
A Generalized BEC Picture of Superconductors

M. Grether,*[a] M. de Llano,[b] and V. V. Tolmachev[c]

A recent re-examination of BCS theory leads one to devise a

generalized BEC formalism (GBEC), that is, essentially a

boson-fermion (BF) model containing three new ingredients:

(i) Cooper pairs (CPs), in contrast to BCS pairs, as real bosons;

(ii) BF vertex interactions (analogous to electron-phonon

vertices); and (iii) two-hole CPs (2hCPs) accounted for along

with two-electron CPs (2eCPs). In addition to the usual

normal phase at high-enough temperatures T, three

condensed phases emerge at lower temperatures with

substantially higher Tcs than BCS theory. These are: two pure

BEC phases of 2eCPs and of 2hCPs as well as a mixed phase

with both kinds of CPs. BCS theory is precisely recovered

with a mixed phase of equal numbers of both kinds of CPs.

In contrast to the well-known BCS exponential rise from zero

of Tc as function of carrier-number density the GBEC scheme

exhibits the linear rise as function of doping as eminently

observed in high-Tc underdoped superconductors such as

YBCO. VC 2012 Wiley Periodicals, Inc.

DOI: 10.1002/qua.24193

Introduction

Boson-fermion (BF) models of superconductivity were appa-

rently introduced by Ranninger and Robaszkiewicz as early as

1985,[1] Soon, a Bose-Einstein condensation (BEC) BF field theory

by Friedberg and Lee and coworkers appeared.[2] Both these

efforts, however, were binary BF models as they neglected,

apparently for simplicity, the possibility of two-hole Cooper-pair

(CP) bosons. Inclusion of 2h-CPs is essential to make precise

contact with BCS theory possible. They lead to a generalized

BEC (GBEC) formalism[3] describing a ternary BF model. This for-

malism relies on 2e-/2h-CP energies E�ðKÞ phenomenologically,

where K is the CP center-of-mass momentum (CMM) wavenum-

ber. A (generalized) BEC (or macroscopic occupation of a given

state that appears below a certain fixed T ¼ Tc ) was found[3]

numerically a posteriori in the GBEC formalism. Two new

phenomenological dynamical energy parameters

Ef � 1
4 ½Eþð0Þ þ E�ð0Þ� and de � 1

2 ½Eþð0Þ � E�ð0Þ� � 0 can then

be defined, where E�ð0Þ are the (empirically unknown) zero-

CMM energies of the 2e- and 2h-CPs, respectively. The Ef can be

referred to as a ‘‘pseudoFermi’’ energy, while dde is usefully iden-

tified as the Debye energy �hxD. The Ef merely serves as a con-

venient energy scale; it is not to be confused with the usual

Fermi energy EF ¼ 1
2mv2F � kBTF where vF and TF are the Fermi

velocity and Fermi temperature, respectively. If n is the total

number density of charge-carrier electrons of effective mass m,

the Fermi energy EF ¼ ð�h2=2mÞð3p2nÞ2=3 in 3D, whereas Ef is

similarly related to another density nf, which serves to scale the

ordinary electron number density n. The two quantities Ef and

EF, and consequently also n and nf, coincide only when perfect

2e/2h-CP symmetry holds as in the BCS instance.

Distinction Between Cooper and BCS Pairs

Whether the pairwise interfermion interaction is between charge

carriers or between neutral atoms, a CP state of energy E�ðKÞ
will clearly be characterized only by a definite center-of-mass

momentum wavevector K � k1 þ k2 but not definite relative

momentum wavevector k � 1
2 ðk1 � k2Þ. This is because, e.g.,

EþðKÞ itself is extracted from the Cooper eigenvalue equation

V
X
k

0
�h2k2=mþ �h2K2=4m� 2EF � EþðKÞ
� ��1 ¼ 1 (1)

which involves a sum over k. Although deceptively simple, this

is elementary but a crucial point in all that follows.

