
Early Stage of the Development of Quantum Chemistry
Without Spin and Its Recent Applications*

Ilya G. Kaplan

General ideas, on which the quantum chemistry without spin

is based, are discussed. Three important applications of

quantum chemistry without spin are presented in detail: (1)

the methods for finding the molecular spin-multiplets allowed

by the Pauli principle; (2) the symmetry properties of the

electron density that determines the Kohn-Sham equations in

the density functional theory; and (3) the foundations of the

Pauli principle. In particular, it was demonstrated that, on the

one hand, the Pauli exclusion principle cannot be derived from

other fundamental principles of quantum mechanics; on the

other hand, it cannot be considered as a postulate, since all

other symmetry options for the total wave function of

identical particles, except the one-dimensional representations,

are forbidden. VC 2012 Wiley Periodicals, Inc.

DOI: 10.1002/qua.24223

General Idea and Constructions; Some
Historical Reminiscences

In this article, I describe the early stages of the creation of so-

called quantum chemistry without spin and then discuss some

recent applications to the density functional theory (DFT) and

to the foundation of the Pauli exclusion principle, which lays

in the base of quantum mechanics and the theory of the mo-

lecular structure.

Though the concept of spin has enabled to explain the na-

ture of the chemical bond, electron spins are not involved

directly in the formation of the latter. The interactions respon-

sible for chemical bonding have a purely electrostatic nature.

So, the calculations of chemical structure can be carried out

without using the spin variables and this really can be done

due to the separation of space and spin coordinates in the ab-

sence of spin interactions. In this case, the total spin S is a

good quantum number, and the wave functions should be

eigenfunctions of Ŝ2 (in a central field (atoms) this approxima-

tion is known as Russell-Saunders, or LS-coupling). The total

wave function can be represented as a product of a coordi-

nate wave function and a spin wave function. What is impor-

tant is that for the electron system there is a unique corre-

spondence between the permutation symmetry of the

coordinate wave function and the value of total spin, see

below. This explains that why in the absence of spin interac-

tions, the energy of a system of electrons depends on the

value of their total spin S.

The wave function that is antisymmetric with respect to

electron permutations (obeying the Pauli principle) and

describing the state with the total spin S can be constructed

as linear combinations of products of coordinate and spin

wave functions, symmetrized according to the irreducible rep-

resentations C[k] of the permutation group pN
[1–3]

W 1N½ � ¼ 1ffiffiffiffi
fk
p

X
r

U k½ �
r X

~k½ �
~r : (1)

In Eq. (1), [k] is the Young diagram with N cells* and C
~k½ �

denotes the representation conjugate to C k½ �. Its matrix elements

are C
~k½ �

rt
ðPÞ ¼ ð�1ÞpC k½ �

rt ðPÞ, where p is the parity of the permuta-

tion P. The Young diagram ½~k� is dual to k½ �, that is, it is obtained

from the latter by replacing rows by columns. For example,

The sum in Eq. (1) is taken over all the basis functions of

the representation. The factor
ffiffiffiffi
fk
p

arises from the orthogonal-

ity conditions of the total wave function. Since the electron

spin s ¼ 1=2 has only two projections sz ¼ �1=2, the spin Young

diagrams ½~k� cannot have more than two boxes in a column.

That is, each diagram has no more than two rows. Conse-

quently, the coordinate Young diagrams k½ � dual to it cannot

have more than two columns. If in one box of a column in a

spin Young diagram, the electron spin projection is 1=2, then in

the other box of this column the electron spin projection is

�1=2, that is, the spins of these two electrons should be

coupled. It is evident that the contribution to the total spin of

the system will come only from uncoupled electron spins; their
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number equals to the difference between the lengths of

the rows in the corresponding Young diagram, ð~kð1Þ � ~kð2ÞÞ,
and

S ¼ 1

2
ð~kð1Þ � ~kð2ÞÞ: (2)

Formula (2) enables one to easily find the values of the spin,

S, for each spin Young diagram. For example, for the spin

Young diagram above S ¼ 1. Such a one-to-one correspon-

dence between a Young diagram and the total spin is valid

only for particles with spin 1=2. For particles with s [ 1=2 several

values of S may correspond to the permutation symmetry of

given Young diagram, see Classification of Molecular States

section.

Thus, the main idea of quantum chemistry without spin is

to use in the calculations with a spinless Hamiltonian only the

coordinate wave functions whose permutation symmetry is

uniquely connected with the value of the total spin S of the

state. In the case of the absence of the spin-dependent inter-

actions, this approach is quite natural; it allows solving the

problems in an explicit way for states with arbitrary S.

The first application to molecular problems of the method

of coordinate wave functions symmetrized according to the

irreducible representation of the permutation group and,

therefore, corresponding to a definite value of S was done by

Kotani and Siga[4] to study the CH4 molecule. Then Kotani

et al.[5,6] applied this approach to the configuration interaction

calculations of diatomic molecules.

