Analysis and perspectives concerning CO₂ chemisorption on lithium ceramics using thermal analysis

José Ortiz-Landeros · Tatiana L. Ávalos-Rendón · Carlos Gómez-Yáñez · Heriberto Pfeiffer

MEDICTA2011 Conference Special Chapter © Akadémiai Kiadó, Budapest, Hungary 2011

Abstract CO₂ removal from flue gas has been proposed as one of the most reliable solutions to mitigate global greenhouse emissions. Lithium ceramics are among several materials that have potential applications in CO₂ removal. Lithium ceramics are able to chemisorb CO_2 in a wide temperature range, presenting several interesting properties. All lithium ceramics present a similar CO₂ chemisorption reaction mechanism that has been described at the micrometric scale. However, there are several issues that have not been fully elucidated. The aim of this study is to re-analyze different experiments related to the CO₂ chemisorption on lithium ceramics and to propose how different factors control this process. This study focuses on diffusion controlled CO₂ chemisorption, which has been shown to be the limiting step of the CO₂ chemisorption process. Diffusion controlled CO₂ chemisorption appears to be mainly influenced by the chemical composition of a product's external shell.

Keywords CO_2 chemisorption · Greenhouse effect · Lithium ceramics · Thermal analyses

J. Ortiz-Landeros · C. Gómez-Yáñez

Introduction

The combustion of various carbonaceous materials has increased the amount of carbon dioxide (CO₂) in the atmosphere, which has consequently produced the greenhouse effect [1–3]. In order to solve this threatening problem, several potential solutions have been proposed. One proposed solution to mitigate the greenhouse effect is to capture, separate, and concentrate CO₂ [2, 4, 5]. Different materials have been tested for utility in the CO₂ capture process [4, 6–15].

Lithium ceramics are a group of materials that can be potentially used in CO₂ capture [4, 13, 14, 16–52]. In 1998, Nakagawa and Ohashi [52] showed that lithium metazirconate (Li₂ZrO₃) could chemically trap CO₂ at relatively high temperatures (400–600 °C). Since then, several works have studied the CO₂ chemisorption of different lithium ceramics [16–62]. The ceramics that have been mainly studied are lithium zirconates (Li₂ZrO₃, Li₆Zr₂O₇, and Li₈ZrO₆), lithium silicates (Li₄SiO₄ and Li₂SiO₃), lithium aluminate (Li₅AlO₄), lithium cuprate (Li₂CuO₂), lithium ferrite (LiFeO₂), lithium titanate (Li₄TiO₄), and lithium gallate (Li₅GaO₄).

It is generally accepted that the CO₂ chemisorption on lithium ceramics is a two-step process. Initially, the lithium ceramic particles react with CO₂ at the particle surface. This superficial reaction involves the formation of an external shell composed of lithium carbonate. For a majority of these materials, a secondary lithium phase, which depends on the initial composition of the lithium ceramic, is also formed on the particle surface. Once the first stage is complete, bulk diffusion processes must be activated for the ceramic to continue CO₂ chemisorption. At this point, CO₂ chemisorption is controlled by diffusion processes [17, 21, 35, 52–54]. However, there is no agreement in the literature as to how the diffusion processes occur. While some papers suggest that

J. Ortiz-Landeros · T. L. Ávalos-Rendón · H. Pfeiffer (⊠) Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Cd. Universitaria, Del. Coyoacán, CP 04510 Mexico, DF, Mexico e-mail: pfeiffer@iim.unam.mx

Departamento de Ingeniería Metalúrgica, Escuela Superior de Ingeniería Química e Industrias Extractivas, IPN, UPALM, Av. Instituto Politécnico Nacional s/n, CP 07738 Mexico, DF, Mexico

 CO_2 bulk absorption is controlled by lithium diffusion [17, 35], other papers suggest that diffusion is CO_2 controlled [21, 54]. In the second case, it has been proposed that, once the external shell is produced, diffusion processes are controlled by the diffusion of CO₂ into the ceramic. Therefore, the movement of this molecule is the limiting step of the process. However, if this mechanism was occurring, the external shell of the particle would display some specific microstructural properties, which have not been reported. On the other hand, other groups [17, 35] have proposed that, once the external shell is produced, CO₂ chemisorption is controlled by lithium diffusion from the bulk particle to the surface. A few different mechanisms have been proposed for lithium diffusion through either a double layer composed of the products Li₂CO₃ and the corresponding metal oxide or a mixed external shell of these products [17, 35, 48]. These diffusion mechanisms have been supported by kinetic and lithium diffusion data [29, 41, 48, 50, 51, 55-60]. The CO₂ chemisorption process for bulk lithium ceramics is not completely understood. It is possible that the process does not depend on one factor but on a combination of several factors.

Different factors involved in the CO_2 chemisorption process are summarized below. It has been observed that the crystalline structure of a material modifies the CO_2 capture properties of that material. For example, the monoclinic and tetragonal Li₂ZrO₃ phases have different CO₂ chemisorption efficiencies [63–65]. Kinetic analysis of these phases showed that the rate of CO₂ absorption for the tetragonal phase is faster than for the monoclinic phase [24]. Apart from this example, it has not been possible to establish a correlation between CO₂ chemisorption and the crystalline structure of lithium ceramics. For example, monoclinic Li₄SiO₄ chemisorbs more CO₂ than the tetragonal Li₂ZrO₃ phase, which in turn chemisorbs more CO₂ than the monoclinic Li₂ZrO₃.

