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a b s t r a c t

The nonlinear thermal instability of a thin liquid film falling down a heated wall is investigated. In

particular, the heat conductivity and the thickness of the wall are taken into account. It is found that

these two effects are represented by only one parameter which is the ratio of the nondimensional

thickness of the wall and the nondimensional heat conductivity of the wall, that is d=Qc . The longwave

linear stability is described in a general form with respect to a wide range of values of this parameter in

order to understand the behavior of the thin film. In the nonlinear case, the thin film instability is

investigated in space and time for two examples of time dependent perturbations. The first one is at a

perturbation frequency of 0.5 and the second one is at 2.5. The Reynolds numbers corresponding to the

isothermal maximum growth rate are used and it is shown that they are located at important places of

the k vs. R plane, where k is the wave number and R is the Reynolds number. It is found the important

result that, for any fixed Marangoni number Ma, the increase of the parameter d=Qc stabilizes the flow

and at the same time decreases the nonlinear amplitude of the perturbations.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Thin liquid films falling down walls have been investigated
since many years ago due to their important applications in
coating and heat dissipation problems. It is common in the
literature to find results of their instability assuming from the
onset that the wall is a very good thermal conductor. However, it
is always supposed that the atmosphere on the other side of the
film has different thermal conductivities. This is taken into
account in the Biot number of the free surface, which is a
nondimensional parameter representing the adimensional ratio
of the coefficient of heat transfer times the thickness of the layer
and divided by the thermal conductivity of the fluid. Here, in
contrast to other papers in the literature, the goal is to understand
the influence of the heat conductivity and thickness of the wall in
the nonlinear instability of falling films.

The instability of thin films, investigated in isothermal condi-
tions, has been reviewed by Weinstein and Ruschak [1], Quéré [2]
and Oron et al. [3]. However, Oron et al. [3] also include a review
of the thermal problem. A more recent review on isothermal and
thermal instabilities has been presented by Craster and Matar [4].
The linear instability was investigated for small wave number and
small Reynolds number approximations in a paper by Yih [5]. The
ll rights reserved.
shear soft and hard mode instabilities were investigated by De
Bruin [6]. In order to understand the shear mode, Floryan et al. [7]
investigated the instability for small angles of inclination. An
evolution equation valid for order one Reynolds number was
calculated by Benney [8]. This was solved with a normal mode
approximation by Gjevik [9] who calculated for the first time the
nonlinear curve of subcriticality. The three-dimensional version of
the Benney equation was obtained by Roskes [10]. The relation of
this equation with the Kuramoto–Sivashinsky equation was
demonstrated by Sivashinsky and Michelson [11] for strong sur-
face tension. The Benney equation was solved in space and time
by Dávalos et al. [12] and extended to the case of flow on a
rotating inclined wall by Dávalos and Busse [13]. Many thin films
phenomena have large Reynolds number. Therefore, other
approximate equations have to be calculated under different
assumptions in the scaling. Examples of these efforts are given
in Alekseenko et al. [14,15], Trifonov [16] and Chang [17].

The thermocapillary problem has been investigated by Kelly
and Goussis [18], Kelly et al. [19] and Goussis and Kelly [20] who
made calculations of the thermal and shear modes of instability.
The nonlinear problem was solved numerically by means of a
Benney-type equation by Joo et al. [21] and Joo and Davis [22].
Full numerical analysis for heated films has been investigated by
Krishnamoorthy et al. [23], Ramaswamy [24] and Miyara [25].
Results of experiments on heated falling films have been done by
Al-Sivai et al. [26] using an infrared thermography technique, by
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Zaitsev and Kabov [27] using a 150 mm� 150 mm vertical heated
plate in a vertical plane and by Stadler et al. [28] who were also
interested on the thermal-capillary breakdown. Some theoretical
advances were made by Kalliadasis et al. [29] using the Shkadov
integral-boundary-layer approximation, by Trevelyan and
Kalliadasis [30] making an approximation of large Péclet number,
by Schied et al. [31] investigating the validity domain of the
Benney model equation with Marangoni effects and by Ruyer-
Quil et al. [32] and Schied et al. [33] by means of a gradient
expansion along with a Galerkin projection with polynomial test
functions. The results of the fixed temperature and fixed heat flux
thermal boundary conditions have been compared by Trevelyan
et al. [34]. Scheid et al. [35] obtained results on the thermal
problem in three dimensions with emphasis on the formation of
rivulets. Heat transfer in thin film problems have also been
investigated taking into account the topography of the wall.
Saprykin et al. [36] show in the lubrication approximation the
formation of drops in the troughs of the wavy deformation of the
wall. D’Alessio et al. [37] make a stability analysis of thin films
falling down wavy walls and compare with solutions of the
Navier–Stokes equations and experiments.