In 1940, Fock,[7] without application of the group theory,

has constructed the coordinate function corresponding to a

definite value of S, which was antisymmetric in two groups

of its arguments and had a special cyclic symmetry. As was

shown by Demkov[8] (see also Section 7–11 in Hamermesh

text-book[9]), Fock’s symmetry corresponds to the symmetry

of a coordinate two-column Young diagram; thus, it corre-

sponds to a spin two-row Young diagram and describes the

state with a definite total spin. Luzanov[10] in a recent inter-

esting publication revisited the Fock approach. He reformu-

lated it using the elegant formalism of the reduced density

matrices.

In 1961, the general method of calculation of the matrix

elements of a Hamiltonian for nuclear and atomic multishell

configurations, based on the coordinate wave functions, was

elaborated in my publications.[11,12] For this, I introduced the

transformation matrices of the permutation groupy and sug-

gested to construct the functions in Eq. (1) using the normal-

ized Young operatorsz

x k½ �
rt ¼

ffiffiffiffiffi
fk
N!

r X
P

C k½ �
rt ðPÞP (3)

where, the summation over P runs over all the N! permutations

of the permutation group pN, C½k�rt (P) are the matrix elements

and fk is the dimension of the irreducible representation C[k].

The application of operator (3) to a nonsymmetrized product

of orthonormal one-particle functions uk (k),

U0 ¼ u1ð1Þu2ð2Þ…uNðNÞ (4)

produces a normalized function

U k½ �
n ¼ x k½ �

n U0 ¼
ffiffiffiffiffi
fk
N!

r X
p

C k½ �
rt ðPÞPU0 (5)

transforming in accordance with the representation C[k] of the

permutation group pN.

In 1963, I applied the methodology[11,12] to molecular sys-

tems[15,16] and then elaborated it in a series of papers[17–19]

where this approach was named as the coordinate function

method. It was systemized and generalized in a monograph,[1]

where the methods of finding of the allowed by the Pauli prin-

ciple molecular spin-multiplets were also presented in detail,

see next Section.

The methodology[1] allows for obtaining the energy matrix

elements for arbitrary electronic configurations in an explicit

compact form. In Ref. [20], the energy matrix elements were

obtained for an arbitrary configuration of nonorthogonal orbi-

tals in the state with a definite spin S. In the case of the sin-

gle-occupied and orthogonal orbitals, the expectation value of

the energy is reduced to a very simple form

E
½k�
t ¼

X
a

haa þ
X
a\b

½gab; ab þ C½k�tt ðPabÞgab; ba� (6)

where haa are the one-electron integrals, gab,ab and gab,ba are

the two-electron Coulomb and exchange integrals, respec-

tively, and C½k�tt (Pab) is the diagonal matrix element of the trans-

position of orbitals /a and /b in the product (4). Only, the

exchange terms depend on the permutation symmetry of the

state, that is, on the value of S. Such kind of expression allows

deriving the SCF equations for the state with a definite spin S,

taking into account all fk functions in Eq. (1); the self-consist-

ent field (SCF) equations have been also obtained for the non-

orthogonal orbital case, see Chapter 8 in Ref. [1].

At the same time, in the 1960s, the conceptions of quantum

chemistry without spin were independently developed by

Matsen.[21–24] Later the coordinate function approach was

applied to molecular studies by Goddard,[25,26] Gallup,[27,28]

Gerratt,[29,30] and many others, see a comprehensive review by

Klein[31] and references therein.

The first presentation of my concepts of quantum chemistry

without spin on an international forum was in 1969 at the

International Symposium on Theory of Atomic and Molecular

Electronic Shells (Vilnius, Lithuania). There many prominent

quantum chemists participated, among them was Octay Sina-

noglu. As I remember, in the beginning of Symposium he

y
As was shown by Kramer,[13] these transformation matrices are identical to

the invariants of the unitary groups and can be considered as an analog of the

3n�j symbols of the three-dimensional rotation group, see also Ref. [14], Sec-

tion 3.9 ‘‘The Kaplan matrices and nj symbols for group SU(n).’’
z
Operator (3) should not be mixed up with the operator that symmetrizes the

rows and antisymmetrizes the columns in Young diagram and which is also of-

ten referred to as the Young operator, see Ref. [9].
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made a big problem for the Organizing Committee. According

to the Program, the first report should be done by the Chair-

man of the Symposium A.P. Yutsis, second was the report by

Sinanoglu. Sinanoglu refused to participate, if he was not

allowed to be the first speaker. I do not know how this was

arranged, but the first speaker remained Yutsis.

Classification of Molecular States

Nuclear molecular multiplets

The representation of the total wave function as a product of

coordinate and spin wave functions allows for the derivation

of simple and clear methods for finding the molecular spin-

multiplets permitted by the Pauli principle. My first study on

the application of the permutation group to the construction

of the total wave function was done in 1959, see Ref. [32].

There, I developed a clear and convenient procedure for find-

ing the values of the total nuclear spin allowed by the Pauli

principle for molecular states with a given point symmetry.

The total nuclear spin I is a good quantum number, if we

neglect the hyperfine interactions. For nuclei with the half-in-

teger spin ı́ the total wave function can be presented in the

same form as Eq. (1). For the integer spin ı́, the total wave

function should be symmetric and the permutation symme-

tries of coordinate and spin wave functions in Eq. (1) must be

the same.