When lithium ceramics are doped with K or Na, the CO₂ chemisorption process is significantly improved [21, 22, 41, 54, 66, 67]. This has been explained as the result of CO₂ diffusion through molten lithium–potassium or lithium–sodium carbonate because these materials produce a eutectic phase that is a liquid at lower temperatures than the undoped material. As this eutectic phase is liquid at temperatures where CO₂ chemisorption occurs, diffusion processes become more efficient. Results show that the external shell produced on the surface of lithium ceramic particles plays an important role in the CO₂ chemisorption process. However, if lithium carbonate alone controls the second part of the CO₂ chemisorption process, all the ceramics should behave identically once the external carbonate shell is produced. This similarity in chemisorption is not observed.

Different papers in the literature have presented kinetic analyses showing that diffusion controlled CO_2 chemisorption is the limiting step of the reaction process [29, 41, 48, 50, 51, 55–60]. Additionally, these reports show that

the constants of both direct CO_2 chemisorption (k_1) and diffusion controlled CO_2 chemisorption (k_2) depend on temperature, and that these kinetic constants vary among lithium ceramics.

Importance of the lithium external shell

The results described above confirm that the lithium ceramic is important for the CO₂ chemisorption process. CO₂ is initially chemisorbed on the lithium ceramic and the identity of the initial lithium ceramic determines the external shell composition. The composition of the external shell plays a significant role in the CO₂ chemisorption process of the bulk lithium ceramic. The external shells should be examined in further detail due to the significance of this area. For this analysis, lithium ceramics are divided as a function of the external shell composition. There are three possible compositions: (1) pure Li_2CO_3 , (2) Li_2CO_3 mixed with a metal oxide such as ZrO₂; and (3) Li₂CO₃ mixed with a secondary lithium phase such as Li₂SiO₃. It is also possible that more than one secondary lithium phases can be formed. An example of this is seen in the synthesis of the solid solution $Li_{4+x}Si_{1-x}Al_xO_4$, where Li_2SiO_3 and LiAlO₂ are produced on the external shell.

External shells composed of Li₂CO₃

The formation of a pure Li₂CO₃ external shell is only possible on lithium hydroxide (LiOH) and lithium oxide (Li₂O) (reactions 1 and 2) [55, 68]. Figure 1 shows the CO₂ capture process for Li₂O [55]. Initially, CO₂ is only captured at the Li₂O particle surface, which absorbs up to 15% of the mass at approximately 250 °C. At high temperature (600 °C), the CO₂ bulk chemisorption is induced once the diffusion processes have been activated. This activation increases the final absorption to 226%. In this case, the diffusion process only depends on the Li₂CO₃ produced over the surface of the Li₂O particles.

$$2\text{LiOH} + \text{CO}_2 \rightarrow \text{Li}_2\text{CO}_3 + \text{H}_2\text{O} \tag{1}$$

$$Li_2O + CO_2 \rightarrow Li_2CO_3 \tag{2}$$

External shells composed of Li2CO3 and metal oxides

 CO_2 chemisorption on Li₂CuO₂ produces Li₂CO₃ and CuO (reaction 3) [43, 44, 69]. The presence of CuO might not interfere with the diffusion process. In contrast, Li₂ZrO₃ produces a Li₂CO₃-metal oxide external shell as seen for lithium cuprate (reaction 4) through different CO₂ chemisorption behaviors (Fig. 1). Initially, these differences can be explained in terms of lithium reactivity. While the superficial reaction of CO₂ on Li₂CuO₂ occurs at

Fig. 1 Comparative dynamic TG analyses of Li_2O , Li_2CuO_2 , and Li_2ZrO_3 into a CO_2 flux. The *square inset* shows the complete thermogram of the Li_2O sample

approximately 200–250 °C, the same reaction on Li₂ZrO₃ only commences at 450–500 °C [17, 20, 70]. For Li₂ZrO₃, it is not possible to differentiate the superficial and the bulk CO_2 chemisorption processes. These results strongly suggest that CO_2 chemisorption is more limited for Li₂ZrO₃ than for Li₂CuO₂. In fact, the final CO₂ mass absorption obtained for these ceramics was 8.7% for Li₂CuO₂ and 3.8% for Li₂ZrO₃.

$$Li_2CuO_2 + CO_2 \rightarrow Li_2CO_3 + CuO$$
 (3)

$$Li_2ZrO_3 + CO_2 \rightarrow Li_2CO_3 + ZrO_2 \tag{4}$$

How does one explain the CO₂ chemisorption differences observed between Li₂CuO₂, Li₂ZrO₃, and Li₂O after the production of the external shell? The three ceramics have the same lithium phase (Li_2CO_3) in the external shell and different metal oxide phases (CuO and ZrO₂) as secondary phases. Lithium does not diffuse in these metal oxide phases. However, the efficiency of CO2 chemisorption was found to vary significantly: Li_2O (85.8%) > Li_2CuO_2 $(21.9\%) > Li_2 ZrO_3$ (12.5%). If the CO₂ chemisorption behavior of Li₂CuO₂ and Li₂O are compared (Fig. 1), it can be seen that both superficial and bulk CO₂ chemisorption processes occur in similar temperature ranges. However, the mass gained is much more significant in Li₂O. As the chemisorption processes occurred in the same temperature range, qualitatively, both ceramics have a similar CO_2 reactivity. The only difference is the production of CuO in the Li₂CuO₂ case. CuO cannot improve lithium diffusion, but it may interfere with the process because the volume percentage occupied by CuO in the external shell is approximately 26. Therefore, the presence of CuO produces a barrier through which lithium is not able to diffuse. Additionally, if present on the particle surface, CuO will

Fig. 2 Comparative dynamic TG analyses of Li_4SiO_4 and Li_5AlO_4 into a CO₂ flux. The *square inset* amplifies the CO₂ superficial chemisorption produced on the Li_4SiO_4 sample

reduce the quantity of active sites where the CO_2 reaction can occur. A similar effect will be observed for Li_2ZrO_3 , where the ZrO_2 volume percentage in the external shell is approximately 38.2. Li_2CO_3 does not undergo any type of phase transformation in the temperature range of interest that could activate or limit the diffusion of lithium [71, 72].