The thickness of the wall has been used in the nonlinear problem
of thin films by some authors. Oron et al. [38] only used the
thickness of the wall to eliminate singularities at rupture point in
their problem of thermal and evaporative instabilities. Kabova et al.
[39] used the thickness of the wall to allow for wall deformations in
the side in contact with the liquid film. Gambaryan-Roisman [40]
investigated the Marangoni instability of a liquid layer over a thick
wall with variable thermal conductivity. However, the thickness of
the wall is varied only assuming a relation with the thermal
conductivity nonuniformity. Gambaryan-Roisman and Stephan
[41] investigated the formation of rivulets in thin films flowing
down a heated thick wall with topography and taking into account
the Lennard–Jones potential.

In all the papers above, and to the author best knowledge,
there is no systematic research taking into account the effect of
the conductivity and thickness of the wall on the nonlinear
instability of thin films flowing down. Therefore, the main goal
of the paper is to investigate in detail the nonlinear instability of a
heated liquid film flowing down a thick wall and to determine the
limitations of the model evolution equation of the Benney type,
which will be given presently.

The paper is organized as follows. In the next section, the
perturbed Benney equation is presented including the Marangoni
effects with the influence of the conductivity and thickness of the
wall. In Section 3, numerical solutions of the equation are
presented with illustrative examples corresponding to different
values of the parameters. Sections 4 and 5 are the discussion and
conclusions, respectively.
2. The perturbed Benney equation with Marangoni effects
including the conductivity and thickness of the wall

The nonlinear evolution equation for the thin film is calculated
under the lubrication approximation. In this approximation, it is
supposed that the slope of the free surface waves is very small
and therefore their wavelength is very large with respect to the
wave amplitude. That is, e¼ 2ph0=l51, where the thickness of
the layer is h0 and l is the wavelength. The distances in the
direction perpendicular to the wall and parallel to it are made
nondimensional by means of h0 and l=2p, respectively. This
will allow to make a scaling for the variation in different
directions using e. Time is made nondimensional with
h0l=ð2pnÞ, velocity with n=h0, pressure with rn2=h2

0 and tempera-
ture with DT ¼ ðT0�TambientÞ40. The properties of the fluid are the
kinematic viscosity n and the density r. Here, T0 is the tempera-
ture at the lower face of the wall and Tambient is the temperature of
the ambient atmosphere above the fluid free surface.

The origin z¼0 of the coordinate system is located at the upper
side of the wall in contact with the fluid. If the unperturbed free
surface is set at z¼1, then the perturbed free surface is located at
z¼ 1þHðx,y,tÞ ¼ hðx,y,tÞ. The wall lower face is found at
z¼�d¼�dw=h0, where dw is the thickness of the wall. The thin
film moves down in the x-direction with the y-direction perpen-
dicular to it, like in a right-handed system.