In the case when the nuclear spin ı́ [ 1=2, there is no unique

connection between the total spin I and the spin Young dia-

gram. The product of N one-nucleus spin functions symme-

trized according to the Young diagram [k] belongs to the irre-

ducible representation U
½k�
2iþ1 of the group of unitary

transformations U2iþ1. Since the group R3 is a subgroup of

U2iþ1, the irreducible representations U
½k�
2iþ1 in general become

reducible upon restricting the operations to those of R3 and

hence U
½k�
2iþ1 splits into the irreducible representations D(I) of R3

U
k½ �

2iþ1 ¼
X

I

a
Ið Þ

k D
Ið Þ (7)

The method for finding the decomposition (7) is described

in details in Ref. [1], Section 4.5; in Appendix 3 of this book

Tables of possible I for all [k] for N ¼ 1–4 and ı́ ¼ 1=2 - 3 are

presented.

The permutations of N identical nuclei are generally not all

realized by the operations of the corresponding point group;

hence, this point group is isomorphic with a subgroup of the

permutation group of identical nuclei, pN. The irreducible rep-

resentations C(a) of the point subgroup of the group pN con-

tained in its representation C[k] are given by the

decomposition

C kb c ¼
X

a

a
að Þ

k C að Þ (8)

where coefficients a
ðaÞ
k are found with the aid of character

tables for permutation and point groups. For this, it is nec-

essary to place each operation of the point group into

correspondence with the appropriate permutation of the

nuclei.

As aforementioned, the connection between the permuta-

tion symmetries of the coordinate and nuclear spin functions

depends on the statistics of the nuclei. Together with the

decompositions (7) and (8), it makes possible to associate with

each type of point symmetry C(a) the values of total nuclear

spin I permitted by the Pauli principle. Schematically, this

approach can be represented as

(9)

Several examples of application of the scheme (9) are pre-

sented in Ref. [1], Section 6.5.

Electronic molecular multiplets

Except for the study,[33] the methods for finding the electronic

molecular multiplets were elaborated by the author in collabo-

ration with Rodimova.[34–37] In the first paper,[33] the valence

bond method and the case when each atom has one valence

electron on an nondegenerate orbital was considered. The

number of independent covalent structures in the system of N

valence electrons is equal to the number of ways of coupling

the electron spins to give the total spin S. Let us denote it by

n(N,S). On the other hand, it is equal to the dimension of the

irreducible representation C
~k½ � where ½~k� is the spin Young dia-

gram. Using the expression for the dimension of irreducible

representations of the permutation group, Eq. (2.18) in Ref. [1],

and the connection with the total spin S, Eq. (2), we obtain a

useful expression for the number of the covalent structures

nðN; SÞ ¼ N!ð2Sþ 1Þ
N=2þ Sþ 1ð Þ!ðN=2� SÞ! (10)

In the case of one valence electron on an nondegenerate

orbital per atom, the method of finding possible electronic

multiplets is similar to the method of determining the nuclear

molecular multiplets (9) for fermions. Namely:

(11)

However, for electrons there is a unique connection

between ½~k� and S. The coefficients a
ðaÞ
k in Eq. (8) are found

using the characters of the permutation and point groups. For

the ionic configurations, the procedure becomes more
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complicated. It is described in detail in Ref. [33], see also Sec-

tion 6.10 in Ref. [1].

The method described above was applied to the problem of

finding the allowed multiplets for the ring of six hydrogen

atoms. This problem was solved by Mattheiss[38] and discussed

in detail by Slater.[39] The method they used was based on the

distribution of electron spins among the atoms in all possible

ways and finding the characters of the reducible representa-

tions, followed by subtraction from one another of the repre-

sentations corresponding to different values of the total spin

projections. This method is very cumbersome even for finding

the 14 multiplets arising from the covalent structures. The appli-

cation of the methodology developed in Ref. [33] allowed to

find all 268 multiplets which arise in this problem, without any

difficulties, see Ref. [33] and Section 6.11 in Ref. [1].

The general cases were considered in Refs. [34–37]. It should

be mentioned that the action of the operation R of a point

group on a configuration of degenerate localized orbitals,

characterized by some definite value of angular momentum la,

is reduced to two successive operations: a permutation of the

orbitals �P, corresponding to the operation R, and an operation

of the point symmetry Ra in the space of each orbital. As was

shown in Ref. [34], for the coordinate state with the permuta-

tion symmetry [k], the character of the permutation �P, which

can be presented as a product of commuting cycles of lengths

n1, n2,…, nk., is equal to

v kb cðRÞ ¼ v½k�ð�PÞvðl1ÞðRn1Þvðl2ÞðRn2Þ…vðlkÞðRnk1ÞsðRÞ (12)

where s (R) denotes the number of configurations, which

remains invariant under the operation R.

It should be mentioned that the problem of determining

which molecular multiplets may arise for configurations of

equivalent electrons was first treated by Kotani.[40] But his

method required cumbersome calculations of the spin factor.

