1 is the relative angle between localized spins at sites i, i + 1 defined with

respect to a z-axis taken as the spin quantization axis of the itinerant electrons.

The SE coupling is an antiferromagnetic inter-atomic exchange coupling between

localized spins Si. This coupling is given in the second term of the former equation.

Here J is the SE interaction energy. An Ising-like model with itinerant electrons

will be considered in this paper, i.e., d = 1; s = 1 and φi = 0 or π. For itinerant

electrons (holes) an electron (hole)-single approximation will be used. The nickelate

one-dimensional parental compound Y2BaNiO5, is basically formed of quasi one-

dimensional chains of Ni2+. 3d3z2−r2 and 3dx2−y2 are two relevant Ni2+ orbitals

in this system. 3dx2−y2 is basically localized while 3d3z2−r2 has finite overlap with

2pz orbital of the O.24,25 So, to make contact with the nickelate one-dimensional

compound Y2−nCanBaNiO5, N localized S = 1/2 spins in the 3dx2−y2 orbital

will be considered. On the other hand itinerant electrons x or holes n will be

placed in the 3d3z2−r2 orbital. The role of these electrons (holes) within the parental

compound n = 0, will be considered by the DE mechanism. Within our Ising-like

model there is an electron–hole symmetry.

Exact parallel static magnetic susceptibility χ and short-range spin–spin cor-

relations are presented using a standard canonical ensemble. To obtain χ within
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the electron (hole)-single approximation is necessary to calculate eigenvalues of the

following matrix

H =

















h1 t1,2 0 0 · · ·

t2,1 h2 t2,3 0 · · ·

0 t3,2 h3 t3,4 · · ·

0 0 t4,3 h4 · · ·
...

...
...

...
. . .

















(3)

where

hi = JS2
N−1
∑

k=1

cos(φk − φk+1)− µB

N
∑

k=1

cos(φk)− µB cos(φi) , (4)

in the former equation first term is SE interaction and the second one is the Zeeman

coupling of the localized background of S = 1/2 spins. Third term is the coupling

between the magnetic moment µ of the itinerant electron and the magnetic field B.

A magnetic field was introduced to calculate χ.

ti,j = tj,i = −t cos((φk − φk+1)/2) . (5)

With eigenvalues of Eq. (3), it is easy to obtain partition function Z in the

canonical ensemble within the electron-single approximation

Z =
∑

i<j<k,···

e−β(∈i+∈j+∈k+···) . (6)

For one (i), two (i and j), three (i, j and k) and (· · ·) itinerant electrons, respectively.

β = 1
kBT

being kB Boltzmann constant and T temperature.

Magnetic susceptibility is related with partition function as

χ = lim
B→0

kBT
∂2

∂B2
lnZ . (7)

Mean value of all operators can be related to partition function i.e., 〈A〉

〈A〉 =

∑

i<j<k,···

Ae−β(∈i+∈j+∈k+···)

Z
. (8)

On the other hand, the phenomenological Ising-like model was proposed because

of our previous results using classical localized spins lead basically to an Ising-like

model.16,17 High temperature χ will be compared with experimental results of the

nickelate one-dimensional compound Y2−nCanBaNiO5.
21,22

3. Results and Discussion

In this section, phase diagram, parallel static magnetic susceptibility MS and short-

range spin–spin correlations are presented for a particular open linear chain of

N = 20 sites. In the thermodynamic limit, phase diagram is shown in Fig. 1.
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Fig. 1. Itinerant electron density x versus SE interaction energy JS2/t phase diagram.

This phase diagram is similar to our previous one using classical localized spins

(s = 3).16,17 Phase separation between ferromagnetic (F) · · · ↑↑↑↑↑↑ · · · and

antiferromagnetic (AF) · · · ↑↓↑↓↑↓ · · · phases is found for low SE interaction

energy. On the other hand phase separation between P2 · · · ↑↑↓↓↑↑ · · · and P3

· · · ↑↑↑↓↓↓↑↑↑ · · · phases and the AF phase was obtained for high JS2/t. Because of

the scalar s = 1 spin character used in this paper canted CP3, CP2 and T phases

are not obtained in this paper.16,17 The AF phase observed at x = 0 was previously

studied for an Ising (s = 1) and classical (s = 3) model respectively in Refs. 26

and 27.

Figures 2–4 show the inverse of the magnetic susceptibility versus temperature

for one, two and three itinerant electrons, respectively. Solid lines in those figures

represent high temperature JH ≫ kBT ≫ t ≫ JS2 limit. Curie–Weiss behavior

can be easily observed in those figures as (χt/Nµ2) = C/(kBT/t+kBTc/t); being C

Curie constant and Tc Curie–Weiss-like temperature. (C = 1.15; (kBTc/t) = 0.35),

(C = 1.30; (kBTc/t) = 0.31) and (C = 1.44; (kBTc/t) = 0.28) for one, two and three

itinerant electrons, respectively. Curie constant can be rigorously extracted for the

former limit JH → ∞ and t = J = 0. For this goal it is considered N localized

spins and Ne itinerant electrons. Because of JH → ∞ limit Hilbert space is reduced.