It is assumed that the pressure is p, the velocity components in
the ðx,y,zÞ directions are ðu,v,wÞ, the temperature is T, the angle of
inclination of the wall is b, the Reynolds number is R¼ gh3

0=n2

and the Prandtl number is Pr¼ n=k with k the heat diffusivity.
Then, the scaled Navier–Stokes, continuity and heat diffusion
equations are

eutþeuuxþevuyþwuz ¼�epxþe2uxxþe2uyyþuzzþR sin b, ð1Þ

evtþeuvxþevvyþwvz ¼�epyþe2vxxþe2vyyþvzz, ð2Þ

ewtþeuwxþevwyþwwz ¼�pzþe2wxxþe2wyyþwzz�R cos b, ð3Þ

wz ¼�eux�evy, ð4Þ

PrðeTtþeuTxþevTyþwTzÞ ¼ e2Txxþe2TyyþTzz: ð5Þ

Subindexes x, y, z and t mean partial derivatives. The boundary
conditions are evaluated at the lower face of the wall, at the upper
face of the wall and at the free surface. At the upper face of the
wall, the nonslip condition is

u¼ v¼w¼ 0 at z¼ 0: ð6Þ

The normal stress boundary condition is

�pþ
1

N2
½e3ðuxh2

xþvyh2
y Þþe

3ðuyþvxÞhxhy

�eðvzþewyÞhy�eðuzþewxÞhxþwz�

¼ Ppðx,y,tÞ�
3

N3
S½ð1þe2h2

y Þhxxþð1þe2h2
x Þhyy�2e2hxhyhxy�

at z¼ hðx,y,tÞ, ð7Þ

where N¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þe2h2

xþe2h2
y

q
. The shear stresses are

eðwz�euxÞhx�
1

2
e2ðuyþvxÞhyþ

1

2
ðuzþewxÞð1�e2h2

x Þ

�
1

2
e2ðewyþvzÞhxhy ¼

Ma

Pr
ðeTxþehxTzÞ at z¼ hðx,y,tÞ ð8Þ

and

eðwz�euyÞhy�
1

2
e2ðuyþvxÞhxþ

1

2
ðvzþewyÞð1�e2h2

y Þ

�
1

2
e2ðewxþuzÞhxhy ¼

Ma

Pr
ðeTyþehyTzÞ at z¼ hðx,y,tÞ: ð9Þ

The temperature conditions are

Tw ¼ 1 at z¼�d,

Tw ¼ T and QcdTw=dz¼ dT=dz at z¼ 0 ð10Þ

and

TzþBiT ¼ 0 at z¼ hðx,y,tÞ, ð11Þ

where Tw and T are the temperature distributions in the wall and
the fluid, respectively, and Bi is the Biot number. The ratio of the
wall and fluid heat conductivities is represented by Qc ¼ kw=kf .

The kinematic boundary condition is

w¼ ehtþeuhxþevhy at z¼ hðx,y,tÞ: ð12Þ
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A pressure of the form

Ppðx,y,tÞ ¼ A sin
o
2

t
��� ��� exp½�aðx2þy2Þ� ð13Þ

appears in the normal stress boundary condition equation (7).
This is supposed to be an external pressure due to a turbulent air
jet which strikes periodically at the origin on the free surface. For
applications of a nonoscillating turbulent air jet see Lacanette
et al. [42]. The constants of the pressure pp in Eq. (13) will be
taken as A¼0.0001 and a¼0.05. The magnitudes were selected
because it was found that the film instability is very sensitive to
these parameters. The frequency of oscillation o is divided by two
because a jet has no suction and it will have effect only when it
strikes again on the surface.

Because the surface tension is assumed strong, the nondimen-
sional surface tension number S¼ sh0=ð3rn2Þ is changed into
S¼ e2S when the scaling is used. For the thermal effects in the
liquid, there are two other parameters. They are the Marangoni
number Ma¼ ð�ds=dTÞDTh0=ðrnkÞ and the Biot number
Bi¼Hhh0=kf , where Hh is the coefficient of heat transfer.