Goscinski and Ohrn[41] improved the Kotani approach using

the technique of the permutation group similar to that used

by us in Ref. [34].

An important problem for finding the allowed multiplets of

the system containing subsystems characterized by an irre-

ducible representation Ca of the local symmetry group Ga

and a total spin Sa was solved in Refs. [35 and 37]. It can be

atoms in molecules, complexes of impurity centers in crystals,

and so forth. Depending on the value of Sa, the subsystems

behave under permutations as bosons or fermions. The for-

mulas were derived for the character of the reducible repre-

sentation made up of the coordinate functions of the system

with a definite symmetry with respect to permutations of the

subsystems; resolution of this representation on its irreducible

parts yields the allowed representations C(a) of the point

symmetry group of the system. The allowed values of the

spin S of the system are obtained as was described for the

nuclear-spin multiplets, see Eq. (7). The great advantage of

the method[35,37] lies in its independence of the number of

particles in subsystems.

The method[35] for finding the allowed multiplets was gen-

eralized and developed to the problem of classification of the

states of impurities in a crystal field.[36] In this problem, the

cases of weak and strong crystal field were considered sepa-

rately taking into account the spin-orbit coupling.

Let us stress that the symmetry of a many-particle state and

its multiplicity allowed by the Pauli principle are completely

dictated by the symmetry (antisymmetry) of the total wave

function; thus, they can be found only within the framework

of W – formalism. Therefore, they cannot be obtained by the

density functional theory (DFT) approaches based on a con-

ception of the electron density. Evidently, the problems in

which the so-called Berry phase[42,43] is important cannot be

studied by DFT. The application of DFT to magnetic systems

also meets with many difficulties. The reason lies in the basic

impossibility of introducing the concept of the total spin into

the DFT formalism. In the next section, we discuss this matter

in detail.

Independence of the Electron Density from
S and Its Consequence for DFT

According to the Honenberg–Kohn theorem,[44] all properties

of the electronic system in its ground state are uniquely deter-

mined by the ground state electronic density q(r). The latter is

the diagonal element of the spinless one-electron reduced

density matrix[45]

qðr1Þ ¼ N
X

r1 ;::;rN

Z
jWðr1r1; :::rNrNÞj2dVð1Þ (13)

where sum is taken over the whole spin space and integration

is performed over the configuration space of all electrons

except the first. The electron density is a crucial quantity for

the Kohn-Sham (KS) equations,[46] on which the DFT method is

based.

The representation of the total wave function in the form

(1) allows to obtain the general form of the electronic density

in the state with the definite total spin S. Let us show that the

following theorem is valid:[47,48]

Theorem. The electron density of an arbitrary N-electron sys-

tem, characterized by an N-electron wave function corresponding

to the total spin S and constructed on some orthonormal orbital

set, does not depend upon the total spin S and always preserves

the same form as it is for a single-determinantal wave function.

Proof. Let us substitute the total wave function in the form

(1) and the coordinate wave function, expressed by Eq. (5), in

the definition of electron density (13). Since the spin wave

functions X½
~k�

~r are orthonormal, Eq. (13) reduces to

q k½ �
t ðrÞ ¼

N

fk

X
r

Z
jU k½ �

rt j2dVð1Þ

¼ 1

ðN� 1Þ!
X

r

X
P;Q

C k½ �
rt ðPÞ�C

k½ �
rt ðQÞ

Z
PU�0QU0dVð1Þ:

(14)

The one-particle functions in the product (4) satisfy the

orthonormal conditions; therefore, the integral in Eq. (14) is

equal to
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dPQ

Z
PU0j j2dV 1ð Þ

and Eq. (14) becomes

q k½ �
t ðrÞ ¼

1

ðN� 1Þ!
X

P

X
r

C k½ �
rt ðPÞ�C

k½ �
rt ðPÞ

Z
PU0j j2dVð1Þ: (15)

Taking into account that the sum over r is equal to 1 and

each P � pN can be represented as P1i P0 where the (N�1)!

permutations P0 belong to the permutation group pN�1 not

including the first electron, we arrive at the final result

q½k�t ðrÞ ¼
XN

n¼1

unj j2: (16)

We obtained the well-known expression of the electron den-

sity for the state described by the single-occupied determinan-

tal function. In the same manner, it is easy to show that in the

case of orbital configuration with arbitrary occupation num-

bers, the final expression (16) will also correspond to the elec-

tron density for the one-determinantal function but with arbi-

trary occupation numbers.

Thus, regardless of the permutation symmetry of the coordi-

nate wave function, which is uniquely connected with the

value of the total spin S, the electron density for all S realized

in a given orbital configuration has the same form as for a sin-

gle Slater determinant. It can also be proved that in a more

general case of the eigenfunctions of S2 represented as a lin-

ear superposition of different electronic configurations, as one

uses in the ab initio configuration interaction (CI) approaches,

the electron density also does not depend on S, if all configu-

rations are built on the same orthonormal orbital set.