External shells composed of Li_2CO_3 and a lithium secondary phase

For the analysis of external shells consisting of Li₂CO₃ and a secondary lithium phase, Li₄SiO₄ and Li₅AlO₄ ceramics will be considered because these ceramics are two of the most promising lithium ceramics for CO_2 capture [16, 32, 35, 40, 41, 45, 47, 50]. Figure 2 compares the dynamic CO₂ chemisorption of these ceramics. Again, two different behaviors are observed. Both the ceramics behave similar to Li₂O. However, Li₅AlO₄ begins the superficial CO_2 chemisorption at approximately 200-250 °C (3%), while Li₄SiO₄ only begins the superficial CO₂ chemisorption at approximately 360 °C (0.4%). These results suggest that Li₅AlO₄ has a higher reactivity than Li₄SiO₄. As shown in the literature, Li_4TiO_4 behaves in a similar manner [16, 41, 46]. These ceramics produce external shells composed of Li₂CO₃ and the corresponding lithium secondary phase (reactions 5, 6, and 7).

$$Li_4SiO_4 + CO_2 \rightarrow Li_2CO_3 + Li_2SiO_3$$
(5)

$$Li_4TiO_4 + CO_2 \rightarrow Li_2CO_3 + Li_2TiO_3$$
(6)

$$Li_5AlO_4 + 2CO_2 \rightarrow 2 Li_2CO_3 + LiAlO_2$$
(7)

The volume percentages occupied by Li_2SiO_3 , $LiAIO_2$, and Li_2TiO_3 in the external shell are 50.4, 26.6 and 47.7,

respectively. Additionally, the reaction of CO_2 with any of these lithium secondary phases is not favored due to thermodynamic factors in the temperature range of interest [73, 74].

If the diffusion process only depends on the lithium carbonate, the CO₂ chemisorption behavior would be almost identical for all samples. However, this is not observed. For example, Li₄SiO₄ and Li₅AlO₄ behave very differently. While Li₄SiO₄ chemisorbs CO₂ between 350 and 570 °C (4.5%), the CO₂ chemisorption of Li₅AlO₄ occurs over a much wider temperature range (220–700 °C), absorbing up to 166.8%. The bulk diffusion controlled CO₂ chemisorption process was activated at different temperatures: 500–570 °C for Li₄SiO₄ and 580–700 °C for Li₅AlO₄. In fact, the CO₂ chemisorption varied both as a function of the lithium ceramic, with Li₅AlO₄ showing more reactivity than Li₄SiO₄, and as a function of the external shell produced. Therefore, the secondary phases of lithium must be involved in the diffusion processes.

The secondary lithium phases, such as Li_2CO_3 , may promote lithium diffusion in Li_4SiO_4 and Li_5AlO_4 , consequently enhancing CO_2 chemisorption. Based on this hypothesis, and by analyzing the lithium diffusion coefficients of these ceramics, several different relationships can be established. Table 1 shows the lithium diffusion coefficients of several lithium ceramics. The lithium diffusion coefficient of Li_2SiO_3 shows a one order of magnitude increase between 500 and 600 °C, which correlates with the temperature range where the CO_2 bulk chemisorption is activated on Li_4SiO_4 . Similar to lithium carbonate, Li_2SiO_3 does not have a phase transformation in the temperature range of interest that could activate lithium diffusion [77].

A similar behavior can be observed for CO_2 bulk chemisorption in Li₅AlO₄. In this case, LiAlO₂ has a one order of magnitude lithium diffusion increment between 600 and 700 °C. This is the same temperature range where CO_2 chemisorption is significantly activated for Li₅AlO₄. Once lithium diffusion is thermally activated in each secondary phase, lithium diffusion is enhanced on Li₂CO₃– Li₂SiO₃ or Li₂CO₃–LiAlO₂ external shells when compared to pure Li₂CO₃ or Li₂CO₃–metal oxide external shells.

 Table 1
 Lithium diffusion coefficient (D) on different lithium ceramics [16, 75, 76]

Temp./°C	$D/\mathrm{cm}^2 \mathrm{s}^{-1}$			
	Li ₂ CO ₃	Li ₂ SiO ₃	Li ₃ VO ₄	LiAlO ₂
500	1.3×10^{-38}	2.9×10^{-37}	6.4×10^{-41}	1.1×10^{-37}
600	1.8×10^{-37}	1.5×10^{-36}	9.8×10^{-40}	2.8×10^{-37}
700	-	4.5×10^{-36}	4.9×10^{-38}	1.9×10^{-36}

