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A relativistic complex scalar boson field at finite temperature T is examined below its critical Bose–
Einstein condensation temperature. It is shown that at the same T the state with antibosons has higher
entropy, lower Helmholtz free energy and higher pressure than the state without antibosons — but the
same Gibbs free energy as it should. This implies that the configuration without antibosons is metastable.
Results are generalized for arbitrary d spatial dimensions.
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1. Introduction

In early works [1–3] on the relativistic ideal boson gas (RIBG)
explicit Bose–Einstein condensation (BEC) critical transition tem-
perature Tc -formulae were derived for both the nonrelativistic and
ultrarelativistic limits and specific-heat anomalies at Tc were stud-
ied. In addition, Refs. [2,3] considered all space dimensions d > 0
and delved into the relation between d and various critical expo-
nents. At sufficiently high temperatures, however, boson–antiboson
pair production becomes appreciable and this was not accounted
for. The first reports to include both bosons and antibosons ap-
pear to be Refs. [4,5] where high-temperature expansions for the
various thermodynamic functions (pressure, particle-number den-
sity, entropy, specific heats, etc.) were derived. Extensive numerical
work in d dimensions that does not rely on such high-temperature
expansions was reported in Refs. [6,7]. In the elegant treatment of
Ref. [8] with inverse Mellin transforms the specific heat anomaly
of the RIBG at its BEC Tc was found to be washed out when
pair production was included. The relationship between the BEC
of the RIBG and spontaneous symmetry breaking was explored in
Refs. [5,9]; see also the rather complete Ref. [10], esp. §2.4.

BECs are also of interest in cosmological and astrophysical con-
texts. In fact, increasing attention has recently been paid cosmo-
logical models that describe dark matter (DM) as a condensate
phase of some scalar boson field [11–24]. Such models are compet-
itive with the Λ cold dark matter (ΛCDM) model [25] to explain
observational properties of DM at cosmological and astrophysical
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levels. In particular, a scalar boson field with an extremely small
mass of about 10−22 eV can explain the cosmological evolution
of the universe [11–24], the rotation curves of galaxies [26], the
central-density profile of low-surface-brightness galaxies [27], the
size of galactic halos [28], and the amount of substructures in the
universe [29]. In Ref. [30] it was shown that a complex and self-
interacting scalar boson field with a more realistic mass of about
1 eV in a BEC is also a viable DM candidate. Moreover, in this
model no fine tuning of the scalar-field energy density at early
times is required and the condensate formation is due to self-
interactions.

Indeed, BECs are of interest in the context of quantum gravity.
In Refs. [42,43] some of us have shown that Planck-scale defor-
mations of the energy–momentum relation that naturally emerges
in many quantum-gravity theories (for an excellent nontechni-
cal overview see Ref. [44]) may affect the properties of low-
temperature BECs. In particular it was shown that a Planck-scale
induced deformation of the Minkowski energy–momentum dis-
persion relation E � √

m2c4 + p2c2 + ξmcp/2M p , where m is the
mass of the bosons, M p the Planck mass and ξ a dimension-
less parameter, produces a shift in the condensation tempera-
ture Tc of about �Tc/T 0

c � 10−6ξ1 in typical BECs such as 87
37Rb

[31], 7
3Li [32], 23

11Na [33], 1
1H [34], 85

37Rb [35], 4
2He [36], 41

19K [37],
133

55Cs [38], and 52
24Cr [39]. The quantum gravity induced shift in

Tc makes possible to upper-bound the deformation parameter as
|ξ | � 104 with recent ultra-precise measurements of Tc as, e.g., in
39
19K [40]. In Ref. [42,43] it is also discussed how to enlarge �Tc/T 0

c
thus improving the bound on ξ and hence realize an ad hoc ex-
periment accomplish this. Finally, the Planck-scale induced shift
in Tc is compared with similar effects due to interboson interac-
tions and finite-size effects. These results open a new possibility
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for a quantum gravity phenomenology based on low-temperature
condensates, so that BECs truly appear to be a frontier interdisci-
plinary research field open to many applications.

