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Steady shear and rheo-optical experimental data measured in several micellar solutions, demonstrate the
existence of a non-equilibrium critical point (necp) in the shear banding flow of wormlike micellar solu-
tions by the following evidence: (1) the disappearance of the coexistence of two steady banded fluids at
the necp, (2) the curves of the reduced shear stress versus reduced shear rate become anti-symmetric in
the neighborhood of the non-equilibrium critical point; (3) flow birefringence increases considerably in
the neighborhood of the necp; (4) the divergence of non-equilibrium thermodynamic properties (isother-
mal flow susceptibility and the normalized heat dissipation), as the necp is approached; and (5) the exis-
tence of a finite correlation dimension calculated from time analysis of birefringence data, and positive
Lyapunov exponents, which are consistently smaller than the embedding dimension.

The predictions of the BMP model follow these trends closely.
� 2012 Published by Elsevier B.V.
1. Introduction

Shear banding flow is an interesting and important manifesta-
tion of the nonlinear rheology of wormlike micelles. This flow phe-
nomenon has been observed in many wormlike micellar systems in
both the semidilute and concentrated regimes [1,2] as well as in
many other complex fluids such as lamellar phases [3], associative
polymer solutions [4], and bicontinuous microemulsions [5].
Hence, this flow phenomenon appears to be quite general for com-
plex fluids. Shear banding appears as a discontinuity in the shear
stress-shear rate flow curve, in which a plateau stress (rp) develops
between two critical shear rates, _cc1 and _cc2; below and above
these shear rates, the flow is homogeneous and usually Newtonian.
Long transients and oscillations in rheological and optical mea-
surements accompany this flow phenomenon [6–15]. Shear band-
ing flow in wormlike micelles has been identified by flow
birefringence [10], NMR velocimetry [9,16], small-angle light
(SALS), neutron (SANS) and X-ray (SAXS) scattering techniques
[17–19], particle image visualization (PIV) and particle tracking
velocimetry (PTV) [19].

The most commonly invoked mechanism for shear band-
ing is the shear-induced phase transition, especially near the
Elsevier B.V.
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isotropic–nematic phase transition, although other mechanisms
such as mechanical instability have been proposed [20–24]. The
arguments that support the shear-induced transition mechanism
are: (1) a reversible shear-induced structural or non-equilibrium
phase transition is typically observed; (2) the plateau stress is un-
ique and robust since it is independent of shear history; (3) the
long stress transients and oscillations in start-up shear flows
resemble the kinetics of nucleation and growth of a second phase,
similar to phenomena reported in equilibrium first-order phase
transitions; and (4) the generalized master flow-phase diagram, ob-
tained by applying a temperature–concentration superposition, is
remarkably similar to equilibrium liquid–vapor phase diagrams
[2,25,26]. Most details of shear-induced structural changes in wide
concentration ranges and the underlying associated mechanisms
are still open questions.

Several model approaches have been forwarded to explain the
non-equilibrium phase transition mechanism. One of the first the-
ories for polymers was proposed by McLeish and Ball [27]. Rele-
vant shear-flow effects on critical fluctuations in a binary fluid
that possesses an equilibrium critical point have been discussed
by Onuki and Kawasaki [28]; in this case, shear flow suppresses
fluctuations. The connection between extensional flow and phase
transitions in nematic systems has been discussed by several
authors [29–31]. Nematic systems under shear flow provide exam-
ples of phase transitions under non-equilibrium conditions; here
the equilibrium isotropic–nematic transition is first order, and
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Nomenclature

r shear stress
rp stress plateau
_cc1 first critical shear rates (rate at which the stress plateau

begins)
_cc2 second critical shear rates (rate at which the stress pla-

teau ends)
_c shear rate
u fluidity (inverse of the shear viscosity (g))
u0 fluidity at zero shear rate
u1 fluidity at infinite shear rate
k structure relaxation time
k0 structure breaking constant
# shear banding intensity parameter
G0 plateau modulus
sR main relaxation time
R dimensionless shear stress
_C dimensionless shear rate
_Cc1 dimensionless first critical shear rate
_Cc2 dimensionless second critical shear rate
U dimensionless fluidity
k dimensionless structure relaxation time
k dimensionless structure breaking constant
# dimensionless shear banding intensity parameter
u1 dimensionless fluidity at infinite shear rate