D values calculated from; $D = \sigma \left[\frac{nz^2 e^2}{kT} \right]$

External shells composed of Li₂CO₃ and two or more lithium secondary phases

In order to further explore the previous statements, Li₄SiO₄ and Li₅AlO₄ were doped with different elements to produce mixtures of different lithium secondary phases on the external shell. The solid solutions produced were Li_{4.2}(Si_{0.8}Al_{0.2})O₄, Li_{3.8}(Si_{0.8}V_{0.2})O₄, Li₅(Al_{0.8}Ga_{0.2})O₄, and Li₅(Ga_{0.8}Al_{0.2})O₄. These solid solutions were characterized by X-ray diffraction (data not shown), and no phases other than Li₄SiO₄ or Li₅AlO₄ were detected because Li_5GaO_4 is isostructural to Li_5AlO_4 . These results confirmed the incorporation of Si, V, Ga, and Al into their respective phases. Figures 3 and 4 show the CO₂ chemisorption dynamic thermograms of all the solid solutions. In the Li₄SiO₄ solid solutions, it is evident that Al or V addition significantly modified the CO₂ capture process (Fig. 3). For the $Li_{3,8}(Si_{0,8}V_{0,2})O_4$ sample, initial CO_2 chemisorption appears to be slightly favored in comparison to the Li₄SiO₄ sample ($T \leq 300$ °C). V addition may modify the superficial reactivity of the lithium orthosilicate. However, at high temperatures where the CO₂ chemisorption is controlled by diffusion processes, the CO₂ chemisorption significantly decreased for the sample containing vanadium. In fact, the CO₂ capture slopes of Li₄SiO₄ and Li_{3.8}(Si_{0.8}V_{0.2})O₄ between 450 and 560 °C decreased approximately five times from 0.0351 to 0.0074. Additionally, although it is a qualitative analysis, the mass gained in these samples varied from 4.3% for Li₄SiO₄ to 0.7% for $Li_{3.8}(Si_{0.8}V_{0.2})O_4$. The external shell of Li_{3.8}(Si_{0.8}V_{0.2})O₄ is composed of Li₂CO₃, Li₂SiO₃, and Li_3VO_4 (reaction 8). From the data presented in Table 1, it is evident that Li₃VO₄ has a lithium diffusion coefficient

Fig. 3 Comparative dynamic TG analyses of Li_4SiO_4 and two different solid solutions of it; $Li_{4.2}Si_{0.8}Al_{0.2}O_4$ and $Li_{3.8}Si_{0.8}V_{0.2}O_4$. All these thermograms were performed into a CO₂ flux

that is three orders of magnitude slower than the diffusion coefficient of Li_2CO_3 and Li_2SiO_3 . Therefore, the presence of Li_3VO_4 on the external shell of the material must reduce the CO_2 chemisorption by decreasing the rate of lithium diffusion compared to the pure Li_4SiO_4 sample.

$$\begin{array}{l} \text{Li}_{3.8}(\text{Si}_{0.8}\text{V}_{0.2})\text{O}_4 \ + \ 0.8\text{CO}_2 \rightarrow 0.8\text{Li}_2\text{CO}_3 \ + \ 0.8\text{Li}_2\text{SiO}_3 \\ & + \ 0.2\text{Li}_3\text{VO}_4 \end{array} \tag{8}$$

Conversely, Al addition enhanced the CO₂ chemisorption of Li₄SiO₄ (Fig. 3). At low temperatures, the Li_{4.2}(Si_{0.8}Al_{0.2})O₄ thermogram shows a considerable CO2 chemisorption improvement (0.9%) beginning at around 200 °C. This is in comparison to the Li_4SiO_4 sample (0. 4%), which presented this initial process between 360 and 450 °C. This observation can potentially be explained by the combination of two factors: a higher CO₂ superficial reaction rate produced by the Al addition and the presence of extra lithium atoms that compensate the electro-neutrality of the system. However, the most interesting part of the CO2 chemisorption process was observed at high temperatures, where the external shell limits the process. In this case, the diffusion controlled CO₂ chemisorption processes on Li_{4.2}(Si_{0.8}Al_{0.2})O₄ can be divided into two different processes that occur between 415 and 570 °C and between 600 and 720 °C where the mass percentage increments were equal to 3.1 and 8.2, respectively. Therefore, the maximum CO₂ chemisorption increased from 4.3% for Li_4SiO_4 to 8.2% for $Li_{4.2}(Si_{0.8}Al_{0.2})O_4.$ Qualitatively, the addition of Al increased the CO2 chemisorption by a factor of 2. In this case, the lithium external shell is composed of Li₂CO₃, Li₂SiO₃, and LiAlO₂ (reaction 9). Therefore, the diffusion controlled CO₂ chemisorption of $Li_{4,2}(Si_{0,8}Al_{0,2})O_4$ is potentially determined by different lithium secondary phases as a function of varying temperatures. Between 415 and 570 °C, Li₂CO₃ and Li₂SiO₃ must control the lithium diffusion as seen for Li₄SiO₄. At temperatures higher than 600 °C, a second diffusion process must be activated due to the presence of LiAlO₂, which increases the final amount of CO₂ chemisorbed. In fact, this CO₂ chemisorption temperature range is very similar to that observed for the Li₅AlO₄ sample (see Fig. 2). From these results, it can be concluded that Al addition enhances the superficial CO₂ reaction and significantly modifies the diffusion processes at the lithium external shell particularly at high temperatures where Li diffusion is activated for LiAlO₂ (600–700 °C).

$$\begin{array}{c} \text{Li}_{4.2}(\text{Si}_{0.8}\text{Al}_{0.2})\text{O}_4 + 1.2\text{CO}_2 \rightarrow 1.2\text{Li}_2\text{CO}_3 + 0.8\text{Li}_2\text{SiO}_3 \\ &\quad + 0.2\text{Li}\text{AlO}_2 \end{array} \tag{9}$$

· -

As a second example of the proposed mechanism, Fig. 4 shows the CO_2 dynamic thermograms of the following samples: Li_5AIO_4 , $Li_5(Al_{0.8}Ga_{0.2})O_4$, $Li_5(Ga_{0.8}Al_{0.2})O_4$, and Li_5GaO_4 . There is no lithium diffusion data for any lithium

Fig. 4 Comparative dynamic TG analyses of Li_5AlO_4 , two different solid solutions with gallium ($Li_5Al_{0.8}Ga_{0.2}O_4$ and $Li_5Ga_{0.8}Al_{0.2}O_4$) and Li_5GaO_4 . All these thermograms were performed into a CO₂ flux

gallate in the temperature range of interest. However, in a previous work [78], it was observed that Li^{1+} diffusion in a Li_4SiO_4 ceramic was increased when the ceramic was doped with either Al or Ga. Additionally, the Al-doped Li_4SiO_4 sample had a higher lithium diffusion rate than that observed for the Ga-doped sample. Therefore, in the present case it would be expected that Ga addition would modify the CO₂ chemisorption not only during the initial reaction on the surface but also during the diffusion controlled chemisorption. The reaction of CO₂ with these materials produces different lithium external shells as shown by reactions 7 and 10–12.