We also stress how the effect of interactions as well as of finite-
size effects might have observable effects on laboratory BE conden-
sates. For example, in Ref. [40] the effect of interactions has been
observed in 39

19K and a shift in Tc measured as a function of the
interboson s-wave scattering length a and data have been fitted
with the second-order polynomial �Tc/T 0

c � b1(a/λT )+ b2(a/λT )2

with b1 = −3.5 ± 0.3 and b2 = 46 ± 5, the second term being due
to beyond-mean-field effects. However, in what follows we do not
consider interaction nor finite-size effects as we focus on the ideal
Bose gas. Such effects are being investigated.

Here we study the metastability of a BEC that does not con-
tain antibosons. A motivation is given in Section 2. In Ref. [41]
the properties a RIBG in terms of the Helmholtz free energy with
antibosons included was discussed and shown to be a state with
a lower Helmholtz free energy than that without antibosons. In
Section 3 we generalize this result by comparing two different
BECs, with and without antibosons, but with the same total num-
ber of particles and at the same finite temperature. Such states
are related by a thermodynamic transformation ensuring that they
are meaningfully comparable. In particular, we rely on the law of
nondecreasing entropy for isolated systems. In Section 4 we con-
clude that the state with antibosons has greater entropy and lower
Helmholtz free energy and which is therefore the stable state,
while the state without antibosons is metastable. In Section 5 we
derive the expression of the pressure of the BEC in equilibrium
with a thermalized gas of bosons and show that the state with an-
tibosons has higher pressure. As an overall check we calculate the
Gibbs potential in both cases and show that it is the same, as ex-
pected. Lastly, in Section 6 we generalize results for arbitrary d > 0
dimensions, integer or not. We conclude in Section 7.

2. Motivation

To study the relative stability of the two states with and with-
out antibosons one should compare their entropies. For a meaning-
ful comparison the two states must be at the same temperature,
volume and number density. This is guaranteed in what follows.
Consider a system composed of two heat reservoirs R1 and R2 at
temperatures T1 and T2, respectively, with T1 � T2, and a gas of N
bosons B of mass rest mass m contained in a volume V with a
number density n ≡ N/V . The reservoirs are much larger in vol-
ume than the boson volume V so they can be placed in thermal
contact with the boson gas without appreciably changing its tem-
perature, or they can be isolated from the boson gas. Assume that
T1 < T B

c < T B B̄
c , where T B

c and T B B̄
c are the boson gas BEC critical

temperatures without and with antibosons B̄ , respectively, so that
at T1 the boson gas itself is a BEC. Assume also that kB T2 � mc2,
with c the velocity of light, and that kB T1 � mc2. Initially, the gas
contains only bosons and is in thermal equilibrium with the first
reservoir R1 at temperature T1. Since kB T1 � mc2 at this temper-
ature any antibosons present are negligible. The boson gas is then
isolated from the reservoir R1 and placed in thermal contact with
the reservoir R2. After awhile the boson gas reaches thermal equi-
librium at temperature T2. Since kB T2 � mc2 antibosons are cre-
ated substantially by pair production so that the equilibrium state
now also contains antibosons B̄ . Finally, the boson gas is isolated
from the reservoir R2 and placed in thermal equilibrium with the
reservoir R1 so that the final temperature of the boson gas is T1.
The question concerning the metastability of the state without an-
tibosons can be formulated in the following way: at the end of the
process just described does the boson gas contain antibosons or
does it go back to the initial state without antibosons? To answer
this one must calculate the entropy variation �S I

tot of the whole
system (boson gas and reservoirs) a final state of the boson gas
with antibosons, and compare it with the entropy �SII

tot of a final
state without antibosons. This question is addressed and resolved
in Section 4 where we show that �S I

tot > �SII
tot so that the state

without antibosons is metastable.
We first calculate the main thermodynamic functions in both

cases, with and without antibosons.

3. Energy density and Helmholtz free energy below BEC Tc

We consider two gas systems, one with only bosons B and
a second one containing also antibosons B̄ . They are both as the
same temperature T < T B

c < T B B̄
c , where T B

c and T B B̄
c are the con-

densation temperatures of these two systems without and with
antibosons, respectively. We first write down explicit expressions
for internal energies and number densities and then proceed to
calculate their Helmholtz free energy.