The expansion of the variables is made according to the
lubrication approximation. In that sense, the z-component of
the velocity is very slow as seen below:

u¼ u0þeu1þ � � � , v¼ v0þev1þ � � � , w¼ eðw1þew2þ � � �Þ,

p¼ p0þep1þ � � � , T ¼ T0þeT1þ � � � , Tw ¼ Tw0þeTw1þ � � � : ð14Þ

It is assumed that the three components of the velocity, the
pressure and the temperatures of the wall Tw and the fluid T,
depend on ðx,y,z,tÞ. The free surface height h only depends on
ðx,y,tÞ. Then, these expansions are used in all the equations and
the boundary conditions. To zeroth order the results are

p0 ¼�ðz�hÞR cos b�3Sr2hþPpðx,y,tÞ, ð15Þ

u0 ¼�
1
2R sin bzðz�2hÞ, ð16Þ

w1 ¼�
1
2R sin bz2hx, ð17Þ

T0 ¼
Qcð1þBihÞ�BiQcz

Qcð1þBihÞþBid
, Tw0 ¼

Qcð1þBihÞ�Biz

Qcð1þBihÞþBid
, ð18Þ

ht ¼�R sin bh2 @h

@x
at z¼ hðx,y,tÞ: ð19Þ

No more terms of the expansion of T are needed due to the
scaling in the shear stress boundary conditions and therefore only
T0 in Eq. (18) will be used. Its effects will appear in the solutions
at first order.

The results to first order are

u1 ¼
1

24
z ðR sin bÞ2ðz3�4h3

ÞhhxþR sin bð4z2�12h2
Þht

h
þ12ðz�2hÞp0xþ24
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BiðdþQchÞ
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, ð20Þ

v1 ¼
1

2
z ðz�2hÞp0yþ2

Ma
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Qcð1þBihÞþBid

� �
y

" #
, ð21Þ

w2 ¼
1

120
z2 ðR sin bÞ2ðð10h4

�z3hÞhxÞxþR sin bðð30h2
�5z2ÞhtÞx

h
�60

Ma
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1

3
z

� �
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� ��
,

ð22Þ

Notice that r¼ ð@=@x,@=@yÞ is the horizontal nabla operator and
that ht which appears above will be replaced by the zeroth order
approximation of the kinematic boundary condition equation (19).
The above results are substituted in the kinematic boundary
condition at first order to give the following Benney-type equation
for the evolution of the free surface waves of a fluid film flowing
down a wall with finite thickness and thermal conductivity. That is

htþR sin bh2hxþe

8>><
>>:ðR sin bÞ2

2

15
h6hx

� �
x

þ
1

3
r �

2
6664h3
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þ
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3
7775
9>>>=
>>>;
¼ 0: ð23Þ

The above equation reduces to that of Joo et al. [21], but in the
absence of evaporation, when d¼0 and Pp ¼ 0. In their paper [21],
they use the inverse of the Biot number defined here.

The linear version of Eq. (23) can be calculated dropping the
scaling and using h¼ 1þHðx,tÞ, where Hðx,tÞ ¼ A1 exp i½ k

!
�

x
!
�ðiGþoÞt� and A1 is a small constant amplitude. The definitions

of the terms in the exponent are x
!
¼ ðx,yÞ, the wave number

vector k
!

(with magnitude k), the growth rate G and the
frequency of oscillation o. From the results of the imaginary part,
it is found that the phase velocity is c¼o=k¼ R sin b. The real
part gives the growth rate:

G¼ k2 2R2 sin2 b
15

�
1

3
R cos b�k2Sþ

1

6

Ma

Pr

Bi

1þBiþBi
d

Qc

� �� �2

0
BBB@

1
CCCA:

ð24Þ

When the growth rate is zero the curve of criticality is

kc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
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15
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6

Ma

Pr
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1þBiþBi
d

Qc
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0
BBB@

1
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vuuuuuut : ð25Þ

We have shown analytically that the wave number of the
maximum growth rate and that of subcriticality [9] satisfy,
respectively, the relations km ¼ kc=

ffiffiffi
2
p

and ks ¼ kc=2. Notice that
these relations are the same as in the isothermal case. Below the
curve of subcriticality ks, saturation of the perturbation waves is
not expected. The above results can be reviewed as:

kc ¼
ffiffiffi
2
p

km ¼ 2ks ð26Þ

In Fig. 1a, a three-dimensional plot of the function f ðd=Qc ,BiÞ ¼

Bi=ð1þBiþBiðd=QcÞÞ
2 which determines the influence of thermo-

capillary effects on the thin film instability is shown. This function
has a maximum 1=4ð1þd=QcÞ with respect to the Bi at
Bimax ¼ 1=ð1þd=QcÞ. These two reduce to 1=4 and Bimax ¼ 1,
respectively, for the fixed temperature boundary condition at
the wall, which corresponds to d¼0 (or else Qc-1). In this
paper, the Biot number will be fixed at Bi¼0.1 and the function
f ðd=Qc ,BiÞ will depend only on d=Qc , as shown in Fig. 1b, which
represents a section of the surface in Fig. 1a.

The k vs. R curves of criticality, maximum growth rate and
subcriticality are plotted in Fig. 2 for fixed b¼ 901, Pr¼7 and S¼1
and for three different magnitudes of Ma: (a) Ma¼25, (b) Ma¼50,
(c) Ma¼100. The curves are presented for five different magni-
tudes of d=Qc: (1) d=Qc ¼ 0:01, (2) d=Qc ¼ 0:1, (3) d=Qc ¼ 1, (4)
d=Qc ¼ 10, (5) d=Qc ¼ 100. As seen in the figure, the curves of
d=Qc ¼ 0:01 and 0.1 are almost the same.



Fig. 1. (a) Three-dimensional plot of the function f ðd=Qc ,BiÞ ¼ Bi=ð1þBiþ

Biðd=QcÞÞ
2. (b) Here, use will be made of Bi¼0.1 and f ðd=Qc ,Bi¼ 0:1Þ.

L.A. Dávalos-Orozco / International Journal of Non-Linear Mechanics 47 (2012) 1–74
The straight dot-dashed line shown in all the figures in Fig. 2,
is the result of the maximum growth rate of the perturbations in
the isothermal problem. Those lines are important because they
will be used as reference in the numerical analysis of Eq. (23).
Fig. 2. b¼ 901, Pr¼7, S¼ 1, Bi¼0.1. (a) Ma¼25, (b) Ma¼50, (c) Ma¼100.

The solid, dotted and dashed curves correspond to the curves of criticality,

maximum growth rate and subcriticality, respectively. The straight dot-dashed

ones are the maximum growth rate of the isothermal problem used as

reference for numerical results. The numbers in the curves indicate (1)

d=Qc ¼ 0:01, (2) d=Q c ¼ 0:1, (3) d=Q c ¼ 1, (4) d=Qc ¼ 10, (5) d=Qc ¼ 100. The curves

of d=Qc ¼ 0:01 and 0.1 are almost superposed. The hyperbolas k¼o=R are drawn

for o¼ 0:5 and 2.
3. Numerical analysis of the Benney-type Eq. (23)

In this section, Eq. (23) will be analyzed numerically fixing
some of the parameters of the problem. It will be assumed that
the fluid is water and therefore Pr¼7. The surface tension number
is set as S¼1 and the wall is vertical with b¼ 901. The numerical
calculations are done in space and time and the spatial range is
determined starting at x¼�100 and finishing at RDtþ100 (as
found above, the phase velocity is R sin b). Therefore, the product
of the phase velocity by the time interval gives the total space
range of the calculation. The time dependent perturbations due to



Fig. 4. b¼ 901, e¼ 0:1, Pr¼7, S¼1, Bi¼0.1 and Ma¼25. Here, o¼ 2 and R¼2.783

and the calculation time is T¼600. From above to below, the curves represent free

surface perturbations corresponding to d=Qc ¼ 0.01, 0.1, 1, 10 and 100.

Fig. 5. b¼ 901, e¼ 0:1, Pr¼7, S¼1, Bi¼0.1 and Ma¼50. Here, o¼ 0:5 and R¼1.391

and the calculation time is T¼1000. From above to below, the curves represent free

surface perturbations corresponding to d=Q c ¼ 0.01, 0.1, 1, 10 and 100.
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a gas jet are applied at x¼0. Thus, the initial point of spatial
calculation x¼�100 is set to avoid numerical reflection of the
perturbation. The same can be said about the 100 added to the
last point of the spatial calculation.