Rc shear stress at the non-equilibrium critical point
_Cc shear rate at the non-equilibrium critical point
Uc fluidity at the non-equilibrium critical point
#c shear banding intensity parameter at the non-equilib-

rium critical point
Rr reduced shear stress
_Cr reduced shear rate
Ur reduced fluidity
necp non-equilibrium critical point
Dn0 birefringence
n variance of the birefringence
G dissipated energybG normalized dissipated energy
jT isothermal flow susceptibility
Cr normalized power dissipation under shear banding flow
J mass flux vector
r stress tensor
L velocity gradient tensor
D symmetric part of rate of strain tensor
IID second invariant
s1 relaxation time for the mass flux
D Fickean diffusion coefficient
C local equilibrium concentration
b0, b00, b2 and b02 are phenomenological parameters
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the suppression of orientation fluctuations by shear flow makes
possible a non-equilibrium critical point (necp) associated with
amplitude fluctuations. Attention to non-equilibrium phase dia-
grams spanned by temperature and shear rate in nematic liquid
crystals has been given attention by Olmsted and Goldbart
[32,33]. On the experimental side, the analog between the thermo-
dynamic and banding spinodals has been inferred by Berret and
Porte [15].

Recently, we derived the generalized Bautista–Manero–Puig
(BMP) model from the coupling of flow and concentration using
an extended irreversible thermodynamic approach [34]. This mod-
el predicts the existence of a non-equilibrium critical point (necp)
that occurs when the shear banding region vanishes; we were able
to obtain the non-equilibrium critical exponents and showed that
they are non-classic but they follow the Widom’s inequality [35].

Here we present steady shear data for several aqueous micellar
solutions, in which temperature, surfactant concentration or sur-
factant/salt ratio is varied. Rheological data indicate that regardless
of the varying parameter, the shear-banding region shrinks up to a
non-equilibrium critical point, at which shear-banding flow
vanishes. Above this point, only homogeneous Newtonian flow
is detected. In the neighborhood of the necp, the curves of the
reduced shear stress versus reduced shear rate become anti-
symmetric, similar to the ferromagnetic critical transition [36].
Moreover, rheo-optical measurements show that the variance of
flow birefringence becomes more intense and erratic as the necp
is approached and becomes less intense and more regular far be-
low or above this point. The experimental data demonstrate that
the isothermal flow susceptibility (analogous to the isothermal
compressibility) and the normalized power dissipation (analogous
of the heat capacity) diverge as the necp is approached. This model
predicts remarkably well experimental data and shows that the
two minima in the dissipated free energy-versus-reduced shear
rate (which indicate the position of the critical shear rates that
limit the shear banding region), approach each other, become
shallower and eventually disappear at the necp to produce a flat
profile.
2. The model

We have pointed out in a previous paper [34] that the deriva-
tion from irreversible thermodynamics leads to three coupled
equations: the constitutive equation for the stress, the equation
for the diffusion of mass and the equation for the rate of change
of the microstructure due to the flow. The relevant equations of
the 3- D BMP model are:

du
dt
¼ 1

k
ðu0 �uÞ þ k0ð1þ #IIDÞðu1 �uÞr : Dþu0b

0
0r � J; ð1Þ

Jþ s1
u0

u
J
r
¼ �Du0

u
rc � b0

u
ruþ b2u0

u
r � r; ð2Þ

rþ 1
G0u

r
r
¼ 2

u
Dþ b02u0

u
rJ: ð3Þ

where the upper-convected derivatives of the mass flux vector J and
of the stress tensor r are defined, respectively, as:

J
r
¼ dJ

dt
� L � J; ð4Þ

r
r
¼

dr
dt
� L � rþ r � LT
� �

: ð5Þ

Here L is the velocity gradient tensor, D is the symmetric part of
rate of strain tensor and IID is its second invariant, u is the inverse
of the shear viscosity (g) or fluidity, u0ð� g�1

0 Þ is the fluidity at
zero shear rate, G0 is the plateau shear modulus, k is a structure
relaxation time, k0 can be interpreted as a kinetic parameter for
structure breaking in the absence of shear flow, # is the shear
banding intensity parameter, s1 is a relaxation time for the mass
flux, D is the Fickean diffusion coefficient, c is the local equilibrium
concentration and #, b0, b00 , b2 and b02 are phenomenological
parameters.