Since T < T B
c < T B B̄

c the condensate forms in both a system
containing only bosons B as well as in a system containing also
antibosons B̄ . At such temperatures T the chemical potential μ �
mc2 in a RIBG whose energy E(p)–momentum p dispersion is
E(p) ≡ √

p2c2 + m2c4. For a gas containing only bosons the num-
ber density is

n = n0 + (
h̄32π2)−1

∞∫
0+

p2 dp
1

exp[β(E(p) − mc2)] − 1
(1)

where β ≡ 1/kB T . The net internal energy per unit volume V is

U B(n, T , V )

V

= mc2n0 + (
h̄32π2)−1

∞∫
0+

p2 dp
E(p)

exp[β(E(p) − mc2)] − 1
. (2)

Here

n0 ≡ 1

V

1

exp[β(mc2 − μ)] − 1
. (3)

Combining these equations leaves

U B(n, T , V )

V

= mc2n + (
h̄32π2)−1

∞∫
0+

p2 dp
E(p) − mc2

exp[β(E(p) − mc2)] − 1
. (4)

When antibosons are included the number density n is

n = n0 + (
h̄32π2)−1

∞∫
0+

p2 dp

[
1

exp[β(E(p) − mc2)] − 1

− 1

exp[β(E(p) + mc2)] − 1

]
(5)

so that

U B B̄(n, T , V )

V
= mc2n0 + (

h̄32π2)−1
∞∫

0+
p2 dpE(p)

×
[

1

exp[β(E(p) − mc2)] − 1

+ 1
2

]
. (6)
exp[β(E(p) + mc )] − 1
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Combining these two equations gives

U B B̄(n, T , V )

V
= mc2n + (

h̄32π2)−1
∞∫

0+
p2 dp

×
[

E(p) − mc2

exp[β(E(p) − mc2)] − 1

+ E(p) + mc2

exp[β(E(p) + mc2)] − 1

]
. (7)

The Helmholtz free energy per unit volume without antibosons
is then

F B(T , V ,n)/V = mc2n + kB T
(
h̄32π2)−1

∞∫
0+

p2 dp

× ln
[
1 − exp

(
β
[
mc2 − E(p)

])]
. (8)

In the case with antibosons one has

F B B̄(T , V ,n)/V = mc2n + kB T
(
h̄32π2)−1

×
∞∫

0+
p2 dp

{
ln

[
1 − exp

[
β
(
mc2 − E(p)

)]]

+ ln
[
1 − exp

[−β
(
mc2 + E(p)

)]]}
. (9)

From (8)–(9) it also follows that

F B B̄(T , V ,n) − F B(T , V ,n)

= V
kB T

h̄32π2

∞∫
0+

p2 dp ln
[
1 − exp

(−β
[
mc2 + E(p)

])]
< 0. (10)

Therefore the state containing antibosons has a lower Helmholtz
free energy. This same result was found in Ref. [41] except that
here the Helmholtz free energies are compared at the same tem-
perature T .

4. Entropy

Here we calculate the entropy of the boson field with and with-
out antibosons. This is then used to determine the entropy varia-
tion in the thermodynamic transformation described in Section 2
to conclude that the state containing antibosons is the stable state
while the state without antibosons is only metastable. If only B
bosons are considered, the entropy follows from

T S B(T , V ,n) = U B(T , V ,n) − F B(T , V ,n) (11)

where the internal energy per unit volume is given by (4). Whence

S B(T , V ,n)/V

= kB
(
h̄32π2)−1

∞∫
0+

p2 dp

{
β(E(p) − mc2)

exp[β(E(p) − mc2)] − 1

− ln
[
1 − exp

(
β
[
mc2 − E(p)

])]}
. (12)

If antibosons are included the entropy follows from

T S B B̄(T , V ,n) = U B B̄(T , V ,n) − F B B̄(T , V ,n) (13)

where the Helmholtz free energy is given by (9). Using the latter
and (7) one gets
S B B̄(T , V ,n)/V

= kB
(
h̄32π2)−1

∞∫
0+

p2 dp

{
β(E(p) − mc2)

exp[β(E(p) − mc2)] − 1

+ β(E(p) + mc2)

exp[β(E(p) + mc2)] − 1
− ln

[
1 − exp

[
β
(
mc2 − E(p)

)]]
− ln

[
1 − exp

[−β
(
mc2 + E(p)

)]]}
. (14)

One can now compare the entropies of the two states with and
without antibosons. From (12) and (14) one easily finds that

S B B̄(T , V ,n) − S B(T , V ,n)

= kB V
(
h̄32π2)−1

∞∫
0+

p2 dp

{
β(E(p) + mc2)

exp[β(E(p) + mc2)] − 1

− ln
[
1 − exp

(−β
[
mc2 + E(p)

])]}
> 0 (15)

so that the state without antibosons being less entropic is thus
metastable.