$$\begin{array}{l} \text{Li}_{5}(\text{Al}_{0.8}\text{Ga}_{0.2})\text{O}_{4} + 2\text{CO}_{2} \rightarrow 2\text{Li}_{2}\text{CO}_{3} + 0.8\text{LiAlO}_{2} \\ &\quad + 0.2\text{LiGaO}_{2} \end{array} \tag{10}$$

$$\begin{split} \text{Li}_5(\text{Ga}_{0.8}\text{Al}_{0.2})\text{O}_4 + 2\text{CO}_2 &\rightarrow 2\text{Li}_2\text{CO}_3 + 0.2\text{LiAlO}_2 \\ &\quad + 0.8\text{LiGaO}_2 \end{split} \tag{11}$$

$$Li_5GaO_4 + 2CO_2 \rightarrow 2Li_2CO_3 + LiGaO_2$$
(12)

Initially, Li₅AlO₄ chemisorbs the amount of CO₂ at the surface between 200 and 430 °C. Gallium addition enhances superficial CO₂ chemisorption. However, a completely different behavior is observed at high temperatures (T > 500 °C) during the diffusion controlled CO₂ chemisorption. The CO₂ chemisorption process of Li₅AlO₄ occurs at the lowest temperature (535 °C) and occurs at a faster rate than observed for the other samples. For the other samples, the diffusion controlled CO₂ chemisorption was consecutively hindered as a function of Ga addition as follows: Li₅(Al_{0.8}Ga_{0.2})O₄, Li₅(Ga_{0.8}Al_{0.2})O₄, and Li₅GaO₄. The observed reduction of CO₂ chemisorption can be correlated to the amount of LiGaO₂ produced in each compound. These

results show that diffusion controlled CO_2 chemisorption is highly dependent on the secondary lithium phases produced on the external shell, as in the previous case described above.

Based on all these results and previous reaction models, [17, 21, 35, 52-54] there are potentially several factors that may enhance or limit the CO₂ chemisorption of lithium ceramics. Although there are some papers proposing that the CO₂ chemisorption process depends on CO₂ diffusion [21, 54], the results and interpretation presented here support the idea that lithium diffusion is the key component of the reaction mechanism. The initial lithium phase controls the initial reaction between CO₂ and the lithium ceramic. However, once the external lithium shell is produced, the external shell controls the CO₂ chemisorption process.

The external shell of the lithium ceramic always contains Li_2CO_3 . However, in most cases, Li_2CO_3 is mixed with other secondary phases that may or may not contain lithium. A general scheme for the different possible external lithium shells is presented in Fig. 5. This scheme only applies for cases where Li_2CO_3 is a solid. If the external shell is composed of Li_2CO_3 and a metal oxide (for example, ZrO_2 in the Li_2ZrO_3 case, Fig. 5B), the presence of the metal oxide may reduce the CO_2 chemisorption process in two different ways. CO_2 chemisorption may be inhibited if the metal oxide occupies superficial sites where CO_2 molecules could potentially be initially captured. Alternatively, the metal oxide may produce a barrier for lithium diffusion into the lithium external shell. This type of secondary phase will reduce lithium diffusion both physically and indirectly.

If the lithium external shell is composed of Li_2CO_3 and other lithium-containing phases, the following two scenarios may occur (Fig. 5C, D). The secondary lithium phase or phases may enhance or reduce the lithium diffusion depending on the lithium diffusion capacity of the phase. If the secondary lithium phase has similar or better lithium diffusion properties than Li_2CO_3 , the lithium diffusion process will be improved because the lithium atoms present in the original lithium phase would have more than one material to be transported through. However, if the secondary lithium phase does not possess good lithium diffusion properties, lithium diffusion will not be improved. Even if lithium diffusion is considerably low, this secondary lithium phase may present a similar effect to that observed for the metal oxide case where the lithium diffusion is also hindered.

Finally, it must be emphasized that CO_2 chemisorption of lithium ceramics depends not only on the intrinsic factors analyzed here but also on external factors such as the flow gas where the solid–gas interface may present different regimes [50], the gas composition, variations in CO_2 concentrations [16, 58, 62], and competition from other gases for the lithium ceramic's active sites [48, 49]. One specific topic to be further analyzed is oxygen diffusion because a complete analysis has not been performed on this topic.

diffusion processes controlled by different possible external shell compositions. (A) Lithium diffusion controlled exclusively by Li₂CO₃ in solid state; (B) lithium diffusion controlled by Li₂CO₃, but limited by the metal oxide presence; (C) lithium diffusion controlled by Li₂CO₃, which is reduce by the presence of other lithium secondary phase with a smaller lithium diffusion capacity; (D) lithium diffusion controlled by Li₂CO₃, which is enhanced, at a determined temperature, by the presence of the other lithium secondary phase with a larger lithium diffusion capacity

Fig. 5 Scheme of the lithium

Conclusions

Different lithium ceramics were dynamically tested by TG analysis using a CO_2 flux. All obtained results clearly show that CO_2 chemisorption of lithium ceramics is controlled by various different factors. Initially, CO_2 chemisorption is controlled by the reactivity of the lithium ceramic. However, once the external lithium shell is produced at the surface of the lithium ceramic particles, this external shell controls the CO_2 chemisorption process. The portion of the CO_2 chemisorption controlled by the external shell is usually the larger of the two processes.