For steady simple-shear, assuming that the gradients in u and c
vary along in the y-direction, and after neglecting the relaxation
time for the mass flux, Eqs. (1)–(3) become:
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1
k
ðu0 �uÞ þ k0ð1þ # _cÞðu1 �uÞr _cþu0b
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u
þ b02u0

u
@Jx

@y
: ð8Þ

We have assumed that normal stresses are negligible.
Eqs. (6)–(8) embody particular cases. For instance, substituting
Eq. (7b) into Eq. (6) for the case where differences in concentration
are negligible yields:

1
k
ðu0 �uÞ þ j0ð1þ # _cÞðu1 �uÞr _c�u0b0b

0
0
@

@y
1
u
@u
@y

� �
¼ 0:

ð9Þ

In addition, when Eq. (7a) is substituted in Eq. (8), gives:

r ¼
_c
u
þ b2b

0
2u2

0

u
@

@y
1
u
@r
@y

� �
: ð10Þ

Eqs. (9) and (10) now contain diffusion terms for the stress and
for the structure, respectively. As pointed out further, a banding
solution is by definition, one that has no gradients of the fluidity
(representative of the current structure) at the boundaries. For
the condition where the phase coexistence is present, the fluidity
is constant within the bulk of each phase, and it changes suddenly
at the interface. We then henceforth obtain Eqs. (9) and (10). In this
sense, the model from which the critical behavior is analyzed is not
rheologically simple.

As shown elsewhere [35], under steady shear flow, the model
equations reduce to:

1
k
ðu0 �uÞ þ k0ð1þ # _cÞðu1 �uÞr _c ¼ 0 ð11Þ

r ¼
_c
u
: ð12Þ

In these equations, r is the shear stress and _c is the shear rate.
Normal stresses are not included in Eqs. (11) and (12), since their
contribution does not change qualitatively the results, as shown
elsewhere [37]. The model requires five parameters for steady
shear flow: u0, u1, k, k0 and #, which can be obtained from single
independent rheological experiments, and they are employed to
predict other rheological data [6,38,39]. u0 and u1 are obtained
from steady shear measurements at low and high shear rates,
respectively. However, if the shear-rate range is not high enough
to reach the high-shear rate viscosity plateau, u1 can be obtained
by fitting the linear oscillatory viscous modulus, G’’, with the Hess
equation, given by [40]:

G00 ¼ g0 � g1
sR

� �
xsd

1þx2s2
d

� �
þxg1; ð13Þ

where sd is the main relaxation time of the sample and x is the ap-
plied frequency. k, can be obtained from the intercept of the stress
relaxation curve at long times after cessation of steady shear flow,
where the intercept is given by exp[�G0k(uss � u0)], being uss the
steady state fluidity prior to the cessation of shear flow, and the pla-
teau modulus, G0, can be obtained by oscillatory shear measure-
ments or from instantaneous stress relaxation experiments [38].
k0, in turn, can be evaluated by fitting numerically the stress growth
coefficient, g+, from inception of shear flow experiments [38]. Final-
ly, if normal forces are neglected, # is uniquely determined by the
value of the stress at the plateau region according to [39]:
DG ¼ v
G0u0

Z
_c12

u
d _c12 ¼ 0; ð14Þ

where G is the generalized Gibbs free energy or dissipated energy
andu is the solution of Eqs. (11) and (12) combined. This equation
is similar to that reported by Dhont [41] when the shear curvature
viscosity in Dhont’s equation is independent of shear rate. In this
case, the stress selection rule given by Eq. (14) implies an equal-
area Maxwell construction in a r� _c plot. Alternatively, since the
dissipation energy of the bands must be equal at the stationary
banding state, the criterion is the equal minima in the dissipated
energy of the bands in plots of G versus _c. Incidentally, we have
shown elsewhere that the values of the critical shear rates and of
the plateau stress are the same even when normal stresses are in-
cluded in the analysis [39]. Table 1 reports the parameters of the
model, the characteristics of the micellar systems employed and
the references from which data were taken.