Because of the independence of the electron density on the

total spin S, the density functionals, and, consequently, the

conventional KS equations are the same for all multidetermi-

nantal wave functions corresponding to different S. The neces-

sary condition for this is the orthonormality of the orbital set,

on which these determinants are built.

At the first sight, this result is rather surprising: different lin-

ear combinations of determinants, describing the states with

different S, correspond to the same electron density, as it is

obtained with one determinant. On the other hand, this is to

be expected, because the integration in Eq. (13) leads to a loss

of information about the wave function. The concept of spin

came from the W � formulation of quantum mechanics and it

is beyond the electron density formulation. As noted by

McWeeny[49]: ‘‘electron spin is in a certain sense extraneous to

the DFT.’’

It is also worth-while to take into account that the electron

density is a one-electron quantity. As it was precisely estab-

lished (see, for instance, Chapter 7 in Ref. [1]), the diagonal

matrix elements of one-particle operators do not depend on

the symmetry of states. The same is correct for the diagonal

matrix elements with operators equal to 1.

Recently, Tchougreeff and Angyan[50] applied the unitary

group technique to the problem of the states with the total

spin S in DFT. In their study, they presented the simple proof

of the Kaplan theorem 1, as they named it,§ using the unitary

group formalism. The application of the powerful unitary

group formalism did not allow these authors to solve the

problems arising in DFT for state with a definite spin. This can

be expected, because, as we discussed above, the concept of

spin is beyond the framework of electron density approaches.

The possible solutions can be found using the two-electron

reduced density matrix formalism, although up today there are

no significant advances in this directions, see Refs. [51–53].

The problems arising in the application of DFT to magnetic

systems were properly analyzed by Illas et al.[54,55] One of their

conclusions was that the DFT calculations exaggerate the fer-

romagnetic coupling. Our analysis of the DFT calculations of

Mn2
[56] also revealed that in most of Mn2 studies, the ferro-

magnetic ground state with S ¼ 5 was obtained; while accord-

ing to precise ab initio calculations, see Ref. [56] and referen-

ces therein, Mn2 is antiferromagnetic with S ¼ 0. The spin-

symmetry conditions in the standard KS formulation of DFT

and their spectroscopic performance are discussed in the com-

prehensive review by Ramı́rez-Solı́s et al.[57]

In Ref. [54], it was concluded that the spin problems in DFT

can be solved, if the spin-restricted KS formalism[58] is applied.

They also stressed that the multiplet-sum method (MSM) proce-

dure developed by Ziegler et al.[59] is very appropriate for finding

the spin-multiplet structure. However, as follows from the analy-

sis performed in our study,[48] the MSM procedure corresponds

to the first order of perturbation theory and modifies only the

exchange energy, not taking into account the correlation energy.

In the procedures developed in Ref. [58], the exchange and cor-

relation functionals are treated in the same manner, while they

have a different dependence on spin. Thus, at least the correla-

tion functionals in their formalisms do not correspond to an

appropriate total spin. This is the reason that, as was

demonstrated in Ref. [60], the employment of approaches[58]

does not improve the agreement with experiment.

The contemporary state of the application of DFT to transi-

tion metal chemistry has been represented by Cramer and

Truhlar in a recent review.[61] They analyzed in detail different

procedures developed for studying the magnetic properties of

the transition metals and demonstrated the problems arising.

However, they did not stress that most of the described diffi-

culties lay at the very root of the DFT approach and in princi-

ple cannot be resolved within the framework of the electron

density formalism, see Refs. [47 and 48]. As was already men-

tioned, a possible way to the solution can be found in the

two-electron reduced density matrix formulation of DFT.

The Pauli Principle; Why Does
It Exist in Nature?

The application of the permutation group allows also to make

an analysis of the foundations of the Pauli principle.[62–65]

§
In Refs. [47] and [48] it was also presented a Theorem 2, in which was proved

that the diagonal element of the density matrix is a invariant with respect to

all operations of the group symmetry of the state.
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Is the Pauli principle a postulate?

Pauli formulated his principle[66] in 1924, before the creation

of quantum mechanics (1925–1927), when he was trying to

understand the experimental regularities in the classification of

atomic spectral terms in a strong magnetic field. The Pauli

principle was formulated as a prohibition of the existence of

two electrons in an atom with the same four quantum num-

bers. Just after the creation of quantum mechanics, Heisen-

berg[67] and Dirac[68] derived the Pauli principle as a conse-

quence of the antisymmetry of the wave function of a many-

electron system. Later on, the analysis of experimental data

has permitted to formulate the Pauli exclusion principle for all

known elementary particles. Namely:

The only possible states of a system of identical particles pos-

sessing spin s are those for which the total wave function

transforms upon interchange of any two particles as

PijW 1;…; i;…j;…;Nð Þ ¼ ð�1Þ2sW 1;…; i;…j;…;Nð Þ (17)

That is, it is symmetric for integer values of s and antisymmet-

ric for half-integer values of s.

Thus, the Pauli principle follows solely from experiment. Pauli him-

self was never satisfied by that. In his Nobel Prize lecture[69] Pauli said:

‘‘Already in my initial paper, I especially emphasized the fact

that I could not find a logical substantiation for the exclusion

principle nor derive it from more general assumptions. I

always had a feeling, which remains until this day, that this is

the fault of some flaw in the theory.’’