Now consider the thermodynamic transformation described in
Section 2 and calculate the total entropy variation of the boson
field plus that of the two reservoirs. This enables one to decide
if the final state will contain or not antibosons. The final state
of the whole system (boson field plus reservoirs) turns out to be
more entropic one which in turn implies that the state with an-
tibosons is the stable state while the state without antibosons is
only metastable. If the final state of the gas also contains anti-
bosons, the entropy variation of the gas in the thermodynamic
transformation described in Section 2 is

�S I
gas = S B B̄(T1, V ,n) − S B(T1, V ,n) > 0 (16)

(which is the same as (15)), while the entropy variation of the two
reservoirs is

�S I
1 = �Q 1

T1
= U B B̄(T2, V ,n) − U B(T1, V ,n)

T1
> 0 (17)

�S I
2 = �Q 2

T2
= U B B̄(T1, V ,n) − U B B̄(T2, V ,n)

T2
< 0. (18)

Hence, the total entropy variation is

�S I
tot = �S I

gas + �S I
1 + �S I

2

= �S I
gas + U B B̄(T2, V ,n)

(
1

T1
− 1

T2

)

+ U B B̄(T1, V ,n)

T2
− U B(T1, V ,n)

T1

> �S I
gas + [

U B B̄(T2, V ,n) − U B(T1, V ,n)
]( 1

T1
− 1

T2

)
> 0. (19)

The transformation is thus allowed but is irreversible.
The net entropy variation in the thermodynamic transformation

of Section 2 when the final state is without antibosons is thus

�S II
gas = 0 (20)

while the entropy variation of the two reservoirs is

�S II
1 = U B B̄(T2, V ,n) − U B(T1, V ,n)

> 0 (21)

T1
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�S II
2 = U B(T1, V ,n) − U B B̄(T2, V ,n)

T2
< 0. (22)

Hence, the total entropy variation is

�S II
tot = [

U B B̄(T2, V ,n) − U B(T1, V ,n)
]( 1

T1
− 1

T2

)
> 0. (23)

Again, the transformation is allowed but is irreversible and its only
effect is a heat transfer between the two reservoirs R1 and R2.

We can now compare the two entropy variations �S I
tot and

�S II
tot . One has

�S I
tot − �S II

tot

= �Sgas + U B B̄(T1, V ,n) − U B(T1, V ,n)

T2
> 0 (24)

so that �S I
tot > �S II

tot , i.e., the entropy variation is greater in the
case in which the final state contains antibosons. Therefore, the
final state of the whole system of the gas plus the two reservoirs is
more entropic when the gas contains antibosons in the final state.
Again this means the state without antibosons is metastable and
that the final equilibrium state described in Section 2 is the one
containing antibosons.

We remark that if the boson field were a real scalar field it
would not admit antibosons and in this instance the state con-
taining only bosons B is the only possible one and therefore it is
not metastable but rather a stable state. One thus concludes that
if antibosons are allowed, namely if the scalar field is complex as
assumed here, the state with antibosons is allowed and this state
will be the stable one while the state without antibosons will only
be metastable.

5. Pressure

Following the same procedure we introduce the pressure P as
a function of n, V and T . Specifically, if no antibosons are present

βV P B = − ln
[
1 − exp

[
β
(
μ − mc2)]] − (

h̄32π2)−1
V

∞∫
0+

p2 dp

× ln
[
1 − exp

[
β
(
μ − E(p)

)]]
. (25)

We rewrite (1) as

n0 = n − n+ = 1

V

exp[β(μ − mc2)]
1 − exp[β(μ − mc2)] (26)

where

n+ ≡ (
h̄32π2)−1

∞∫
0+

p2 dp
1

exp[β(E(p) − mc2)] − 1
(27)

is the number density of noncondensate (or excited) bosons. Be-
low the condensation temperature μ � mc2 so that exp[β(μ −
mc2)] � 1 apart from small corrections O (1/V ) which vanish in
the thermodynamic limit V → ∞. We can write the logarithm in
the rhs of (25) as

ln
[
1 − exp

[
β
(
μ − mc2)]] � − ln

[
V (n − n+)