Substitution of Eq. (12) into Eq. (11) yields a dimensionless
cubic equation in shear rate that can be expressed in terms of
the dimensionless variables R = r/G0 and _C ¼ _csR, being G0 the
plateau modulus and sR the main relaxation time [25]:

_C3 þ �u1Rþ 1
#

� �
_C2 þ �u1

#
Rþ 1

k#R

� �
_C� 1

k#
¼ 0; ð15Þ

where k = G0k0k/sR, k = k/sR, # = #/sR and u1 = G0sRu1 = u1/u0.
By definition of the reduced variables, Rr = R/Rc, _Cr ¼ _C= _Cc and

Ur = U/Uc (being U ¼ R= _C), where the subscript c indicates the
values of these variables at necp, Eq. (15) becomes:

ðu�1
c �UrÞ þ k _CcRcð1þ # _Cc

_CrÞ u�1
c u1 �Ur

� 	
Rr

_Cr ¼ 0 ð16Þ

This equation suggests that only two dimensionless model
parameters are independent. However, the reduced fluidity (Ur)
is not an independent variable [35], and therefore, there is only
one independent variable left in Eq. (16).

The normalization with respect critical point implies that the
curve of

P
r versus _Cr is anti-symmetric, so the generalized free en-

ergy can be shown to satisfy the scaling hypothesis. Consequently,
some thermodynamic properties (jT, _Cc1 � _Cc2 and Cr; see defini-
tions in the text below) follow power law relationships and critical
exponents can thus be defined.

3. Experimental section

Cetyltrimethylammonium tosylate (CTAT), 98% pure from
Sigma, and dodecyltrimethylammonium bromide (DTAB), 98%+
pure from Tokyo Kasei, were further purified by re-crystallization
from a chloroform–ethyl ether mixture (50:50 by volume). Sodium
salycilate (NaSal) with purity larger than 99% from Fluka, and
Pluronics P103 [(EO)17(PO)60(EO)17] from BASF, were used as
received. Water, with conductivity smaller than 6 lS/cm drawn
from a Millipore purification system, was used.

CTAT and P103 samples were prepared by weighing the surfac-
tant and the water in glass vials that were placed in a water bath at
30 �C for a week, where they were frequently shaken to speed up
homogenization. Then, samples were allowed to reach equilibrium
at the measurement temperature. P103 samples were covered with
aluminum foil to avoid light degradation. DTAB/NaSal samples
with a surfactant concentration of 12 mM and salt concentration
to give constant values of CSALT/CDTAB (=0.42, 0.85, 1.27, 1.69, and
2.54) were prepared by weighing appropriate amounts of surfac-
tant and NaSal and homogenized by mixing and heating to
about 60 �C for one hour. Then, these solutions were left standing
for one week at the temperature of measurements to reach
equilibrium.

Stress-controlled measurements were done in a Carri-Med
C-50 rheometer equipped with a cone-and-plate geometry



Table 1
Parameters of the model for the systems and conditions chosen. References where data were taken are also indicated.

System Surf conc. (wt.%) Salt/surf Temp. (�C) BMP model parameters Refs.

u0 u1 # � 102 G0 kk � 102

CPCI/Sal 21.5 0.5 25 0.25 6 20 537 10 [42]
CPCI/Sal 14.6 0.5 25 0.21 6.5 50 281.6 9 [42]
CPCI/Sal 10 0.5 25 0.2 7 75 190 7 [42]
CPCI/Sal 6.3 0.5 25 0.19 7 80 71.3 6 [42]
CPCI/Sal 5.1 0.5 25 0.14 8.5 160 46.01 3.5 [42]

CTAT 3 1 25 0.0105 18.1 0.0001 21.9 4.1 [39]
CTAT 5 1 25 0.027 19.5 0.7 58 2.5 [39]
CTAT 10 1 25 0.006 14.8 0.8 164 0.301 [39]
CTAT 15 1 25 0.005 12.7 1 380 0.105 [39]
CTAT 20 1 25 0.0042 12 1.5 640 0.043 [39]

DTAB/NaSal 0.55 0.42 30 0.05 13.5 80 0.38 17.9 [47]
DTAB/NaSal 0.55 1.27 30 0.3 13 30 0.38 6.8 [47]
DTAB/NaSal 0.55 1.69 30 0.9 15.5 1 0.45 9.6 [47]
DTAB/NaSal 0.55 4.2 30 5.05 76 0 0.45 0.5 [47]