The concept of a ‘‘Cooper pair’’ contrasts with that of a ‘‘BCS

pair’’ defined[4] as a dimer with fixed K and k (or equivalently

fixed k1 and k2), even though only the case K ¼ 0 is consid-

ered in Ref. [4]. The BCS annihilation bk and creation b
y
k opera-

tors are not quite bosonic since they obey the relations, Ref.

[4] Eqs. (2.11) to (2.13),

bk; b
y
k0

h i
¼ ð1� n�k# � nk"Þdkk0 (2)

b
y
k ; b

y
k0

h i
¼ bk; bk0½ � ¼ 0 (3)

where n�ks � a
y
�ksa�ks are fermion number operators, with

creation a
y
k1s

and annihilation ak1s operators referring to the

fermions, and

bk; bk0f g ¼ 2bkbk0 ð1� dkk0 Þ (4)
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which is not quite fermionic, unless k ¼ k0 when (2) is not

bosonic. The precise Bose commutation relations are the famil-

iar expressions

bk; b
y
k0

h i
¼ dkk0 (5)

b
y
k ; b

y
k0

h i
¼ bk; bk0½ � ¼ 0 (6)

with (5) differing sharply from (2), at least formally. In contrast,

the fermion creation a
y
k1s

and annihilation ak1s operators satisfy

the usual Fermi anti-commutation relations

a
y
k1s

; a
y
k01s0

n o
¼ ak1s; ak01s0

n o
¼ 0 (7)

ak1s; a
y
k01s0

n o
¼ dk1k01dss0 : (8)

The distinction between BCS pairs and CPs holds for the

original or ‘‘ordinary’’ CPs.[5] It also applies to the generalized[6]

(and including many-body effects) Bethe-Salpeter CPs defined

more consistently without excluding two-hole pairs when the

lower limit in the BCS interaction is taken as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F � k2D

p
as in

BCS theory,[4] where kD is defined via the Debye energy

�hxD � �h2k2D=2m.

The BCS-pair annihilation and creation operators for any K �
0 can be defined quite generally as

bkK � ak2#ak1" and b
y
kK � a

y
k1"a

y
k2# (9)

where a
y
k1s

and ak1s obey (7 ) and (8), and as before

k � 1
2 ðk1 � k2Þ and K � k1 þ k2 are the relative and CMM

wavevectors, respectively, associated with two fermions with

wavevectors

k1 ¼ K=2þ k and k2 ¼ K=2� k: (10)

Using the same techniques to derive (2) to (4) valid for K ¼ 0,

the operators bkK and b
y
kK are found[7] to satisfy: (a) the

‘‘pseudo-boson’’ commutation relations

bkK; b
y
k0K

h i
¼ ð1� nK=2�k# � nK=2þk"Þdkk0 (11)

b
y
kK; b

y
k0K

h i
¼ bkK; bk0K½ � ¼ 0 (12)

where nK=2�ks � a
y
K=2�ksaK=2�ks are fermion number operators;

as well as (b) a ‘‘pseudo-fermion’’ anti-commutation relation

bkK; bk0Kf g ¼ 2bkKbk0Kð1� dkk0 Þ: (13)

Our only restriction was that K � k1 þ k2 ¼ k0
1 þ k02. If K ¼ 0

so that k1 ¼ �k2 ¼ k (the only case considered by BCS), and

calling bkK¼0 � bk, etc., (11) to (13) become (2) to (4), as they

should. So, neither BCS pairs with K ¼ 0 0 are bosons as the

relation (11) contains additional terms not[8] present in the usual

boson commutation relations analogous to (5).

To our knowledge, no one has yet succeeded in construct-

ing CP creation and annihilation operators that obey Bose

commutation relations, starting from fermion creation a
y
k1s

and

annihilation ak1s operators, as is postulated in Refs. [9,10] in a

generalized BEC theory that contains BCS theory as a special

case. This postulation is grounded in magnetic-flux quantiza-

tion experiments[11–13] that establish the presence of charged

pairs—albeit without being able (Gough, personal communica-

tion) to specify the sign of those charges. However, although

the eigenvalues of b
y
kKbkK are 0 or 1 in keeping with the Pauli

Exclusion Principle, those of
P

k b
y
kKbkK are evidently 0; 1; 2 � � �

because of the indefinitely many values taken on by the sum-

mation index k: This implies BE statistics and corroborates the

qualitative conclusions reached above. A discussion in greater

detail of this is found in Refs. [14,15].