]
(28)

whence

βV P B

= − ln

[
V

(
n − 1

(h̄32π2)

∞∫
+

p2 dp
1

exp[β(E(p) − mc2)] − 1

)]

0

− V

(h̄32π2)

∞∫
0+

p2 dp ln
[
1 − exp

[
β
(
mc2 − E(p)

)]]
. (29)

Dividing through by V gives the first term on the rhs proportional
to V −1 ln V which also vanishes in the thermodynamic limit, so
one gets

P B = − kB T

(h̄32π2)

∞∫
0+

p2 dp ln
[
1 − exp

[
β
(
mc2 − E(p)

)]]
. (30)

When antibosons are included the pressure is given by the re-
lation

βV P B B̄

= − ln

[
V n − 1

h̄32π2

∞∫
0+

p2 dp

(
1

exp[β(E(p) − mc2)] − 1

− 1

exp[β(E(p) + mc2)] − 1

)]

− V

(h̄32π2)

∞∫
0+

p2 dp
[
ln

(
1 − exp

[
β
(
mc2 − E(p)

)])

+ ln
(
1 − exp

[−β
(
mc2 + E(p)

)])]
. (31)

Since the first term in (31) is negligible in the thermodynamic
limit, the final result is

P B B̄ = − kB T

(h̄32π2)

∞∫
0+

p2 dp
(
ln

[
1 − exp

[
β
(
mc2 − E(p)

)]]

+ ln
[
1 − exp

[−β
(
mc2 + E(p)

)]])
. (32)

Comparing (30) with (32) it becomes evident that when antibosons
are included the pressure is greater than in the case without anti-
bosons. Indeed, one has

P B B̄ − P B = − kB T

(h̄32π2)

∞∫
0+

p2 dp ln
[
1 − exp

[−β
(
mc2 + E(p)

)]]
> 0. (33)

As a final overall check, comparison of Eqs. (10) and (33)
shows that the state with and without antibosons have the same
Gibbs free energy G(P , T ) = F + P V = μN , namely G B B̄(P , T ) =
G B(P , T ), as must be the case since the net number of particles N
and chemical potential μ are the same.

6. Generalization to d spatial dimensions

Here we generalize the thermodynamic potentials to arbitrary
d > 0 spatial dimensions, integer or not. The result is confirmed
that the state with only bosons is metastable while the state with
both bosons and antibosons is stable. To motivate this section we
recall that spaces with dimensionality different from d = 3 are con-
sidered in many physical contexts, e.g., in quantum gravity (see
Ref. [44] for a review). In other areas, e.g., Mandelbrot (Ref. [45],
p. 85) cites an empirical fractal dimension d = 1.23 for the distri-
bution of galaxies in the observable universe.

We first calculate the thermodynamic functions with and with-
out antibosons. Assuming a real nonnegative number d of spatial
dimension, the sum over momentum now becomes



F. Briscese et al. / Physics Letters A 376 (2012) 2911–2916 2915
∑
p	=0

−→
(

L

2π h̄

)d

Ωd

∞∫
0+

pd−1 dp (34)

where Ωd is the solid angle in d dimensions and the system vol-
ume is Ld .

If no antibosons are present the number density n is

n = n0 + Ωd (2π h̄)−d

∞∫
0+

pd−1 dp
[
exp

[
β
(

E(p) − μ
)] − 1

]−1
(35)

where

n0 ≡ [
V

(
exp

[
β
(
mc2 − μ

)] − 1
)]−1

. (36)

As before, n0 ≡ N0/Ld is the number density of zero-momentum
p = 0 bosons within a d-dimensional volume V ≡ Ld . The internal
energy per unit volume is

U B(T , V ,n)/V

= nmc2 + Ωd(2π h̄)−d

∞∫
0+

pd−1 dp
E(p) − mc2

exp[β(E(p) − μ)] − 1
. (37)

The Helmholtz free energy is

F B(T , V ,n)/V = mc2n + kB T Ωd(2π h̄)−d

∞∫
0+

pd−1 dp

× ln
[
1 − exp

[
β
(
μ − E(p)

)]]
(38)

while the entropy per unit volume is now

S B(T , V ,n)/V

= kBΩd(2π h̄)−d

∞∫
0+

pd−1 dp

{
β(E(p) − mc2)

exp[β(E(p) − μ)] − 1

− ln
[
1 − exp

[
β
(
μ − E(p)

)]]}
(39)

with the term (kB/V ) ln[1 − exp[β(μ − mc2)]] being negligible in
the thermodynamic limit.