P103 20 1 30 28.98 56.8 0.01 2.33 0.05 [46]
P103 20 1 32 3.83 27.3 0.015 19.43 0.02 [46]
P103 20 1 33 1.43 29.2 0.017 12.21 0.021 [46]
P103 20 1 34 0.35 22.7 0.0097 16.1 0.053 [46]
P103 20 1 35 0.033 39.5 0.11 8.22 0.0357 [46]
P103 20 1 36 0.017 39.8 1 7.13 0.045 [46]
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(0.035 radians and 40 mm) and in two parallel plates (25 and
40 mm in diameter) with a gap of 0.2 mm in both cases. Steady
simple shear strain-controlled experiments were performed in a
TA Instruments Ares-22 rheometer with cone-and-plate geometry
of 0.1-radian and 50-mm in diameter. Birefringence measurements
were performed in a strain-controlled TA Instruments Ares-22 rhe-
ometer coupled to an Optical Analysis Module (OAM2). Parallel
quartz glass plates of 38.1 mm in diameter were used. For both
rheological and rheo-optics measurements, an environmental con-
trol unit was placed around the cone-and-plate fixture to prevent
water evaporation. Temperature was controlled within 0.1 �C dur-
ing measurements.

Nonlinear rheological data as a function of surfactant concen-
tration for micellar solutions of cetylpyridinium chloride–sodium
salicylate (CPCl–Sal) in 0.5 M NaCl brine were taken from Berret
et al. [42].

4. Results

Fig. 1 depicts the reduced shear stress ð
P

rÞ versus the reduced
shear rate ð _CrÞ for three micellar solutions: CTAT micellar solutions
as a function of surfactant concentration measured at 25 �C
(Fig. 1A); 20 wt.% Pluronics in water as a function of temperature
(Fig. 1B); and DTAB/NaSal at different DTAB/NaSal ratios measured
at 30 �C (Fig. 1C). These systems were chosen because they cover
the main variables that affect the shear banding intensity parame-
ter, namely, surfactant concentration, temperature, and surfactant/
salt ratio. Fig. 1A shows that the model reproduces the sigmoidal
reduced curves, meaning that the bands are still not fully devel-
oped as discussed elsewhere [43]. The inset in Fig. 1A shows the
same data but represented in the

P
versus _C plot. Here, plateaus

are drawn corresponding to the developed banding flow on the
master dynamic phase diagram. The criterion to locate the plateau
is based on the equal minima in the dissipated energy (Eq. (4))
[37,39]. As observed, the dynamic phase diagram is remarkably
similar to equilibrium liquid–vapor phase diagrams. However,
when the same data are plotted in reduced coordinates, these
curves become anti-symmetric around the non equilibrium critical
point, akin to the equilibrium ferromagnetic transition [36]. Notice
that the stress plateau shrinks as the necp is approached and it van-
ishes at the critical concentration in reduced coordinates (1, 1). The
rheological data of the other two micellar systems also yield the
master dynamic phase diagram (insets in Fig. 1B and 1C), and are
anti-symmetric in reduced coordinates with increasing tempera-
ture (Fig. 1B) or varying salt-to-surfactant ratio (Fig. 1C). These re-
sults suggest that a non-equilibrium critical point, akin to its
equilibrium counterpart, occurs as a thermodynamic variable is
varied and that this phenomenon is a general one for micellar solu-
tions in the shear-banding flow regime.

Fig. 2 depicts plots of birefringence (Dn0) for a 20 wt.% Pluronics
P103 measured at different temperatures and at an identical nor-
malized shear rate within the shear banding region. The normal-
ized shear rate was chosen to pass at or near the necp as
temperature is increased. The dimensionless shear flow curves
for the same system at the measurement temperatures as well as
the coexistence line and the critical point are depicted in the inset,
where the solid lines are the predictions of the model using Eq.
(15); the open circles in the inset indicate the dimensionless shear
rate at which rheo-optical measurements were performed. For iso-
therms below the necp, Dn0 exhibits oscillations with large ampli-
tudes (data d), indicating that the refractive index changes due to
the formation of a second phase induced by shear, inasmuch as
measurements were made within the shear banding region. The
amplitude and frequency of the birefringence oscillations become
even larger as the necp is approached, indicating increasingly erra-
tic concentration and structure fluctuations, which are characteris-
tic of near critical behavior (data indicated by c). It is noteworthy to
remark that a closer approach to the necp is extremely difficult in
rheological experiments, due to the lack of enough temperature
control (<0.01 �C) in existing rheometers. Notice, however, that
above the critical point, within the homogeneous flow region, the
amplitude of the birefringence oscillations damps out (data b)
and vanishes as temperature departs from the critical isotherm
(data a).