The Pauli exclusion principle can be considered from two

viewpoints. On the one hand, it asserts that particles with half-

integer spin (fermions) are described by antisymmetric wave

functions, and particles with integer spin (bosons) are described

by symmetric wave functions. This is a so-called spin-statistics

connection. The reasons why this connection between the value

of spin and the permutation symmetry of wave function exists

are still unknown; see discussion in Ref. [65], Section 1 in

Refs. [70–72]. As emphasized by Berry and Robbins,[73] the rela-

tion between spin and statistics ‘‘cries out for understanding.’’

On the other hand, according to the Pauli exclusion principle,

the permutation symmetry of the total wave functions can be only

of two types: symmetric or antisymmetric. Thus, both belong only

to the one-dimensional (1D) representations of the permutation

group; all other types of permutation symmetry are forbidden.

However, the Schr€odinger equation is invariant under any permu-

tation of identical particles. The Hamiltonian of an identical particle

system commutes with the permutation operators,

½P;H�� ¼ 0: (18)

From this, it follows that the solutions of the Schr€odinger

equation may belong to any representation of the permuta-

tion group, including the degenerate ones. The question

might be asked: whether the limitation on the solutions of the

Schr€odinger equation follows from the fundamental principles of

quantum mechanics or it is an independent principle?

Some physicists, including one of the founders of quantum

mechanics Dirac[74] (see also Schiff[75] and Messiah[76]), believe

that there are no laws in Nature that forbid the existence of

particles described by wave functions with more complicated

permutation symmetry than those of bosons and fermions,

and that the existing limitations are only due to the specific

properties of the known elementary particles.

Messiah[76] has even introduced the term ‘‘symmetry postu-

late’’ to emphasize the primary nature of the constraint on the

allowed types of the wave function permutation symmetry. In

fact, the existence of permutation degeneracy should not

introduce additional uncertainty into characteristic of the state.

From the Wigner-Eckart theorem generalized for the permuta-

tion group, see Eq. (4.60) in book in Ref. [1], it follows that the

matrix element of an operator L, which is symmetric in all the

particles, can be presented as

W k½ �
r L̂
�� ��W k½ �

�r

E
¼ dr�r C k½ � L̂

�� ��C k½ �
EDD

(19)

where index r labels the basic functions of the representation

C[k] of the permutation group. The double vertical line in the

right-hand side of this formula means that the matrix element

is independent on the basic function index. Thus, the expecta-

tion value of operator L is the same for all functions belonging

to the degenerate state.

Another point of view is that the symmetry postulate is not

an independent principle and can be derived from the funda-

mental principles of quantum mechanics; in particular, from

the principle of indistinguishability of identical particles. In

some textbooks,[77–79] including the famous textbook by Lan-

dau and Lifshitz,[78] the following typical proof is presented.

From the requirement that the states of a system obtained

by permutations of identical particles must all be physically

equivalent, one concludes that the transposition of any two

identical particles should multiply the wave function only on

an insignificant phase factor,

P12W x1; x2ð Þ ¼ W x2; x1ð Þ ¼ eiaW x1; x2ð Þ (20)

where a is a real constant and x is the set of spatial and spin

variables. One more application of the permutation operator

P12 gives

W x1; x2ð Þ ¼ ei2aW x1; x2ð Þ (21)

or

e2ia ¼ 1 and eia ¼ �1 (22)

Since all particles are assumed to be identical, the wave

function should change in exactly the same way under trans-

position of any pair of particles, that is, it should be either

totally symmetric or totally antisymmetric.

This proof contains two essential incorrectness’s at once.

The first simply follows from group theory. Namely, Eq. (20) is

valid only for the 1D representations. The application of a

group operation to one of the basis functions, belonging to
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some multidimensional representation, transforms it in a linear

combination of basis functions. Namely,

P12Wi ¼
X

k

Cki P12ð ÞWk: (23)

The application of the permutation operator P12 to both

sides of Eq. (23) leads to the identity:

P12fP12Wig ¼ Wi ¼ P12

X
k

CkiðP12ÞWi

¼
X

l

X
k

ClkðP12ÞCkiðP12Þ
" #

Wl ¼
X

l

CliðP2
12 ¼ IÞWl ¼ Wi: ð24Þ

Using this identity, we cannot arrive at any information

about the symmetry of the wave function in contrary with Eq.

(21). By requiring that under permutations the wave function

must change by no more than a phase factor, one actually

postulates that the representation of the permutation group,

to which the wave function belongs, is 1D. Thus, the proof in

Refs. [77–79] is based on the initial statement, which is then

proved as a final result.

