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Experiments were conducted to study the properties of bubbly flows in elastic fluids with nearly constant
viscosity (Boger-type fluids). The effect of gas volume fraction was investigated by injecting bubbles with
a narrow size distribution in a vertical column filled with the test fluid. It was found that the dispersion of
bubble changes dramatically depending on the bubble size: if the diameter of the bubbles is small, large
vertical clusters are formed; on the other hand, the bubble assembly rises in a dispersed manner if the
bubble size is increased. To understand the condition for which agglomeration occurs two additional
experiments were conducted: the interaction of two side-by-side bubble chains was analyzed; and,
the unsteady behavior of the first normal stress difference was studied in a rheometric flow. These anal-
ysis suggest that there is a process of accumulation of elastic stress. When the accumulated elastic stress
surpasses the viscous repulsive stress, aggregation can occur. Interestingly, the critical diameter at which
the bubble dispersion was observed to occur is close to that for which the velocity of an isolated bubble
becomes discontinuous: the so-called bubble velocity discontinuity. This suggests that both phenomena
share the same fundamental nature. We attributed the change of behavior to the modification of the gas–
liquid interface.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The elasticity is a property that dramatically changes the
character of a flow; it challenges the common sense of inertial
and viscous effects observed in Newtonian fluids. The stretching
that polymer molecules experience when they are subjected to
flow can produce, in a macroscopic scale, a negative wake behind
cylindrical or spherical bodies [1–4], abrupt changes in the vol-
ume–velocity relation of free rising bubbles [5] and aggregation
of settling spheres [6,7], to mention a few. In particular, the discon-
tinuity observed in the volume–velocity relation for single bubbles,
not seen in inelastic fluids, and the formation of a negative wake in
the rear part of the bubble, constitute two topics that have led to
many experimental and computational studies aimed to explain
the appearance and relation of these two phenomena [3,4,8–14].
There have been two main explanations of the origin of the velocity
jump. The first one, which we can call the surface-active agents
mechanism, claims that the jump is triggered by a sudden libera-
tion of polymer molecules (or other molecules with surface activ-
ity) from the bubble surface. Therefore, this mechanism proposes a
sudden change on the bubbles surface: from a rigid to a free sur-
face or slip condition [5,8,15–17]. The fact that solid particles do
not present a velocity jump [9], although they can present a
negative wake, supports this hypothesis. Depending on the con-
ll rights reserved.
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centration of contaminants or surfactants in the liquid bulk, the
change of the boundary conditions can happen either by a sudden
change of the intrinsic surface rheology (or, as conceived by Zana
and Leal [15], by a rupture of an elastic membrane made by the
polymer molecules); or by removal of the surface tension gradient
(Marangoni stresses) imposed by a concentration gradient of the
adsorbate throughout the bubble surface [16,18,19]. The second
explanation, the hydrodynamic mechanism, proposes that the
jump is produced by the formation of a negative wake [3,13,14]
which causes an action–reaction effect on the bubble velocity. This
explanation took importance since the velocity jump was observed
to occur at the same bubble volume at which the negative wake
appear in shear-thinning viscoelastic fluids [3]. The shear-thinning
properties of the fluid additionally contribute to the magnitude of
the velocity jump, H = Uafter/Ubefore, where U is the velocity of the
bubble either before or after the velocity jump [5]. The velocity dis-
continuity and negative wake seen in viscoelastic fluids have also
been related with the formation of a sharp cusped end on the bub-
ble surface since the three phenomena appear at the same critical
bubble volume Vcrit [3,4,10]. In another context, lateral motion of
moving bodies due to normal elastic stresses have also shown to
bear some relation with the boundary conditions at the interface.
Joseph et al. [6], for example, reported that two abreast particles
can experience attraction when moving in viscoelastic fluids if
the initial separation between them is below a critical one. On
the other hand, Sullivan et al. [20] observed that transverse insta-
bilities can occur in bubbles traveling in viscoelastic channel flows
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as long as the gas–liquid interface is immobilized by the addition
of surfactants, otherwise, the slip condition will reduce the normal
stresses generated in the liquid by shear deformation.

Motivated by the fact that most of the studies in non-Newto-
nian bubbly flows have been conducted using shear-thinning vis-
coelastic fluids [21,22], the objective of the present work is to
study the relation between the single bubble kinematics with the
collective behavior of many bubbles rising in Boger-type fluids,
i.e., discarding the shear-thinning effects. We recently found that,
for the case of shear-thinning inelastic fluids, the bubbly flow
develops strong clustering in a passive way depending on the Rey-
nolds and Eötvös numbers of individual bubbles [21,22]. The pres-
ent paper is organized as follows: in Section 2 some relevant
dimensionless numbers are revised concerning the single bubble
motion, the experimental setup is presented in Section 3, the re-
sults section is divided in two parts: Section 4.1 for single bubbles
and Section 4.2 for the bubble-swarm experiments. In Section 5 we
discuss the origin of the velocity jump discontinuity seen in the
single bubble experiments and the effect that this phenomenon
may have on the dispersion of bubbly flows. The effects of the
accumulation of normal forces due to the consecutive passage of
bubbles in the dispersive character of bubbly flows is also dis-
cussed here by studying the interaction of two parallel bubble
chains and the unsteady behavior of the first normal stress differ-
ence. The conclusions are presented in Section 6.