So there are Ne and N − Ne free particles with ±2µB and ±µB energies, respec-

tively, where B is the magnetic field. The former gives χt/Nµ2 = (1 + 3x)/(kBT/t).

Curie constant is identified like 1 + 3x. It gives 1.15, 1.30 and 1.45 for one, two

and three itinerant electrons, respectively, i.e., (x = 0.05, 0.10 and 0.15). These

values are very close to those obtained in Figs. 2–4. Now, we can use our Curie

constant 1+ 3x to make contact with results of the nickelate one-dimensional com-

pound Y2−nCanBaNiO5. 3n (S = 1/2) for Curie constant was proposed by Kojima

et al.
21,22 Kojima et al. proposed that each Ca-atom introduces three S = 1/2 spins.
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Fig. 2. Inverse of the magnetic susceptibility (χ) versus temperature (kBT/t) for x = 0.05 i.e., one
itinerant electron and a typical value of the SE interaction energy JS2/t = 0.2. Curie–Weiss-like
behavior at high temperature limit can be observed. Solid line represents JH ≫ kBT ≫ t ≫ JS2

limit.
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Fig. 3. The same as Fig. 2 but for two itinerant electrons x = 0.10.

´́
´́
´́
´́
´́
´́
´́
´́
´́
´́
´́
´́
´́
´́
´́
´́
´́
´́
´́
´́
´́
´́
´́
´́
´́
´́
´́
´́
´́
´́

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

kBT�t

N
Μ

2
�H
Χ
Ht
LL

Fig. 4. The same as Fig. 2 but for three itinerant electrons x = 0.15.
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They studied hole dopings n = 0.045, 0.095 and 0.149. In our case these itinerant

holes correspond to x = 0.955, 0.905 and 0.851 itinerant electrons studied here. It

means Curie constant (1+ 3x) as C = 3.865, 3.715 and 3.553 or simply C = 4− 3n

if we introduce holes as Kojima. n = 0 corresponds to C = 4 or Ne = N electrons

coupled with N localized spins S = 1/2 by an infinite Hund’s coupling. On the

other hand, n = 1 is exactly N localized spins S = 1/2 with C = 1. So, the effect

to introduce holes in our itinerant electron system is to reduce Curie constant. For

low temperature the model proposed by Kojima et al. is very close to our P3+AF

phase separation. On the other hand, Curie–Weiss-like temperature Tc decreases

as itinerant electron density increases. Itinerant electrons are responsible for the

former F behavior because of our DE interaction.

Short range spin–spin correlations 〈SiSi+1/S
2〉 at zero magnetic field can be

observed in Figs. 5–7 for a typical value of JS2/t = 0.2 and four different temper-

atures kBT/t = 0.01, 0.1, 1.0, 10, solid circles, cross, large open circles and plus

symbols, respectively, were used. To obtain these short range correlations negative

in-site (ǫ/t = −0.1) energies were used to pin one, two and three polarons in the

linear chain as can be observed in Figs. 5–7, respectively. These negative in-site

energies can be related with impurities in our linear chain. For low temperature

polarons of three sites in an AF background can be clearly seen. Similar polarons

were found in Ref. 15 by using quantum S = 3/2 core spins. This phase with dis-

ordered polarons is degenerated to our P3+AF phase separation. It means ordered

polarons of three sites in an AF background. At high temperature ((kBT/t) > 0.1)

polarons disperse and a very low correlation is observed.

In the same way, Figs. 8–10 show short range spin–spin correlations 〈SiSi+1/S
2〉

for another typical value of JS2/t = 0.02 and three different temperatures kBT/t =

0.01, 0.1 and 1.0. In this case only one in-site (ǫ/t = −0.1) energy was utilized to

pin the F phase as can be seen in Figs. 8–10. For low temperature F–AF phase

separation can be observed. The F phase increases as the itinerant electron den-

sity x increases, see Figs. 8–10. The former is because of DE interaction. At high

temperature the F phase disperses and a very low correlation is observed.

It is tempting to apply our results to the magnetic properties of the hole doped

Y2−nCanBaNiO5. Doing so raises the question of the relation between quantum

spins and classical spins cases. It is clear that some properties are specific to the

quantum character of the spins, in particular the Haldane gap occurring in Heisen-

berg S = 1 chains, as in the case of undoped Y2BaNiO5. However, in the doped

case the itineracy of doped electrons or holes plays an important role taken into

account by the DE mechanism. The essential behavior of the spin correlations in the

quantum level is similar in the classical case. For the commensurate filling x = 1/2

the polaronic phase P2 in Ref. 16 is qualitatively similar to the quantum S = 1/2

case.