If antibosons are present the number density is

n = n0 + Ωd(2π h̄)−d

∞∫
0+

pd−1 dp

[
1

exp[β(E(p) − μ)] − 1

+ 1

exp[β(E(p) + μ)] − 1

]
(40)

where n0 is still (36). The internal energy per unit volume is

U B B̄(n, T , V )

V

= mc2n + Ωd(2π h̄)−d

∞∫
0+

pd−1 dp

[
E(p) − m c2

exp[β(E(p) − mc2)] − 1

+ E(p) + mc2

exp[β(E(p) + mc2)] − 1

]
. (41)

The Helmholtz free energy per unit volume is
F B B̄(T , V ,n)/V = mc2n + kB T Ωd(2π h̄)−d

∞∫
0+

pd−1 dp

× {
ln

[
1 − exp

[
β
(
mc2 − E(p)

)]]
− ln

[
1 − exp

[−β
(
mc2 + E(p)

)]]}
. (42)

Finally, the entropy per unit volume becomes

S B B̄(T , V ,n)/V

= kB Ωd(2π h̄)−d

∞∫
0

pd−1 dp

{
β(E(p) − mc2)

exp [β(E(p) − mc2)] − 1

+ β(E(p) + mc2)

exp [β(E(p) + mc2)] − 1
− ln

[
1 − exp

[
β
(
mc2 − E(p)

)]]
− ln

[
1 − exp

[−β
(
mc2 + E(p)

)]]}
. (43)

At this point it is easy to generalize to arbitrary d the result
that the state with only bosons is stable, just generalizing (24). For
example, by use of (37)–(39), (41)–(43) one easily generalizes (10)
and obtains

F B B̄(T , V ,n) − F B(T , V ,n)

= VdΩdkB T

(2π h̄)d

∞∫
0+

pd−1 dp ln
[
1 − exp

(−β
[
mc2 + E(p)

])]
< 0

(44)

for the difference of the Helmholtz potential. Again, for arbitrary d
the state containing antibosons has a lower Helmholtz free energy.
Then one can generalize (15) and obtain

S B B̄(T , V ,n) − S B(T , V ,n)

= VdΩdkB

(2π h̄)d

∞∫
0+

pd−1 dp

{
β(E(p) + mc2)

exp[β(E(p) + mc2)] − 1

− ln
[
1 − exp

(−β
[
mc2 + E(p)

])]}
> 0 (45)

so that the state with antibosons is more entropic also for arbi-
trary d.

Proceeding in the same way one verifies that the relations re-
sumed in Eqs. (15)–(23) are still valid and therefore Eq. (24) is
also valid for arbitrary d. Therefore one concludes that, also for ar-
bitrary d, the state without antibosons is metastable.

7. Conclusions

The metastability of a Bose–Einstein condensate (BEC) that does
not contain antibosons was studied for the relativistic ideal Bose
gas (RIBG). In particular, the Helmholtz free energy with both
bosons and antibosons was shown to be a state with a lower
Helmholtz potential than that without antibosons. This was done
with the same number of particles and at the same finite tempera-
ture below the BEC critical temperature. Both states were found to
be related by a thermodynamic transformation ensuring that they
are meaningfully comparable. In addition, relying on the princi-
ple of nondecreasing entropy for isolated systems we found that
the state with antibosons has greater entropy and is therefore the
stable state, while the state without antibosons is metastable. The
pressure of both systems was calculated and found to be higher
for the state with antibosons than for the state without them. We
also confirm that the two states with and without antibosons have
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the same Gibbs free energy, as expected. Lastly, results were gen-
eralized for arbitrary dimensions d > 0, integer or not.
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