The second incorrectness in the proof above follows from

physical considerations. This proof is directly related to the

behavior of the wave function. However, as the wave function

is not an observable, the indistinguishability principle is related

to it only indirectly via the expressions of measurable quanti-

ties. As in quantum mechanics, the physical quantities are

expressed as bilinear forms of wave functions, the indistin-

guishability principle requires the invariance of these bilinear

forms and can be formulated as[62]:

P W L̂
�� ��Wi ¼ W L̂

�� ��Wi��
: (25)

Often, one limits oneself to the requirement that the proba-

bility of a given configuration of a system of identical particles

must be invariant under permutations,[80,81]

P Wðx1;…; xNÞj j2¼ W x1;…; xNð Þj j2: (26)

For a function to satisfy Eq. (26), it is sufficient that under

permutations it would change as

PW x1;…; xNð Þ ¼ eiapðx1 ;…;xNÞW x1;…; xNð Þ; (27)

That is, unlike the case of the requirement of condition (20),

in the general case the phase is a function of the coordinates

and the permutation and Eq. (21) evidently does not hold.

Most other proofs of the symmetry postulate contain unjus-

tified constraints. A critical survey of such proofs can be found

in Refs. [62] and [80]. Proofs of the symmetry postulate

without imposing additional constraints have been given by

Girardeau[80,81] and in my paper.[62] As was noted later by

the author (see Refs. [63] and [82]), these proofs, basing on

the indistinguishability principle in the forms (25) and (26), are

incorrect, because Eqs. (25) and (26) are correct only for the

non-degenerate states. In a degenerate state, the system can

be described with equal probability by any one of the basis

vectors of the degenerate state. As a result, we can no longer

select a pure state (the one that is described by the wave

function) and should regard a degenerate state as a mixed

one, where each basis vector enters with the same probability.

Thus, we must sum both sides of Eqs. (25) and (26) over all

wave functions that belong to the degenerate state. For

instance, the probability density, which described via the diag-

onal element of the density matrix, in the case of a degener-

ate state has the form

Dðx1;…; xN; x1;…; xNÞ ¼
1

fk

Xfk

r¼1

W k½ �
r x1;…; xNð Þ�W k½ �

r x1;…; xNð Þ;

(28)

where the expression (28) is written for the case of the fk-

dimensional representation C[k] of the permutation group pN.

The possibility of expressing the density matrix through only

one of the functions implies that the degeneracy with respect

to permutations has been eliminated. However, the latter can-

not be achieved without violating the identity of the particles.

It is not difficult to check that for every representation C[k]

of the permutation group pN, the probability density, Eq. (28),

is a group invariant according to any permutation of the per-

mutation group pN:

PDP�1 ¼ D for all P 2 pN; (29)

From this, it follows that the probability density obeys the

indistinguishability principle even in the case of the multidi-

mensional representations of the permutation group. Hence,

the indistinguishability principle is insensitive to the symmetry

of wave function and cannot be used as a criterion for select-

ing the correct symmetry.

Thus, we demonstrated that the Pauli exclusion principle

cannot be proved, that is, it cannot be derived from other

quantum-mechanical postulates. Nevertheless, as will be dis-

cussed in the following section, we may not expect that some

unknown elementary particles can be described by multidi-

mensional representations of the permutation group. The real-

ization of only two types of permutation symmetry in nature

(symmetric and antisymmetric) is by no means accidental;

there are significant reasons, why it is so.

Contradictions with the concept of particle identity and

their independence in the degenerate permutation states

In this section, we discuss the properties of a quantum mechani-

cal system of identical particles that does not obey the symme-

try postulate and can be in states with all possible permutation

symmetries and base our study on the Hartree–Fock approxima-

tion. In this case, the states of a system of identical particles

with the number of particles not conserved can be presented as

vectors in the Fock space F.[83] The latter is a direct sum of

spaces F(N) corresponding to a fixed number of particles N

F _¼
X1
N¼0

FðNÞ: (30)
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Each of the space F(N) can be presented as a direct product

of one-particle spaces f:

FðNÞ ¼ f � f � :::� f|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
N

: (31)

The basis vectors of F(N) are the product of one-particle vec-

tors |vk (k)i belonging to spaces f; k in the parenthesis denotes

the set of particle spin and space coordinates,

nðNÞ
��� E

¼ v1ð1Þj i v2ð2Þj i… vNðNÞj i: (32)

For simplicity, let us consider the case where all one-particle

vectors in Eq. (32) are different. There will be no qualitative

changes in the results, if some of the vectors coincide. It is

useful to mention that, uk (k) in Eq. (4) are orbitals depending

on the space coordinates, while |vk (k)i are spin-orbitals, on

which the total wave function is constructed.

One can produce N! new many-particle vectors by applying

to the vector (32) N! permutations of the particle coordinates.

These new vectors also belong to F(N) and form in it a certain

invariant subspace which is reducible. The N! basis vectors of

the latter, P|n(N)i, make up the regular representation of the

permutation group pN. As is known, the regular representation

is decomposed into irreducible representations, each of which

appears a number of times equal to its dimension. The space

e(N) falls into the direct sum

eðNÞn _¼
X
kN

fkN
e kN½ �
n : (33)

where e kN½ �
n is an irreducible subspace of dimension fkN

drawn

over the basis vectors |[kN]ri, and [kN] is a Young diagram with

N boxes. The basis vectors |[kN]ri can be constructed from the

non-symmetrized basis vector |n(N)i by using the Young opera-

tors x kN½ �
rt similar to Eq. (5),

kN½ �rtj i ¼ x kN½ �
rt nðNÞ
��� E

¼ fk
N!