We have calculated magnetic susceptibility for typical values of the conduction

electron density to make contact with experiments.21,22 The inverse of magnetic

susceptibility (χ) versus T presents a complicated behavior as described in the
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Fig. 5. Short-range spin–spin correlations within our Ising-like model for one itinerant electron
x = 0.05 and JS2/t = 0.2. Solid circles, cross, large open circles and plus symbols respresent four
different temperatures kBT/t = 0.01, 0.1, 1.0 and 10, respectively.
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Fig. 6. The same as Fig. 5 but for two itinerant electrons x = 0.10.
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Fig. 7. The same as Fig. 5 but for three itinerant electrons x = 0.15.
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Fig. 8. Short-range spin–spin correlations for one itinerant electron x = 0.05 and JS2/t = 0.02.
Solid circles, cross and large open circles respresent three different temperatures kBT/t = 0.01, 0.1
and 1.0, respectively.
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Fig. 9. The same as Fig. 8 but for two itinerant electrons x = 0.10.
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Fig. 10. The same as Fig. 8 but for three itinerant electrons x = 0.15.

1250048-9

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

01
2.

26
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 A
U

T
O

N
O

M
O

U
S 

U
N

IV
E

R
SI

T
Y

 o
n 

08
/0

8/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



April 2, 2012 11:45 WSPC/Guidelines-IJMPB S0217979212500488

O. Navarro, E. Vallejo & M. Avignon

´´´´

++++

ëëëë

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

0.0

0.5

1.0

1.5

2.0

1�N

N
Μ

2
�
Χ
Ht
L

Fig. 11. Inverse of magnetic susceptibility versus inverse of N sites for an itinerant electron
density of x = 0.2 and JS2/t = 0.2. Solid circles, cross, plus and open circles respresent four
different temperatures kBT/t = 0.1, 1, 2 and 3, respectively. Fitting solid lines are also shown in
the same figure.

former lines. At high temperature Curie–Weiss behavior was obtained. As shown,

Curie constant is basically t–J independent. Our Ising-like results give C = 1+3x or

C = 4 − 3n. Kojima et al. from experimental results proposed C ≃ 3n (S = 1/2).

In our case we remove electrons from an S = 1 system n = 0. In the case of

Kojima, holes are added. In this case our Ising-like model may be can be related

with experimental results. Curie-Weiss temperature Tc is t–J dependent and can

be related with Curie-like behavior observed in this compound.21,22 It is important

to mention that the contribution related to the Haldane gap in S = 1 spin chains

decreases exponentially with decreasing temperature and becomes negligible at low

temperature T < 20 K.28 It is difficult to identify the different contributions to the

magnetic susceptibility in such a complex magnetic ground state. Of course, our

comparison with the experimental results becomes irrelevant below the spin-glass

transition identified to be Tg ∼ 2.9 K. Finite size effects are taken into account

to show that our N = 20 sites are of relevance. Inverse of magnetic susceptibility

vs inverse of N sites for different temperatures are shown in Figs. 11 and 12 for

an itinerant electron density of x = 0.2 and x = 0.25, respectively. Fitting solid

lines α + β(1/N) with an error of 10−4, 95% of confidence levels are shown in the

same figures. As can be seen in the same figures an error of β(1/N) ∼ 10−2 is

obtained if N = 20 sites are taken into account. The t = J = 0 limit, that is N -site

independent, is also compared with these thermodynamic limits, giving an error of

10−1.a Finite size effects for a Heisenberg and an Ising model (without itinerant

electrons x = 0) were studied in Refs. 26 and 27. As can be seen in those references,

aIt is important to mention that another itinerant electronic densities and SE couplings were
considered. Almost the same errors were obtained and the same qualitative behavior in magnetic
susceptibility and spin–spin correlations.
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Fig. 12. The same as Fig. 11 but for an itinerant electron density of x = 0.25.
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Fig. 13. The same as Fig. 6 but for a chain of N = 10 sites, one itinerant electron x = 0.10 is
presented.

magnetic susceptibility is almost N -site independent at high temperature limit. In

our model, because of itinerant electrons, both high and low temperature limits

lead to the same qualitative behavior.

It is also presented, in Fig. 13, short-range spin–spin correlations for one itin-

erant electron and N = 10 sites, x = 0.1 and JS2/t = 0.2. These results can be

compared with results shown in Fig. 6 for N = 20 sites and two itinerant elec-

trons. The same spin–spin correlations behavior can be observed. Magnetic phase

diagram for classical localized spins and an exchange model, as used in this paper,

is compared with the thermodynamic limit in Ref. 16. As can be observed in that

reference, the same magnetic phases were obtained.

Of course that because of our exact results very long systems cannot be studied

easily because of a huge CPU time used.
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4. Conclusion

In this work, we presented exact parallel static magnetic susceptibility calculations

and short-range spin–spin correlations of an equivalent Ising-like DE+SE model us-

ing large Hund’s coupling. Magnetic susceptibility was calculated in a region where

P3 –AF and F –AF phase separation can be found. At high temperature Curie–

Weiss behavior and a very low correlated system were obtained. Curie constant

is basically t − J independent and could be related with the Curie-like behavior

observed in the nickelate one-dimensional compound Y2−nCanBaNiO5. Finite size

effects were considered to show the relevance of our finite N = 20 system.
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