 Li_2CO_3 is always present in the external shell but in most cases a mixture of different phases is present. The external phases may or may not contain lithium. When the external shell is composed of Li_2CO_3 and metal oxides, the presence of metal oxides reduces CO_2 chemisorption. If the external lithium shell is composed of Li_2CO_3 and another lithium phase, the CO_2 chemisorption process can be enhanced or decreased depending on the lithium diffusion coefficients of the secondary lithium phases. To elucidate this hypothesis, different solid solutions were prepared and tested. Results showed that the CO_2 chemisorption process is significantly enhanced at temperatures where the lithium secondary phase or phases increased lithium diffusion coefficients when the lithium diffusion coefficients were higher than that of Li_2CO_3 .

Therefore, although there are several factors that determine the CO_2 chemisorption process, the external shell plays a significant role in the process. Consequently, when selecting a lithium ceramic for CO_2 chemisorption, the secondary lithium phase produced should be considered, in addition to the reactivity of CO_2 with the ceramic, because the external shell dictates a significant portion of the CO_2 chemisorption process.

Acknowledgements This work was financially supported by the following projects: ICyT-DF 179/2009 and SENER-CONACYT 150358. J. Ortiz-Landeros and T. L. Ávalos-Rendón thank CONA-CYT for their respective Grants.

References

- Schwartz SE. Uncertainty in climate sensitivity: causes, consequences, challenges. Energy Environ Sci. 2008;1:430–53.
- Orr F M Jr. CO₂ capture and storage: are we ready? Energy Environ Sci. 2009;2:449–58.
- Hasib-ur-Rahman M, Siaj M, Larachi F. Ionic liquids for CO₂ capture-development and progress. Chem Eng Process. 2010;49: 313–22.
- Wang S, Yan S, Ma X, Gong J. Recent advances in capture of carbon dioxide using alkali-metal-based oxides. Energy Environ Sci. 2011;4:3805–19.
- 5. Yu KMK, Curcic I, Gabriel J, Tsang SCE. Recent advances in CO₂ capture and utilization. ChemSusChem. 2008;1:893–9.

- 6. Zhao HY, Cao Y, Lineberry Q, Pan WP. Evaluation of CO_2 adsorption capacity of solid sorbents. J Therm Anal Calorim. 2011;106:199–205.
- Lee KB, Beaver MG, Caram HS, Sircar S. Reversible chemisorbents for carbon dioxide and their potential applications. Ind. Eng. Chem Res. 2008;47:8048–62.
- Zhao C, Chen X, Zhao C. Study on CO₂ capture using dry potassium-based sorbents through orthogonal test method. Int J Greenh Gas Control. 2010;4:655–8.
- Duan Y, Sorescu DC. CO₂ capture properties of alkaline earth metal oxides and hydroxides: a combined density functional theory and lattice phonon dynamics study. J Chem Phys. 2010; 133:074508.
- D'Alessandro DM, Smit B, Long JR. Carbon dioxide capture: prospects for new materials. Angew Chem Int. 2010;49:2–27.
- Lee JM, Min YJ, Lee KB, Jeon SG, Na JG, Ryu HJ. Enhancement of CO₂ sorption uptake on hydrotalcite by impregnation with K₂CO₃. Langmuir. 2010;26:18788–97.
- 12. Du H, Ebner AD, Ritter JA. Pressure dependence of the nonequilibrium kinetic model that describes the adsorption and desorption behavior of CO₂ in K-promoted hydrotalcite like compound. Ind. Eng. Chem Res. 2011;50:412–7.
- Choi S, Drese JH, Jones CW. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem. 2009;2:796–854.
- Wang Q, Luo J, Zhong Z. Armando Borgna, CO₂ capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci. 2011;4:42–55.
- 15. Hedin N, Chen LJ, Laaksonen A. Sorbents for CO_2 capture from flue gas-aspects from materials and theoretical chemistry. Nanoscale. 2010;2:1819–41.
- Nair BN, Burwood RP, Goh VJ, Nakagawa K, Yamaguchi T. Lithium based ceramic materials and membranes for high temperature CO₂ separation. Prog Mater Sci. 2009;54:511–41.
- Pfeiffer H. Advances in CO₂ conversion and utilization. In: Hu YH, editor. ACS symposium series, vol. 1056. Washington, DC: American Chemical Society; 2010. p. 233–53.
- Xiong R, Ida J, Lin YS. Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate. Chem Eng Sci. 2003;58: 4377–85.
- Olivares-Marín M, Castro-Díaz M, Drage TC, Maroto-Valerand MM. Use of small-amplitude oscillatory shear rheometry to study the flow properties of pure and potassium-doped Li₂ZrO₃ sorbents during the sorption of CO₂ at high temperatures. Sep Purif Technol. 2010;73:415–20.
- Pfeiffer H, Bosch P. Thermal stability and high-temperature carbon dioxide sorption on hexa-lithium zirconate (Li₆Zr₂O₇). Chem Mater. 2005;17:1704–10.
- Ida J, Xiong R, Lin YS. Synthesis and CO₂ sorption properties of pure and modified lithium zirconate. Sep Purif Technol. 2004;36: 41–51.
- Nakagawa K, Ohashi T. A reversible change between lithium zirconate and zirconia in molten carbonate. Electrochemistry. 1999;67:618–21.
- Fauth DJ, Frommell EA, Hoffman JS, Reasbeck RP, Pennline HW. Eutectic salt promoted lithium zirconate: novel high temperature sorbent for CO₂ capture. Fuel Process Technol. 2005;86: 1503–21.
- Nair BN, Yamaguchi T, Kawamura H. Processing of lithium zirconate for applications in carbon dioxide separation: structure and properties of the powders. J Am Ceram Soc. 2004;87:68–74.
- Yi KB, Eriksen DØ. Low temperature liquid state synthesis of lithium zirconate and its characteristics as a CO₂ sorbent. Separ Sci Tech. 2006;41:283–96.
- 26. Duan Y. Electronic structural and electrochemical properties of lithium zirconates and their capabilities of CO₂ capture: a

first-principles density-functional theory and phonon dynamics approach. J Renew Sust Energy. 2011;3:013102.