2. Dimensionless numbers

Before we describe the experimental study, we would like to
briefly discuss the relevant numbers for this investigation. One
important aspect in the study of single bubbles rising in viscoelas-
tic fluids has been the estimation of the critical bubble size at
which the velocity jump occurs [5]. Since the balance between
the elastic, viscous and surface forces plays a significant role in
the bubble final shape and surface conditions, most of the
researchers have used a combination of these forces to define an
appropriate dimensionless number [4,5,12,17,23].

The relevance of the elastic stresses are frequently compared
with the shear stresses using a measure of recoverable shear:

P ¼ N1

2s
ð1Þ

where N1 is the first normal stress difference and s the shear stress.
The 1/2 factor is introduced for convenience, as we will see below.
In the case of infinite extensible elastic fluids with constant viscos-
ity, N1 can be related with the relaxation time of the fluid using the
material function of an Oldroyd-B fluid submitted to steady shear
flow [24]:

k1 � k2 ¼
W1

2go
ð2Þ

where W1 is the first normal stress coefficient (W1 ¼ N1= _c2, _c being
the shear rate), go the zero-shear viscosity of the fluid, k1 and k2 the
relaxation and retardation times of the fluid respectively. Knowing
that k2 = k1gs/go and go = gs + gp for an Oldroyd-B fluid, gs and gp

being the solvent and polymer contribution to the total viscosity,
and considering only the polymer contribution for the steady shear
stress in the stress ratio (gp _c); Eqs. (1) and (2) can be related in or-
der to convert the stress ratio to a characteristic time ratio or Weiss-
enberg number:

Wi ¼ k1 _c ð3Þ

where k1 is equal to

k1 ¼
W1

2gp
ð4Þ
For the case of bubbles rising at small but finite Reynolds num-
bers, an ‘‘effective’’ shear rate can be computed considering the ra-
tio U/rb, U and rb being the terminal velocity and bubble radius
respectively.

The ratio of the viscous and interfacial forces can be estimated
using the capillary number defined as:

Ca ¼ goU
r ð5Þ

where r is the surface tension. Note, however, that a unique value
of the surface tension cannot describe the nature of the velocity
jump according to the surface-active agents mechanism, in particu-
lar when Marangoni stresses are present. Rodrigue et al. [25]
showed that the stress generated at the interface due to the nonuni-
form distribution of the surface tension value can be approximated
considering a surface tension difference Dr = rs � r, where rs

and r are the surface tension value of the solvent and solution
respectively. The viscous and interfacial stresses can be now related
using a surface tension gradient by means of the Marangoni
number:

Ma ¼ Dr
goU

¼ Dr
rbs

ð6Þ

where the characteristic shear rate _c ¼ U=rb has also been
considered.

In order to couple the interfacial stresses with the elastic ones,
Soto et al. [4] proposed to group the dimensionless recoverable
shear with the Capillary number giving the following dimension-
less number:

P1 ¼
4N1

2s
Ca ¼ 2N1rb

r
ð7Þ

On the other hand, Rodrigue et al. [17] proposed a dimension-
less number considering the Capillary, Weissenberg and Marang-
oni numbers in the form:

a ¼ CaWi
Ma

ð8Þ

that is, adding the surface tension difference. Later on, Rodrigue and
De Kee [23] proposed a scaling parameter b to relate the elastic and
surface tension difference with the critical radius via the Bond num-
ber, where the Bond number and the parameter b are defined as:

Bo ¼ qgr2
b

r
ð9Þ

b ¼ r
Dr

� �0:1 srb

r

� �3 r
N1rb

� �
ð10Þ

where q and g are the liquid density and the gravity, respectively.
All the dimensionless numbers and relations mentioned so far

assume that the elastic stresses act on the bubble surface through
shear flow. It is well known, however, that close to the south pole
of the bubble the flow is extensional, so we expect to have a com-
bination of normal forces coming from both flows in the rear part
of the bubble. In this context, Pilz and Brenn [12] used the physical
properties of the fluids grouped in the Morton number and a new
dimensionless number P2 that considers the extensional relaxa-
tion time in order to estimate the critical diameter (in terms of a
critical Eötvös number, Eo = 4Bo). The Morton and P2 numbers
are defined as:

Mo ¼ gg4
o

qr3 ð11Þ

P2 ¼
g1=3kEq1=4

r1=4 ð12Þ

where kE is the extensional relaxation time of the fluid. These
dimensionless numbers were related by means of an empirical
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equation using a non-linear least square method; hence, we expect
that the analysis of Pilz and Brenn will primary serve to compare
fluids with a similar set of physical values.
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Fig. 1. Flow curve of the Boger fluid and the Newtonian reference solution. (–)
Viscosity of the Newtonian fluid: 83% glycerin–water mixture having 9.8 g/l of
MgSO4; (�) viscosity and (�) first normal stress difference of the Boger fluid. Vertical
line: shear rate at which the velocity jump occurs for single bubbles. The dotted line
denotes a power law fitting made to the first normal stress difference in the range of
30 < _c½s�1� < 500.
3. Experimental setup

3.1. Column and bubble generation

The bubble-swarm and bubble-chain experiments were con-
ducted in a rectangular column made of transparent acrylic with
an inner cross section of 5 � 10 cm2. The column was filled with
the test liquid up to a level of 100 or 140 cm measured from the
base plate. The 140 cm level was used for the case of the bubble-
swarm experiments. Three capillary banks were used to produce
different bubbly flows each having a different mean bubble size
(2.1, 3.1 and 4.2 mm). Pure nitrogen was introduced to the column
through the capillary bank via a gas chamber. For the generation of
two parallel bubble chains, the capillary bank and the gas chamber
were replaced by a setup consisting in one capillary inserted
through the bottom of the column, using a sealed feedthrough
(Spectite Series PF), at the center of the base plate, and a second cap-
illary inserted through the side wall, using an elbow and another
feedthrough connector. In this manner the initial horizontal sepa-
ration between bubbles could be varied. The injection rate of the
bubbles (now filled with air) was controlled using a syringe pump
(KDScientific 100L). The details of the capillary banks design can be
seen in [21,22]. Since the gas–liquid mixture showed a prevalent
non-coalescing behavior, the standard deviation of the bubble
diameter was small (around 10% of the mean value), hence a nearly
monodispersed condition was achieved.

The study of single bubbles was conducted in a cylindrical tube
having a diameter D of 9 cm; a detailed description of the device
can be found in [4]. The ratio db/D, db being the bubble diameter,
was in most of the cases less than 0.07. The bubbles were released
1–5 min after each measurement allowing the fluid to relax and
achieve the stagnant condition. The single bubble generator used
in this work form bubbles with an arbitrary volume, i.e., the bubble
volume varies arbitrary in each consecutive experiment. The
repeatability of the measurements was corroborated by the fact
that the volume–velocity curve showed a monotonic tendency in
all the volume range (see Section 4.1).
3.2. Working fluid

In this work we used a Boger-type fluid in order to minimize the
shear-thinning effects. Such fluid was made by dissolving 400 ppm
(0.04 wt.%) of ionic polyacrylamide (Paam, Aldrich 181277,
Mw = 5 � 106 g/mol) in a 80/20 (v/v) glycerin–water mixture. We
added to the solution 9.8 g/l of MgSO4 (2500-01 J.T. Baker) to reduce
bubble coalescence [26]. According to these authors, when salts
form solvation structures with the solvent they reduce the drain-
age of the liquid film that appears when two bubbles become close
to each other. The viscosity of this solution was high enough to de-
velop non-linear viscoelasticity but low enough to allow the gener-
ation of individual bubbles (bubbly flow). The dependence of the
viscosity g and the first normal stress difference N1 with the shear
rate was measured with a TA Instruments AR1000N rheometer hav-
ing a cone-plate geometry (60 mm, 2�, 65 lm of cone truncation).
The flow curves are shown in Fig. 1. The figure also shows the vis-
cosity of a Newtonian reference solution formulated to have the
same viscosity as the Boger fluid. The polymer concentration
parameter c for this fluid, defined as the ratio of the polymer and
solvent contribution to the zero-shear viscosity, c = gp/gs, is 1.27.
The flow index value, calculated by fitting the viscosity data with
the power-law model, is 0.96. A summary of the physical proper-
ties of the Boger fluid is shown in Table 1. The surface tension
was measured with a DuNouy ring (diameter of 19.4mm, KSV Sig-
ma 70). The relaxation time k1 shown in the table correspond to the
inverse of the frequency value at which the dynamic moduli curves
G0 and G00 intersect. The oscillatory moduli were obtained experi-
mentally by a Fourier transform of the stress relaxation curves
measured with an AR-G2 rheometer of controlled stress [21,27].
Although we did not conduct measurements of the extensional
properties for this fluid, the extensional relaxation time can be
estimated using the work of Stelter et al. [28]. They reported the
relaxation times and steady extensional viscosities for several
polymeric solutions using an elongational device. In that work,
the relaxation time was measured from the diameter decrease of
an elongated thread [29] formed between two moving plates, i.e.,
the extensional rate in the liquid is given by its own physical prop-
erties provided that the separation rate between the plates is lar-
ger. We set a value of 0.55 s as the relaxation time, kext, for our
Boger-type fluid according to the data given by these authors for
a similar fluid (400 ppm of nonionic polyacrylamide,
Mw � 9 � 106 g/mol, dissolved in a 80/20 (w/w) glycerin–water
mixture).