Fig. 3 depicts plots of the birefringence variance, n ¼
P
ðDni�

hDniÞ2=hDni2, (being Dni the birefringence at a given time i and hDni
the time-average value) and the normalized dissipated energy ðbGÞ
versus the normalized shear rate for the 20 wt.% Pluronics P103
solution measured at different temperatures. For isotherms outside
the shear banding region (far from the necp), a minimum is ob-
served (Fig. 3B, curves a and b) and small birefringence fluctuations
are detected (Fig. 3A, curve a), indicating the presence of a homoge-
neous phase. Birefringence fluctuation becomes slightly larger as
the shear banding region is approach (Fig. 3B, curve b). Within
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the shear banding region, the emergence of two bands corresponds
to a stable regime with high values in birefringence but with small
variance (curve d). The dissipated energy, in turn, exhibits two min-
ima with identical depth (Fig. 3B, curve d), which correspond to the
normalized shear rates that bound the shear banding region; the
minima diminish in depth and become closer as the necp is ap-
proached. Near the critical point, the dissipated energy exhibits
shallow minima (Fig. 3B, curve c); in fact, because the depths of
the two minima in curve c (Fig. 3B) are quite shallow, data was
amplified near the position of the two minima for clearer observa-
tion (inset in Fig. 3B). In this regard, small perturbations in the sys-
tem may cause strong fluctuations in shear rate (rheo-chaos) in the
neighborhood of the necp. In summary, once the critical isotherm is
surpassed, the oscillations and amplitude of the birefringence damp
out and nearly vanish, resulting in small birefringence variance,
indicating again the formation of a single homogeneous phase.

To distinguish whether the birefringence signals arise out of
stochastic or deterministic processes the main metric and dynam-
ical invariants of the birefringence data, shown in Fig. 2, were cal-
culated. First, the correlation dimension R, which provides with an



Table 2
Lyapunov exponents calculated for the micellar systems for various conditions of
surfactant concentration, temperature and salt /surfactant weight ratio.

CTAT micellar solution
Surfactant concentration (wt.%) 3 5 10 15
Lyapunov exponent 0.001 1.22 0.22 0.17

Pluronics(P103)/water (20 wt.%)
Temperature 30 32 35 36
Lyapunov exponent 0.001 0.007 0.48 0.12

DTAB/NaSal/water
Relationship CS/CD 0.42 1.27 1.69 4.2
Lyapunov exponent 0.8 0.046 0.094 0.01907
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Fig. 5. Isothermal flow susceptibility versus the normalized shear-banding inten-
sity parameter as function of surfactant salt relationships: (h) 5 wt.%, (s) 6 wt.%,
(}) 10 wt.%, (I) 14 wt.%, (M) 21 wt.% for a CPCL–Sal in 0.5 M brine solution
measured at 25 �C. Inset: jDKT j=jD _Cj versus CPCl–Sal concentration as function of
reduced shear rate. The lines are aid-eye. The Lyapunov exponents are in Table 2.
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idea of the geometry of the attractors in phase space in which the
birefringence trajectories lie in the asymptotic limit, were calcu-
lated. Next, the Lyapunov exponent v, which is a measure of the tra-
jectories difference of two neighbors, was calculated. The condition
of chaotic dynamics in a system requires that for this correlation
integral, CR(N, R) > 2 and m > 0. The analysis is done by reconstruct-
ing the phase space embedding the experimental time-series of
birefringence in m dimensions using time delay vectors L, so that
the invariants associated with the dynamics may be calculated
unambiguously. The correlation integral of the set {x1, x2, . . . , xN}
is given by:

CðN;RÞ ¼ 2
NðN � 1Þ

X
i;j

HðR� jxi � xjjÞ with 1 6 i 6 j 6 N; ð17Þ

where H(x) is the Heaviside step function [44,45].
An algorithm [46] that computes the Grassberger–Procaccia

correlation [47] of an attractor from a finite sample of N experi-
mental points was used. This algorithm measures the distance be-
tween all pairs of points of the attractor, but discards distances
higher than a cutoff r0. For small R’s, CR � Rm, where m, the Lyapunov
exponent, gives useful information about the local structure of the
attractor [48]. This exponent can be obtained from the plot of
log CR versus log R (Fig. 4). A plateau in the plot of m(m) versus log R
gives the correct m for a chosen embedding dimension m. The value
of m determines the dynamics type: if m < 0, the dynamics is deter-
ministic, if m is positive but smaller than m, deterministic chaotic
dynamics is observed, and if m > m, the dynamics correspond to
random noise [45].