- Duan Y, Zhang B, Sorescu DC, Johnson JK. CO₂ capture properties of M–C–O–H (M = Li, Na, K) systems: a combined density functional theory and lattice phonon dynamics study. J Solid State Chem. 2011;184:304–11.
- Kang SZ, Wu T, Li X, Mu J. Low temperature biomimetic synthesis of the Li₂ZrO₃ nanoparticles containing Li₆Zr₂O₇ and high temperature CO₂ capture. Mater Lett. 2010;64:1404–6.
- Venegas MJ, Fregoso-Israel E, Pfeiffer H. Kinetic and reaction mechanism of CO₂ sorption on Li₄SiO₄: study of the particle size effect. Ind Eng Chem Res. 2007;46:2407–12.
- Okumura T, Enomoto K, Togashi N, Oh-ishi K. CO₂ absorption reaction of Li₄SiO₄ studied by the rate theory using thermogravimetry. J Ceram Soc Jpn. 2007;115:491–7.
- Escobedo-Bretado M, Guzmán-Velderrain V, Lardizabal-Gutierrez D. A new synthesis route to Li₄SiO₄ as CO₂ catalytic/ sorbent. Catal Today. 2005;107:863–7.
- Essaki K, Kato M, Uemoto H. Influence of temperature and CO₂ concentration on the CO₂ absorption properties of lithium silicate pellets. J Mater Sci. 2005;18:5017–9.
- 33. Khomane RB, Sharma B, Saha S, Kulkarni BD. Reverse microemulsion mediated sol-gel synthesis of lithium silicate nanoparticles under ambient conditions: Scope for CO₂ sequestration. Chem Eng Sci. 2006;61:3415–8.
- Wang K, Guo X, Zhao P, Wang F, Zheng C. High temperature capture of CO₂ on lithium-based sorbents from rice husk ash. J Hazard Mater. 2011;189:301–7.
- Kato M, Nakagawa K, Essaki K, Maezawa Y, Takeda S, Kogo R, Hagiwara Y. Novel CO₂ absorbents using lithium-containing oxide. Int J Appl Ceram Technol. 2005;2:467–75.
- Kato M, Yoshikawa S, Nakagawa K. Carbon dioxide absorption by lithium orthosilicate in a wide range of temperature and carbon dioxide concentrations. J Mater Sci Lett. 2002;21:485–7.
- Tsumura N, Kuramoto A, Shimamoto Y, Aono H, Sadaoka Y. Thermal stability of sodium aluminum silicates with alkali carbonates. J Ceram Soc Jpn. 2005;113:269–74.
- Gauer C, Heschel W. Doped lithium orthosilicate for absorption of carbon dioxide. J Mater Sci. 2006;41:2405–9.
- Korake PV, Gaikwad AG. Capture of carbon dioxide over porous solid adsorbents lithium silicate, lithium aluminate and magnesium aluminate at pre-combustion temperatures. Front Chem Eng China. 2011;5:215–26.
- Yamaguchi T, Niitsuma T, Nair BN, Nakagawa K. Lithium silicate based membranes for high temperature CO₂ separation. J Membr Sci. 2007;294:16–21.
- Mejía-Trejo VL, Fregoso-Israel E, Pfeiffer H. Textural, structural and CO₂ chemisorption effects produced on the lithium orthosilicate by its doping with sodium (Li_{4-x}Na_xSiO₄). Chem Mater. 2008;20:7171–6.
- Ueda S, Inoue R, Sasaki K, Wakuta K, Ariyama T. CO₂ absorption and desorption abilities of Li₂O–TiO₂ compounds. ISIJ Int. 2011;51:530–37.
- Palacios-Romero LM, Pfeiffer H. Lithium cuprate (Li₂CuO₂): a new possible ceramic material for CO₂ chemisorption. Chem Lett. 2008;37:862–3.
- Palacios-Romero LM, Lima E, Pfeiffer H. Structural analysis and CO₂ chemisorption study on non-stoichiometric lithium cuprates (Li_{2+x}CuO_{2+x/2}). J Phys Chem A. 2009;113:193–8.
- Kato M, Essaki K, Nakagawa K, Suyama Y, Terasaka K. CO₂ absorption properties of lithium ferrite for application as a hightemperature CO₂ absorbent. J Ceram Soc Jpn. 2005;113:684–6.
- Togashi N, Okumura T, Oh-ishi K. Synthesis and CO₂ absorption property of Li₄TiO₄ as a novel CO₂ absorbent. J Ceram Soc Jpn. 2007;115:324–8.