3.3. Bubble size and velocity measurement

Bubbles rising in elastic fluids can show a teardrop shape.
Therefore, the second centroid theorem of Pappus was used to
compute the volume V:

V ¼ 2Aprcentroid ð13Þ

where A is the half of the projected area of the bubble, considering
its axis of symmetry, and rcentroid is the length between the axis of
symmetry and the centroid of A. The equivalent diameter db of
the bubbles was estimated using Eq. (13) and the sphere volume
pd3

b=6. The image analysis was made in Matlab�.
The measurement of the bubble vertical velocity was made with

a high speed camera (MotionScope PCI 8000s), using a stationary
frame in the case of single bubbles and bubble swarms, and a mov-
ing frame for the case of bubble chains. For the first case, the ter-
minal velocity was estimated dividing the total displacement of
the bubble in the visualization window (480 � 420 pixels, the pro-
jected area of the bubble representing 2% of the total area) by the
elapsed time between the corresponding images. The image reso-
lution was 11 pixels/mm. For the case of bubbles chains, bubble



Table 1
Physical properties of the Boger fluid. go,a stands for the viscosity of the polyacrylamide dissolved in an aqueous solvent (water) at the same polymer
mass fraction of the glycerin–water solution. This value was used to compute the critical diameter in Eq. (14). The extensional relaxation time kE was
estimated using the results reported by [28]. The viscosity and surface tension measurements were done at a controlled temperature of 23 �C.

q (kg/m3) go (Pa s) r (mN/m) Dr (mN/m) gp/gs go,a (Pa s) k1 (s) kE (s)

1206.7 0.117 55.6 7.38 1.27 0.0047 0.53 0.55

Fig. 3. Typical bubble shape before (left image) and after (right image) the velocity
jump.

Table 2
Properties of the Boger fluid at the critical volume. All the data were calculated using
the average of the values before and after the jump. kcrit was calculated using Eq. (4).

dbcrit (mm) _ccrit (s�1) kcrit (s) Wicrit Ca Bo a Bo/b

3.3 31.5 0.65 20.17 0.11 0.59 1.55 871
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vertical trajectories were followed by the high speed camera
mounted on a vertical rail activated by a DC motor [22]. We took
the images at a speed of 500 frames/s in the stationary frame
and 60/s in the moving frame.

The liquid velocity fields produced by the bubbly flow were
obtained with a standard 2D particle image velocimetry (PIV)
technique; the resulted vector field was composed by 62 � 62
sub-areas, each having a velocity vector.

4. Results

4.1. Single bubbles

The terminal velocity of single bubbles U, as a function of the
volume V, for the Boger fluid and the Newtonian reference solution
is shown in Fig. 2. The presence of a velocity jump discontinuity is
evident (H = 1.3, Vcrit = 19.3 mm3) and is accompanied by the for-
mation of a small cusp at the rear part of the bubble (Fig. 3). The
critical diameter at which the velocity jump occurs together with
other parameters of interest calculated at _ccrit are shown in Table
2. In this case the Wicrit and kcrit were calculated using Eqs. (3)
and (4).

The flow field in the liquid left by a single bubble having a vol-
ume above the critical one is shown in Fig. 4. The velocity field is
characterized by an absence of a negative wake, showing that the
velocity jump is not a result of a change in the flow configuration.
This feature was corroborated for the whole bubble size range
tested in this work (0.35 < V < 180 mm3).

4.2. Bubble swarms

Fig. 5 shows photographs of the typical flows produced by the
three capillary banks at approximately the same Ug for the Boger
and Newtonian solutions. Note that the bubble swarms shown in
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Fig. 2. Single bubble velocity as a function of the bubble volume; (�) Newtonian
fluid; values before (�) and after (h) the velocity jump in the Boger fluid. The
average Reynolds (qUdb/g) and Weber (qU2db/r) number at the critical volume is
2.2 and 0.2 respectively. The dotted-dashed and continuous lines denoted by H and
St, respectively, refers to the Hadamard and Stokes velocities. The horizontal lines
shows the mean bubble volume obtained in the bubbly flows (Section 4.2) for the
small (s, 4.8 mm3), medium (m, 15.6 mm3) and large (l, 38.8 mm3) bubbles.