Fig. 4 shows the log of the correlation versus log of the correla-
tion dimension obtained from the dynamical analysis of the bire-
fringence data disclosed in Fig. 2. This figure reveals that m
becomes positive at temperatures higher than 34 �C, indicating
the onset of chaos at this temperature, followed by a maximum
in the Lyapunov exponent at the necp (Table 2), and a decreased
in m thereafter. The existence of a positive Lyapunov exponent is
the footprint of chaotic dynamics. Incidentally, the Lyapunov coef-
ficients were calculated for values of m of 1, 2, 3 and 4, giving in all
cases the criterion for deterministic chaos, that is, 0 < m < m.

Fig. 5 depicts the isothermal flow susceptibility
jT ½¼ � _C�1ðd _C=dRÞT 	 of CPCl–Sal in 0.5 M brine micellar solutions
at different concentrations versus the reduced shear rate, calcu-
lated at different reduced shear rates for the reduced rheological
data near the necp (not shown). As detailed elsewhere [35], the iso-
thermal flow susceptibility is the non-equilibrium analogous of the
isothermal compressibility. This figure discloses that jT diminishes
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

L
og

 C
R

Log R

Fig. 4. Log of correlation integral versus log correlation dimension, for a 20 wt.%
Pluronics P103/water as function of temperature: (N) 30 �C, (�) 35 �C, (j) 36 �C.
monotonically with reduced shear rate for _C < _Cr; however, at
shear rates within the shear banding region, jT fluctuates from
positive to negative values, which become larger as surfactant
concentration increases at _Cr � 1 (i.e., at the surfactant concentra-
tion where the necp occurs) and leads to the divergence of jT. At
shear rates larger than that at which the shear banding region
ends, jT again becomes small, positive and nearly independent
on surfactant concentration. The inset of Fig. 4 shows the absolute
jT-fluctuations with respect to the dimensionless shear rate,
jDjT j=jD _Cj, versus CPCl-Sal concentration. For concentrations close
to the necp, jDjT j=jD _Cj grows substantially, and near _Cr � 1, it
diverges. Notice that this behavior is similar to that observed for
its equilibrium counterpart, the isothermal compressibility, which
diverges in the neighborhood of the equilibrium critical point.

Fig. 6 depicts data on the experimental coexistence curve
ðD _C ¼ _Cc1 � _Cc2Þ versus # in log–log plot for various micellar sys-
tems examined here. This figure reveals that the width of the re-
duced coexistence curve ð _Cc1 � _Cc2Þ diminishes as # decreases,
and near the critical point _Cc1 � _Cc2 diminishes more rapidly to-
ward zero at the necp, as expected. Inasmuch as only a few data
points were available in this temperature (#) range, the limiting
slope predictions of the BMP model, included as a dashed line, pass
in the vicinity of the data points. According to results presented
elsewhere [35], the critical exponent for the coexistence region
(b) is 5.7; from the experimental data shown in the limiting slope,
taking the average of all data points near the necp, the experimen-
tal critical exponent b is 5.0 ± 0.5.

Fig. 7 shows the normalized power dissipation under shear
banding flow Crr ¼ G0u

N
@rr _cr
@#

� �
r

against # in log–log plot for the
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Fig. 6. Difference of normalized critical shear rates versus the normalized shear-
banding intensity parameter for (j) CPCL–Sal in 0.5 M brine solution measured at
25 �C, (�) CTAT solutions measured at 25 �C, (h) Pluronics(P103)/water 20 wt.%.
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Fig. 7. Normalized power dissipation under shear-banding flow versus the
normalized shear-banding intensity parameter for a (j) CPCL–Sal in 0.5 M
brine solution measured at 25 �C, (�) CTAT solutions measured at 25 �C, (h)
Pluronics(P103)/water 20 wt.%.
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various micellar systems examined here. The data depicts that Crr

increases slowly with decreasing # and then more rapidly as
#? #c. Evidently, Crr diverges as the necp is approached; inciden-
tally, Crr also exhibits strong fluctuations that increase rapidly as
the necp is reached (not shown). Again due to the lack of enough
data closer to the necp, the limiting slope predictions of the model,
included as a dashed line, pass over the available data in this
region. The critical exponent a predicted by the BMP model for
Crr is 2.2 [35]; from the experimental data shown in the limiting
slope, taking the average of all data points closer to the necp, the
experimental value of a is 1.8 ± 0.5.