The Reynolds number and the frequency of oscillation of the
perturbation used in the numerical analysis will always correspond
to the maximum growth rate of the perturbation in the isothermal
case. This will be useful as reference when the Marangoni number is
changed. In this way, the expression ‘‘the system moves’’ will be
used to indicate the relative motion a point has in the dot-dashed
line when Ma increases or d=Qc decreases. For example, if Ma

increases, a great part of the dot-dashed line moves inside the region
of subcriticality and saturation is difficult to attain (see Fig. 2a–c).
Moreover, if at the same time d=Qc decreases, another section of the
dot-dashed line moves inside the region of subcriticality (see how
the dashed lines in Fig. 2a–c increase their height when d=Qc

decreases, from curves 5 to 1).
Two frequencies of oscillation have been selected to under-

stand the behavior of the system when the thickness and thermal
conductivity of the wall are taken into account. They are o¼ 0:5
and o¼ 2. The reason is that for o¼ 0:5, it is easier to the system
to move near the curve of subcriticality when Ma increases, in
comparison with the case o¼ 2. In this sense, the Reynolds
number has a stabilizing effect (see in Fig. 2 the points at which
the hyperbolas k¼o=R for o¼ 0:5 and o¼ 2 cross the dot-
dashed lines of the isothermal maximum growth rate).

The first results, shown in Fig. 3, are for Ma¼25, an external
perturbation frequency o¼ 0:5 and R¼1.391. In this case, the
time of the calculation is T¼1000. From the figure, it is seen that
good convergence is attained for the five values of the parameter
d=Qc. The amplitude of the nonlinear wave increases when d=Qc

decreases. Small wave modulation is seen for the perturbations of
largest amplitude.

For the same Marangoni number but o¼ 2 and R¼2.783, Fig. 4
shows the solution for a time T¼600. It is clear that the amplitude of
the perturbations decreases with the increase of d=Qc , but here it is
not very effective. No modulation is found in all the space interval.

The increase of the Marangoni number to Ma¼50 produces
strong wave modulation as seen in Fig. 5 for o¼ 0:5 and R¼1.391
and time T¼1000. However, this modulation disappears along with
a decrease in amplitude due to the growth of d=Qc. Saturation is
very good.

When the frequency is o¼ 2 and the Reynolds number is
R¼2.783, Fig. 6 shows results for T¼600 and Ma¼50. It is clear
Fig. 3. b¼ 901, e¼ 0:1, Pr¼7, S¼1, Bi¼0.1 and Ma¼25. Here, o¼ 0:5, R¼1.391

and the calculation time is T¼1000. From above to below, the curves represent

free surface perturbations corresponding to d=Qc ¼ 0.01, 0.1, 1, 10 and 100.

Fig. 6. b¼ 901, e¼ 0:1, Pr¼7, S¼1, Bi¼0.1 and Ma¼50. Here, o¼ 2 and R¼2.783

and the calculation time is T¼600. From above to below, the curves represent free

surface perturbations corresponding to d=Qc ¼ 0.01, 0.1, 1, 10 and 100.
from the figure that without the stabilizing effect of d=Qc the
saturation of the perturbation in space is difficult to attain.
Saturation is seen only for d=Qc ¼ 1;10 and 100.



Fig. 7. b¼ 901, e¼ 0:1, Pr¼7, S¼1, Bi¼0.1 and Ma¼100. Here, o¼ 0:5 and

R¼1.391 and the calculation time is T¼1000. From above to below, the curves

represent free surface perturbations corresponding to d=Qc ¼ 0.01, 0.1, 1, 10

and 100.

Fig. 8. b¼ 901, e¼ 0:1, Pr¼7, S¼1, Bi¼0.1 and Ma¼100. Here, o¼ 2 and R¼2.783

and the calculation time is T¼600. From above to below, the curves represent free

surface perturbations corresponding to d=Qc ¼ 0.01, 0.1, 1, 10 and 100.
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A further increase of Marangoni number until Ma¼100 leads
to the results of Fig. 7. Here, o¼ 0:5 and R¼1.391 and the
calculation time is T¼1000. The spatial modulation now extends
up to the magnitude d=Qc ¼ 1. However, very good saturation is
obtained only for d=Qc Z1, magnitudes at which the perturba-
tions amplitudes decrease considerably.