Fig. 4. Velocity field obtained by PIV of the wake left by the passage of a single
bubble (having a volume above the critical one) in the Boger fluid. V = 71 mm3. The
Reynolds and Weber number are 8 and 1.8 respectively. The lines show some of the
flow streamlines. The center of the bubble is located at (0,0). The grid coordinates
were normalized with the bubble radius.
Fig. 5a–c have a volume below the critical one, according to
Fig. 2, while the bubbles shown in Fig. 5d–e correspond to the
V > Vcrit case. Unlike the Newtonian case, the bubbles with V < Vcrit

form vertical clusters in the Boger fluid which in time evolve into a
single large vertical cluster, hence, leaving the rest of the column
for the liquid circulation. The gas segregation cause a rapid fall of
the gas fraction and an increase of the mean bubble swarm velocity
USW with respect to that of a single one, USI (USW/USI � 9). For the
case when V > Vcrit, the bubbles disperse, as shown in Fig. 5d. In this
case the gas fraction was increased up to a value of 0.75% produc-
ing only a slight increase in the velocity ratio (USW/USI � 1.3).
Fig. 5e shows a zoom of the large bubbles (V > Vcrit). We can see
that a small cusp is formed in the south pole of the bubbles. As



(a) Newtonian fluid, small bubbles V = 4.8mm3,
Φg=0.66%

(b) Boger fluid, small bubbles V < Vcrit , Φ ≈
0.5%, V = 4.8mm3

(c) Boger fluid, medium bubbles V <
Vcrit , Φ ≈ 0.5%, V = 15.6mm3

(d) Boger fluid, large bubbles V > Vcrit , Φ =
0.6%, V = 38.8mm3

(e) zoom of (d)

Fig. 5. Bubbly flow pictures of the Newtonian and Boger fluids taken at a similar gas volume fraction. The size of the pictures are about 5 � 3 cm for (a), 8 � 5 cm for (b) and
(d), 2.6 � 2.3 for (c) and 1.7 � 1.1 cm for (e). The gas volume fractions for the (b) and (c) cases correspond to the values measured at the beginning of the bubbly flow.
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mentioned previously, such cusped end shape has been related
with a possible change of the interface mobility and cleansing of
the bubble interface at the critical volume [4,5].
5. Discussion

5.1. Effects of the velocity jump discontinuity

In the following, we will discuss the causes of the velocity jump
seen in the single bubble experiments and then the effects that it
can have on the dispersive character of the bubbly flow.

The explanation of the origin of the velocity jump in this fluid
must be closer to the surface-active agents hypothesis. First of all,
the velocity discontinuity is not a ‘jump’ in the sense of increase
but in the sense of a velocity recovery. In Fig. 2 it can be seen that
after the jump, the velocity values become closer to the Newtonian
ones, suggesting that a partial release of the extra stress component
(elastic) is occurring on the bubble surface. Interestingly, the ratio of
velocities after and before the jump is 1.3, i.e., close to the theoret-
ical Hadamard–Stokes ratio (1.5). Secondly, this fluid has a surface
tension difference of Dr = rs � r = 62.98 � 55.6 = 7.38 mN/m,
revealing that the polyacrylamide used has surface activity. The
critical diameter, dbcrit, could not be predicted according to the Cap-
illary (Ca = 1) and Bond (Bo = 1) criteria (see Table 2 and Rodrigue’s
paper [5]). The dimensionless P1 number, proposed by [4], was also
unable to predict the correct value. The dimensionless number a
and the scaling parameter b, which take into account the surface
tension difference, predicted a critical diameter close to the exper-
imental one. At a = 1, i.e., the hypothetical value at which the veloc-
ity jump occurs [17], the corresponding diameter deviates 8% from
the experimental value (in contrast, for example, the predicted
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value deviates 31% at Bo = 1). In the case of the parameter b, Rodri-
gue and De Kee [23] noted that the velocity jump occurs when Bo/
b � 1300. In our case the jump occurred at Bo/b � 1000.