A similar analysis for the isothermal flow susceptibility jT (not
shown) indicates that this function diverges as # ? #c with a crit-
ical exponent, #, around 7.4 ± 3.2, which is smaller than to the one
predicted by the BMP model (# = 11.5). It is noteworthy that both
_Cc1 � _Cc2 and Crr (Figs. 5 and 6) are predicted well by the model,
although the few points of experimental data cannot enable an
accurate determination of the slope assigned to the critical expo-
nents. For the case of #, however, the experimental error may be
larger due to the rapid divergence of jT (the predicted value of
the this critical exponent is 11.5) and the small amount of data
near the necp.
5. Discussion and conclusions

Experimental rheological and rheo-optical evidences of the
existence of a non- equilibrium critical point induced by shear flow
are presented here. Four different micellar solutions were selected
since the chosen thermodynamic variables (temperature, surfac-
tant concentration or salt/surfactant ratio) are easy to control near
the necp. In addition, these thermodynamic variables are included
in the BMP model through the shear banding intensity parameter.

The experimental shear flow curve plotted in normalized shear
stress and shear rate (

P
versus _CÞ is remarkably similar to the

equilibrium liquid–gas phase transition: both have a coexistence
region, a spinodal region, two metastable regions, and a critical
point. In fact, when the temperature or the surfactant concentra-
tion is increased, the shear banding flow region (coexistence re-
gion) shrinks and disappears at a ‘‘critical’’ temperature or
surfactant concentration, defining a ‘‘critical’’ line (or surface when
an extra component such as a salt is added), because polymer-like
micellar solutions are at least two-component systems. In addition,
due to the flow-concentration coupling, the regions of instability
broaden to include regions of positive slope in the constitutive flow
curve [49]. Consequently, the experimental critical point shifts
downwards in temperature or surfactant concentration. In fact,
rheo-optical data reveal large fluctuations and increasingly erratic
oscillations of the flow birefringence as the necp is approached.
This is related to the flattening of the dissipated energy per unit
time as the necp is approximated and so, small variations in the
control thermodynamic variable produce large fluctuations and
oscillations in the vicinity of the critical point. The Lyapunov anal-
ysis of the birefringence data (Fig. 2) reveals that the shear banding
undergoes a transition from deterministic dynamics to a chaotic
one as temperature approaches the critical one. The Lyapunov
exponents which are positive but smaller than the embedding
dimension, go through a maximum near the necp, indicating
unambiguously that the chaos becomes larger as this critical point
is approached. In fact, other variables such as the difference of crit-
ical shear rates (analogous of the critical isotherm), the isothermal
flow susceptibility (analogous of isothermal compressibility) and
the heat flow dissipation capacity (analogous to the heat capacity)
also exhibit large fluctuations in the neighborhood of the critical
point. This may be a consequence in part due to the coupling of
flow and concentration, which also produces oscillations, long
transient in flow inception and rheo-chaos in the shear banding
flow region. The BMP model reproduces quite well the master flow
phase diagrams and the anti-symmetric reduced flow curves.
Unfortunately, it is not possible to determine accurately the critical
exponents due to the small amount of experimental data, which
diminishes the accuracy in the numerical estimation of the slope
of the plots shown (Figs. 5 and 6). However, the model’s estimates
obtained from plots shown in Figs. 5 and 6 as solid lines (and
dashed lines in the insets) suggest that the values of the critical
exponents are larger than their counterpart equilibrium ones and
similar to the values predicted by the BMP model [35]. This indi-
cates that flow accelerates the divergence of the extended thermo-
dynamic parameters (jT and Crr ) because the approach to the necp
is faster than in equilibrium systems, giving as a result lower crit-
ical points in flow systems. Finally, it is noteworthy that predic-
tions of the extended BMP model with regard to the sigmoidal
flow curve are in agreement with those of the GENERIC formalism
[50].
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