� �1=2X
P

C kN½ �
rt ðPÞP nðNÞ

��� E
(34)

where C kN½ �
rt ðPÞ are the matrix elements of representation C kN½ �

and index t distinguishes between the bases in accordance

with the decomposition of eðNÞn into fk invariant subspaces and

describes the symmetry under permutations of the particle

vector indices.

Thus, a space with a fixed number of particles can always

be divided into irreducible subspaces e½kN�
n , each of which is

characterized by a certain permutation symmetry given by a

Young diagram with N boxes. The symmetry postulate

demands that the basis vectors of a system of N identical par-

ticles belong to one of the two subspaces characterized by ir-

reducible 1D representations, either [N] or [1N]. All other sub-

spaces are ‘‘empty.’’ Let us examine the situation that arises

when no symmetry constraints are imposed and consider the

system of N identical particles described by basis vectors

belonging to some irreducible subspace e½kN�
n .

One of the consequences of the different permutation sym-

metry of state vectors for bosons and fermions is the depend-

ence of the energy of system on the particle statistics. For the

same law of dynamic interaction, the so-called exchange terms

enter the expression for the energy of fermion and boson sys-

tem with opposite signs. The expression for the energy of a

system of particles belonging to an irreducible subspace e½kN�
n

with an arbitrary Young diagram [kN] has the form presented

in Eq. (6). Namely,

E
k½ �

t ¼
X

a

vah jh vaj i þ
X
a\b

½ vavbh jg vavbj i þ C k½ �
tt ðPabÞ vavbh jg vbvaj i�

(35)

Only exchange terms in Eq. (35) depend on the symmetry

of the state. For the 1D representations, C½k�tt ( Pab) do not

depend on the number of particles and permutations Pab:

C[N](Pab) ¼ 1 and C½1
N� Pabð Þ ¼ �1 for all Pab and N. For multidi-

mensional representations, the matrix elements C½k�tt (Pab)

depend on [k] and Pab; in general, they are different for differ-

ent pairs of identical particles.{

Taking into account that the transitions between states

with different symmetry [kN] are strictly forbidden and each

state of N particle system with different [kN] has a different

analytical formula for its energy, we must conclude that each

type of symmetry [kN] corresponds to a certain kind of

particles with statistics determined by this permutation

symmetry. On the other hand, the classification of state with

respect to the Young diagrams [kN] is connected exclusively

with the identity of particles. Therefore, it must be some

additional inherent particle characteristics, which establishes

for the N particle system to be in a state with a definite

permutation symmetry, like integer and half-integer values of

particle spin for bosons and fermions, and this inherent

characteristic has to be different for different [kN]. So, the

particles belonging to the different types of permutation

symmetry [kN] are not identical.

Let us trace down the genealogy of irreducible subspaces

e kN½ �
n . In Figure 1, the genealogy for all irreducible subspaces

with N ¼ 2–4 is presented.

We call the hypothetical particles characterized by the mul-

tidimensional representations of the permutation group as

‘‘intermedions’’ implying that they obey some intermediate

between fermion and boson statistics. For bosons and fer-

mions, there are two non-intersecting chains of irreducible

representations: [N] ! [N þ 1] and [1N] ! [1Nþ1], respectively;

and the energy expression for each type of particles has the

same analytical form that does not depend on the number of

particles in a system. The situation changes drastically, if we

put into consideration the multidimensional representations.

The number of different statistics depends on the number of

particles in a system and rapidly increases with N. For the

{
The matrices of transpositions for all irreducible representations of groups

p2–p6 are presented in Appendix 5 of Ref. [1].
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multidimensional representations we cannot select any non-

intersecting chains, as in the fermion and boson cases.

According to Figure 1, the intermedion particles with a

definite [kN] in the Nth generation can originate from particles

of different kinds [kN�1] in the (N�1)th generation, even from

fermions or bosons (in the special case [k3] ¼ [21], it

originates from both [12] and [2]). The physical picture in

which adding one particle changes properties of all particles

cannot correspond to a system of independent identical

particles (although, it cannot be excluded for some quasipar-

ticle systems where we have not an independency of

quasiparticles (see Section 2.2 in Ref. [65]).

Thus, the scenario, in which all symmetry types [kN] are

allowed and each of them corresponds to a definite particles

statistics, contradicts the concept of particle identity and their

independency from each other. The same conclusion follows

from other scenarios considered in Refs. [64] and [65].

From the discussion above it follows that, although the Pauli

exclusion principle cannot be derived from other fundamental

principles of quantum mechanics, it cannot be considered as a

postulate, since all symmetry options for the total wave func-

tion of identical particles, except the 1D representations, are

forbidden. Hence, in addition to the formulation of the Pauli

exclusion principle presented on p. 13, it can be also formu-

lated as a prohibition for identical particles to be in the degener-

ate permutation states.
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