We also computed the critical diameter using the dimensionless
number P2 proposed by [12] and their empirical equation:

Eocrit ¼ 5:4801
P2 � 9:93810:9087

Mo0:3268

go;a

go

� �1:2144 ½go�
½ga�

� �1:4389

ð14Þ

where Eocrit is calculated using the critical diameter, go,a and go are
the zero shear viscosities of the aqueous and non-aqueous solutions
at the same polymer mass fraction (see Table 1), [go] and [ga] are
the intrinsic viscosities of the non-aqueous and aqueous solutions
respectively. The intrinsic viscosity is defined as [g] = limu?0(g �
gs)/gsu, where g is the viscosity of the solution, gs the viscosity of
the solvent and u the volume fraction of the solute in the solution
(the density of the polyacrylamide powder is 0.75 g/ml according to
product specifications). Since we have all the physical data, the crit-
ical diameter (using Eq. (14)) was calculated: 2.82 mm against the
real value of 3.3 mm, representing a deviation of 15%. Such agree-
ment encourage the use of Eq. (14), which consider the extensional
properties of the fluids. We need to point out that the present form
of Eq. (14) do not permit a clear understanding of the interplay be-
tween the extensional properties of the fluids and the boundary
conditions at the interface. It is also not surprising that our results
are similar to the ones given by [12] since both works employed
similar fluids.

Besides comparing the critical size obtained in this work with
the available criteria found in the literature, we also need to in-
clude a note regarding the computation of the critical size itself
according to these criteria. The issue of computing dimensionless
numbers that include normal stress differences, such as P1 or b,
is that the onset of the non-linear viscoelastic response often oc-
curs at the same shear rate at which the velocity jump occurs
(see Fig. 1 and [3,4]), implying that N1 may not be measurable
yet at these shear rates. In view of these experimental limitations,
some authors have considered different ways to extend the N1

curve to low shear rates. For example, Soto et al. [4] used a consti-
tutive equation (Bautista–Manero–Puig Model), while Rodrigue
and De Kee [23] employed oscillatory moduli to calculate steady
state data. We can expect then that agreement with the critical size
criterium proposed by each of these authors will be also linked to
the specific model employed. In this work, the first normal stress
difference N1 at the critical shear rate was directly taken from
the flow curve (Fig. 1).

Once we have highlighted the importance of the gas–liquid
interface changes in the kinematics of single bubbles, we now ana-
lyze if such changes can actually modify the dispersive character of
bubbly flows rising in Boger fluids.

We saw in the results that vertical bubble clusters can be
formed if the liquid experience consecutive deformations due to
the passage of bubbles. What is intriguing here is that the gas dis-
persion happens in a narrow range of bubble sizes (3.1–4.2 mm).
Liu and Joseph [30] have shown that the transition from viscoelas-
tic to inertia dominated flows can occur in a narrow range of Rey-
nolds numbers due to the pressure redistribution around rigid
objects (the elastic forces are compressive in nature [31]). That is
why elongated bodies can turn their relative orientation (from ver-
tical to broadside-on) when the Reynolds number is typically high-
er than one (supercritical speeds). In our case, there are some
experimental facts suggesting that this mechanism does not ap-
plies to the clustering-dispersion transition shown here. First, in
order to observe lateral attraction between two rigid spheres when
viscoelasticity dominates the flow, as in [6], or vertical alignment
of elongated bodies, as in [30], the relaxation time of the Maxwell
unit must be greater than the retardation time of the parallel dash-
pot, that is, k2� k1, or equivalently, gs/go� 1. This is not the case
for the Boger-type fluid used here in which k2 ¼ Oðk1Þ. The weak
elastic response of our Boger type fluid was corroborated by addi-
tional experiments (not shown here) designed to follow the trajec-
tory of just two bubbles rising side-by-side having a close initial
distance (d/db 	 3.7, d being the separation distance between bub-
ble centers). In that particular case, we did not observed attraction
between bubbles having the size range studied here. The difficulty
in relating the formation of long vertical chains at supercritical
speeds or the bubble dispersion with the increase of inertia can
also be shown by considering the different Reynolds numbers of
the flows. For example, the Reynolds number reached by the clus-
tered case seen in Fig. 5c is around 7, while the unclustered case
formed by the large bubbles (Fig. 5d) is 5.3, that is, the opposite
of what we would expect if inertia overpasses viscoelastic stresses.

Besides the Reynolds criterium, Liu and Joseph noticed that the
orientation change of elongated bodies also occurs when the Mach
number M = (U/C) is around one, C being the shear wave speed and
equal to

ffiffiffiffiffiffi
g

qk1

q
. In our case, we do not dispose shear wave speed data

of the Boger-type fluid used here measured with the technique
prescribed by [30]. If we use instead the relaxation time given by
Eq. (4) to compute C, we will obtain a Mach number of 3.5 and
5.1 for the clustered (small bubbles) and disperse (large bubbles)
flows respectively, and a shear wave speed of around 3 cm/s (the
value of C of the polyacrylamide solution used by [30] was
16.7 cm/s). Once again, the Mach criterium is not sufficient to ex-
plain the clustering-disperse transition described here.