As can be seen in Fig. 8, the increase of the Marangoni number
to a magnitude of Ma¼100 has important consequences when
o¼ 2, R¼2.783 and T¼600. It is found that numerical conver-
gence is very difficult to attain for d=Qc r0:1. However, when
d=Qc Z1 numerical convergence and saturation are very well
satisfied. It is clear that spatial modulation is not present in any of
the numerical solutions.
4. Discussion

The results presented in the figures show that the variation of
d=Qc changes the nonlinear instability of the flow. The increase of
d=Qc means that the thickness of the wall increases with respect
to that of the film, or else, that the thermal conductivity of the
wall is decreasing in magnitude with respect to that of the film.
This increase in d=Qc was shown to be stabilizing because it
decreases the magnitude of the coefficient of the thermocapillary
term, as can be seen in Fig. 1a and b. Therefore, with d=Qc-1 the
nonlinear instability of the flow with Marangoni effects tends to
become the isothermal one. That is the reason why the amplitude
of the time dependent perturbations decreases with respect to
that of d=Qc-0.

Note that the selected values of o¼ 0:5 and R¼1.391 always
remain above the curves of subcriticality for the Marangoni
numbers used here, as seen in Fig. 2a–c. However, when
Ma¼100 the numerical solutions have no saturation for
d=Qc ¼ 0:01,0:1. They were expected to have saturation in this
case because Dávalos-Orozco et al. [12] found saturation below
but near the curve of subcriticality in the isothermal flow.

From Fig. 6, it is clear that saturation is not attained for o¼ 2
and R¼2.783 despite Ma¼50 and d=Qc ¼ 0:01,0:1. This is surprising
because in Fig. 2a–c, the corresponding point is far above the curve
of subcriticality. Then, for this Reynolds number the thermocapillary
effects have a very strong destabilizing effects. Moreover, the results
of Fig. 8 for Ma¼100 show that convergence is very bad when
d=Qc ¼ 0:01,0:1. This means that, in the thermal case, the Benney-
type equation model is not good for these magnitudes of the
Marangoni and Reynolds numbers. Moreover, it is found that the
validity region of that model is more reduced, in the k vs. R plane, in
comparison with the isothermal case (see [12] ).
5. Conclusions

In contrast with papers published before [38–41], here we
present the results related explicitly with the geometry and
thermal properties of the wall. It is shown that the influences of
the thickness of the wall and its thermal conductivity are
important in determining the nonlinear instability of the thin
film flowing down a heated wall. The role played by the ratio d=Qc

has been made clear numerically. A very important result of the
paper is that for large magnitudes of the Marangoni number
nonlinear saturation can always be attained for large enough
magnitudes of d=Qc . In the figures, it is noted that the amplitude
of the perturbations decreases with an increase of d=Qc and
spatial modulation disappears. From the analysis, it is found that
the magnitude of the thermocapillary term decreases when d=Qc

increases and that, for this reason, the nonlinear instability tends
to that of the isothermal problem. Therefore, it is possible to
conclude that to avoid the effect of thermocapillary perturbations
the wall has to have the thermal properties and geometry
corresponding to large d=Qc . In this way, the perturbations
propagating on the free surface will be nearly isothermal.

From the results of the paper, it is concluded that it is
necessary to review the region of validity of the Benney equation,
as done by Scheid et al. [31], in terms of the new parameters of
the heated system. The thermal boundary condition used at the
wall by Scheid et al. [31] was that of fixed temperature. The
stabilizing effects of the thickness and conductivity of the wall are
apparent from the results presented above, and there is the
possibility that these effects are also reflected in the validity of
the Benney equation when the thermal problem becomes nearly
isothermal, even for high temperature differences.
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