- Ávalos-Rendón TL, Pfeiffer H. Evidence of CO₂ chemisorption at high temperature in lithium gallate (Li₅GaO₄). Chem Lett. 2011;40:504–5.
- Martinez-dlCruz L, Pfeiffer H. Effect of the oxygen addition on the thermokinetic properties of CO₂ chemisorption on Li₂ZrO₃. Ind Eng Chem Res. 2010;49:9038–42.
- Martinez-dlCruz L, Pfeiffer H. Towards understanding the effect of water sorption on lithium zirconate (Li₂ZrO₃) during its carbonation process at low temperatures. J Phys Chem C. 2010;114:9453–8.
- Mosqueda-Rodríguez R, Pfeiffer H. Thermokinetic analysis of the CO₂ chemisorption on Li₄SiO₄ by using different gas flow rates and particle sizes. J Phys Chem A. 2010;114:4535–41.
- Ávalos-Rendón TL, Pfeiffer H. Thermochemical capture of carbon dioxide on lithium aluminates (LiAlO₂ and Li₅AlO₄): a new option for the CO₂ absorption. J Phys Chem A. 2009;113:6919–23.
- Nakagawa K, Ohashi T. A novel method of CO₂ capture from high temperature gases. J Electrochem Soc. 1998;145:1344–6.
- López-Ortiz A, Perez-Rivera NG, Reyes-Rojas A, Lardizábal-Gutiérrez D. Novel carbon dioxide solid acceptors using sodium containing oxides. Sep Sci Technol. 2004;39:3559–72.
- Ida J, Lin JYS. Mechanism of high-temperature CO₂ sorption on lithium zirconate. Environ Sci. Technol. 2003;37:1999–2004.
- Mosqueda HA, Vazquez C, Bosch P, Pfeiffer H. Chemical sorption of carbon dioxide (CO₂) on lithium oxide (Li₂O). Chem Mater. 2006;18:2307–10.
- Nakagaki T. Enhanced hydrogen production process from coal integrated with CO₂ separation using dual chemical looping. Energy Procedia. 2011;4:324–32.
- Yin XS, Zhang QH, Yu JG. Three-step calcination synthesis of high-purity Li₈ZrO₆ with CO₂ absorption properties. Inorg Chem. 2011;50:2844–50.
- Yin XS, Song M, Zhang QH, Yu JG. High-temperature CO₂ capture on Li₆Zr₂O₇: experimental and modeling studies. Ind Eng Chem Res. 2010;49:6593–8.
- Olivares-Marín M, Drage TC, Maroto-Valer MM. Novel lithiumbased sorbents from fly ashes for CO₂ capture at high temperatures. Int J Greenh Gas Control. 2010;4:623–9.
- Seggiani M, Puccini M, Vitolo S. High-temperature and low concentration CO₂ sorption on Li₄SiO₄ based sorbents: Study of the used silica and doping method effects. Int J Greenh Gas Control. 2011;5:741–8.
- Yin XS, Li SP, Zhang QH, Yu JG. Synthesis and CO₂ adsorption characteristics of lithium zirconates with high lithia content. J Am Ceram Soc. 2010;93:2837–42.
- Xiao Q, Liu Y, Zhong Y, Zhu W. A citrate sol-gel method to synthesize Li₂ZrO₃ nanocrystals with improved CO₂ capture properties. J Mater Chem. 2011;21:3838–42.
- Ochoa-Fernández E, Rønning M, Grande T, Chen D. Nanocrystalline lithium zirconate with improved kinetics for high-temperature CO₂ capture. Chem Mater. 2006;18:1383–5.
- 64. Ochoa-Fernández E, Rønning M, Grande T, Chen D. Synthesis and CO_2 capture properties of nanocrystalline lithium zirconate. Chem Mater. 2006;18:6037–46.
- 65. Ochoa-Fernández E, Rønning M, Yu X, Grande T, Chen D. Compositional effects of nanocrystalline lithium zirconate on its CO₂ capture properties. Ind Eng Chem Res. 2008;47:434–42.
- 66. Pannocchia G, Puccini M, Seggiani M, Vitolo S. Experimental and modeling studies on high-temperature capture of CO₂ using lithium zirconate based sorbents. Ind Eng Chem Res. 2007;46: 6696–706.
- Veliz-Enriquez MY, Gonzalez G, Pfeiffer H. Synthesis and CO₂ capture evaluation of Li_{2-x}K_xZrO₃ solid solutions and crystal structure of a new lithium-potassium zirconate phase. J Solid State Chem. 2007;180:2485–92.
- 68. Hrycak MB, McKenna DB, U.S. Patent, 2004, No. 60/539343.

- Matsukura Y, Okumura T, Kobayashi R, Oh-ishi K. Synthesis and CO₂ absorption properties of single-phase Li₂CuO₂ as a CO₂ absorbent. Chem Lett. 2010;39:966–7.
- Pfeiffer H, Vazquez C, Lara VH, Bosch P. Thermal behavior and CO₂ absorption of Li_{2-x}Na_xZrO₃ solid solutions. Chem Mater. 2007;19:922–6.
- Pasierb P, Gajerski R, Komornicki S, Rekas M. Structural properties and thermal behavior of Li₂CO₃-BaCO₃ system by DTA, TG and XRD measurements. J Therm Anal Calorim. 2001;65:457–66.
- McMurdie HF, Morris MC, Evans EH, Paretzkin B, de-Groot JH, Hubbard CR, Carmel SJ. Natl Bur Stand (U.S.). Monogr. 1970; 25:42.
- 73. Inoue R, Ueda S, Wakuta K, Sasaki S, Ariyama T. Thermodynamic consideration on the absorption properties of carbon dioxide to basic oxide. ISIJ Int. 2010;50:1532–8.

- 74. Kato M, Nakagawa K. New series of lithium containing complex oxides, lithium silicates, for application as a high temperature CO₂ absorbent. J Ceram Soc Jpn. 2001;109:911–4.
- Mizusaki J, Tagawa H. Lithium carbonate as a solid electrolyte. Solid State Ion. 1992;53–56:791–800.
- Mishra KM, La AK, Haque FZ. Ionic and electronic conductivity in some alkali vanadates. Solid State Ion. 2004;167:137–46.
- 77. Claus S, Kleykamp H, Smykatz-Kloss W. Phase equilibria in the Li₄SiO₄-Li₂SiO₃ region on the pseudobinary Li₂O-SiO₂ system. J Nucl Mater. 1996;230:8–11
- Thangadurai V, Weppner W. Solid state lithium ion conductors: design considerations by thermodynamics approach. Ionics. 2002; 8:281–92.