The other explanation that we can address for the bubble dis-
persion is the change of the gas–liquid interface. Indeed, we can
see that the corresponding bubble sizes for the clustered and dis-
perse cases (2.1 and 3.1 for the former and 4.2 for the latter, see
Fig. 2 for reference) are below and above the critical diameter
(3.3mm) for which single bubbles experience the velocity jump
discontinuity. In Section 4.1 we showed that the velocity curve of
the Boger fluid, compared with the Newtonian one, indicates a par-
tial release of the extra elastic force from the bubble interface. In
this context, we can argue that the dispersion observed in the bub-
bly flow is a result of the decrease of the normal forces exerted on
the bubbles due to a change of the boundary properties, therefore,
decreasing lateral migration and bubble clustering. The last ques-
tion that remains for us to clarify is therefore how does the accu-
mulation of normal stresses due to the consecutive passage of
bubbles leads to the formation of bubble pairing, and, subse-
quently, bubble clustering.

5.2. Effects of the accumulation of elastic stresses

In order to investigate the accumulation of stresses in the fluid
due to the semi-continuous deformation applied by the passage of
bubbles, we released two parallel bubble chains (individual bub-
bles with V < Vcrit) in the rectangular bubble column having an ini-
tial horizontal separation distance of 1 cm (this was the smallest
separation distance we could achieved with the present experi-
mental setup). Fig. 6 shows pictures of two bubble chains released
in the Boger-type fluid for two different values of the injection rate
(1/T): 60 ml/h (T = 0.17 s) and 130 ml/h (T = 0.08 s), respectively, T
being the injection period between consecutive bubbles.

In the first case we can see that there is no visible attraction be-
tween bubbles coming from different chains, although there is some
interaction between bubbles located in the same chain. Such bubble
in-line interactions have also been observed in Newtonian flows
[32]. When the injection period is decreased (Fig. 6c and d), some
bubble interaction between chains begins to occur. This indicates
the appearance of compressive forces which leads the union of
two abreast bubbles. Note that for two spherical bodies moving
side-by-side at low Reynolds numbers the force is repulsive due



(a) 60ml/ h,
t=0s

(b) 60ml/ h,
t=2.8s

(c)130ml/h,
t=0s

(d)130ml/h,
t=2.8s

Fig. 6. Bubble chains produced at different gas flow rates with bubbles having a
V < Vcrit. Separation between bubbles chains: 1 cm; db = 2.1 mm, Re � 2.3. The
numbers in the figure denotes the position of two bubbles at different times.
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value of the abscissa is less than kgrowth/tb = 57.
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to converging streamlines [33]. We can argue then that there is a
gradual accumulation of normal elastic stress due to the consecu-
tive passage of bubbles. Such accumulative process was first sug-
gested by Li and coauthors [34]. These authors performed a series
of experiments in order to simulate the consecutive passage of bub-
bles through a fluid and measure the shear stresses forming on it (a
methodology coined as ‘‘rheological simulations’’). In this work the
same methodology was employed to see if the Boger-type fluid was
also capable, as the fluids employed by these authors, to show resid-
ual stresses. It turned out that the viscosity of the Boger fluid was
not sufficiently high to generate residual shear stresses that allow
us to distinguish differences between this fluid and its Newtonian
counterpart. We decided then to conduct unsteady measurements
of the first normal stress difference, N1. A controlled-deformation
rheometer (ARES-RFS III, TA Instruments USA) was programmed to
apply a steady shear rate to a fluid sample using the cone-plate
geometry, starting from rest. The shear rate corresponded to that
of a bubble ascending freely ( _c ¼ U=r ¼ 72:3 s�1, U being the verti-
cal bubble velocity for the case presented in Fig. 6c). The evolution
of N1 was determined throughout the process until a steady state
was reached. After a certain time, the deformation was stopped to
also determine the relaxation of N1 with time. Fig. 7 shows the N1

values normalized by the steady state value as a function of time.
The increasing values of N1 in the initial phase can be fitted to

an empirical saturation equation of the form:

N1 ¼
Nmaxðt � toÞ

kgrowth þ t � to
ð15Þ

where Nmax is the maximum steady N1 value reached by the initial
slope before the overshoot; kgrowth is the time for which the Nmax/2
value is reached and to is the reference time (when N1 has a zero va-
lue). On the other hand, the relaxation curve can be modeled con-
sidering an exponential decay equation:

N1 ¼ Nin
P2
i¼1

aie�ðt�tinÞ=ki

� �
ð16Þ

where Nin is the initial value at the time tin at which the shear defor-
mation is stopped, ki are the relaxation times and ai are constants.
Assuming that the unsteady stress profile is the same whether or
not the steady state has been reached, the accumulation of normal
stress due to the consecutive passage of the bubbles can therefore
be approximated using these two equations alternately and consid-
ering the values of the injection period T and the characteristic bub-
ble time tb ¼ 1= _c. For instance, Eq. (15) is used until the time tb is
reached, then we continue computing the stress with Eq. (16) mak-
ing tin = tb until the time tb + T is reached. After this, we use Eq. (15)
again (updating the to value) up to a time 2tb + T and so on. Fig. 8
shows the rheometric values of the normal stress difference in the
form N1/Nsteady as a function of the normalized time t/tb together
with two curves obtained from Eqs. (15) and (16). The value of
the repulsive stress produced by the converging streamlines in be-
tween two spherical bodies is also shown in Fig. 8 according to the
equation proposed by Vasseur and Cox [33]:

SL ¼ �
9
2
gUðdd
Þ�1 2� ðd
 þ 2Þe�1

2d



h i
ð17Þ

where d is the separation distance between bubble centers and
d⁄ = qdU/g, U being the bubble velocity within the chain. This value
represents the stress that the surrounding liquid must have in order
to drive the union of two bubbles rising side-by-side.
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The dotted curve in Fig. 8 represents the experimental case
showed in Fig. 6c (T � 6tb). For the case of bubbly flows, the T/tb ra-
tio is above the value found for the bubble chains and close to the
T/tb = 1 condition (continuous line in Fig. 8). Note that as the injec-
tion period T approach the characteristic time of the bubble, the
repulsive stresses between bubbles are easily surpassed by the
accumulated normal stresses. This is the reason why we can ob-
serve bubble clustering in the bubbly flows and not in the bubble
chains experiments when the time ratio T/tb is high. We under-
stand that the behavior of bubbly flows, compared with the behav-
ior of bubble chains, is governed by a more complex interaction
between the disperse and continuous phase. A more accurate esti-
mation of the behavior of bubbly flows starting from the behavior
of two bubble chains could be obtained if the former are consid-
ered as a collection of many bubble chains. Finally, note that none
of the curves shown in Fig. 8 representing different time ratios,
including the case when T/tb?1 (single bubble case, black square
in Fig. 8), reach the rheometric steady value of N1. This is an impor-
tant observation since such value is often used in the analysis of
unsteady flows.

We want to mention that the effects of elasticity found in this
work, i.e., that the elastic stresses promote segregation of the dis-
perse phase, contrast with the results found in elastic fluids having
low viscosities values (g 	 4 mPa s). For example, Olivieri et al. [35]
recently found that elasticity can actually stabilize the homoge-
neous regime of bubbly flows produced in water–glycerin mixtures
having 0.1% of polyethylene oxide. Although these authors related
such stabilization to the possible appearance of a negative wake,
we think that the explanation of such effect is not clear yet since
it is impossible that a liquid having such viscosity values could pro-
mote the formation of a flow inversion in the flow field.
6. Conclusions

The size and velocity of bubbles rising in an elastic fluid with
nearly constant viscosity was measured. Different experimental
setups were used to study the rise of one bubble, two parallel bub-
ble chains and bubble swarms. For the case of single bubbles, a
velocity jump discontinuity in the volume–velocity plot was ob-
served without the appearance of a negative wake, showing that
the two phenomena are not always related. When compared with
the single bubble curve obtained for the Newtonian reference solu-
tion, the velocity jump indicates that a partial release of the extra
stress is occurring at the bubble interface. Moreover, the magni-
tude of the velocity jump (1.3) is close to the theoretical ratio of
the Hadamard and Stokes velocities (1.5).

The dispersion of bubble swarms rising in this Boger-type fluid
turns out to changes dramatically depending on the bubble size: if
the diameter of the bubbles is small, large vertical clusters are
formed; on the other hand, the bubble assembly rises in a dis-
persed manner if the bubble size is increased. It was found that
the bubble size at which the gas dispersion occurs is close to the
critical diameter for which the velocity of an isolated bubble be-
comes discontinuous, suggesting that bubble dispersion is due to
a change of the properties of the bubble interface.

Finally, the study of the interaction of two bubble chains rising
side-by-side showed that lateral attraction between bubbles its
also dependent on the injection period between bubbles. This sug-
gest that an accumulative process of elastic stresses is taking place
which, after certain number of deformations, surpass the repulsive
forces generated by the streamlines of neighboring bubbles.

In view of the results obtained in this work, we can say that the
formation of small bubbles is not always the most efficient way to
increase the mass transfer in viscoelastic flows. Indeed, while in
Newtonian liquids high values of the interfacial area per unit
volume (a) can be generated by injecting small bubbles, in the case
of elastic fluids this will leads to the formation of bubble clusters
and therefore low values of the gas fraction and a. In that case, lar-
ger bubble sizes could be more convenient than small bubble sizes.
In another paper we reported the formation of clusters in shear-
thinning inelastic fluids having small bubbles [21]. However, the
driving mechanism is different in both cases.
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