Generalized BEC Formalism (GBEC)

The GBEC formalism is described in detail in Refs. [9,10]; here

we summarize its main equations. It applies in d dimensions

and is defined by a Hamiltonian of the form H ¼ H0 þ Hint.

The unperturbed Hamiltonian H0 should ideally be, to quote

Leggett[16] ‘‘an appropriate (zeroth-oder) starting point’’

accounting for ‘‘pairs of electronic excitations with charge 2e

that all have the same ground-state wavefunction.’’ Thus, our

H0 corresponds to a non-Fermi-liquid ‘‘normal’’ state which,

besides just fermions, is an ideal (i.e., noninteracting) ternary

gas mixture of unpaired fermions and both types of CPs

namely, 2e and 2h, the latter introduced without loss of gener-

ality. Specifically

H0 ¼
X
k1;s1

�k1a
þ
k1;s1

ak1;s1 þ
X
K

EþðKÞbþK bK �
X
K

E�ðKÞcþK cK (14)

where K is the previously defined CMM wavevector of the

pair, while �k1 � �h2k21=2m are the single-electron, and E�ðKÞ
the 2e-/2h-CP phenomenological, energies. Here aþk1 ;s1 (ak1;s1 )

are creation (annihilation) operators for fermions and simi-

larly bþK (bK) and cþK (cK) for 2e- and 2h-CP bosons, respec-

tively. These b and c operators depend only on K and so are

distinct from the BCS operators depending on both K and

the relative k � 1
2 ðk1 � k2Þ discussed in Ref. [4] Eqs. (2.9)–

(2.13) for the particular case of K ¼ 0 and shown there not

to satisfy the ordinary Bose commutation relations. But

because two pairs cannot exactly overlap in real space with-

out violating the Pauli Principle, they are often considered

‘‘hard-core bosons,’’ albeit of hard-core radii 0þ. For this rea-

son, one can probably not expect to be able to construct

the b and c operators directly from the a operators to estab-

lish that b and c obey Bose commutation relations precisely.

Nonetheless, these pairs stand for objects that can easily be

seen to obey Bose-Einstein statistics as, in the thermody-

namic limit, an indefinitely large number of k values corre-

spond to a given K value defining an energy level EþðKÞ or

E�ðKÞ: This is all that is needed to ensure the BEC (or macro-

scopic occupation of a given state that appears below a cer-

tain fixed T ¼ Tc) found[9,10] numerically a posteriori in the

GBEC theory.
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Furthermore, being noninteracting (except for the Pauli Prin-

ciple restriction mentioned), CPs satisfy the Ehrenfest-Oppen-

heimer[17] criteria for two clusters of charges to conserve a

specific kind of statistics, either Bose or Fermi. These assumed

properties are justified a posteriori when in the GBEC theory:

(a) the BCS gap equation is recovered for equal numbers of

both kinds of pairs, both in the K ¼ 0 state and in all K 6¼ 0

states taken collectively, and in weak coupling, regardless[18] of

CP overlaps; and (b) the precise familiar BEC Tc formula

emerges[9] when (i) 2h-CPs are ignored, the Friedberg–Lee

model[19,20] equations are recovered and (ii) one switches off

the BF interaction. The only difference in the recovered BEC Tc
formula is that the boson number density now depends on Tc,

as expected in a BF gas mixture where boson populations are

T-dependent. Finally, we note that fermion scattering terms[21]

are not included in (14) as they are not expected to be sub-

stantial, say, in the BCS limit of high electron density where

they would be the most effective, which in turn is included in

the GBEC model as a special case.

The interaction Hamiltonian Hint in the expression

H ¼ H0 þ Hint describes the formation and disintegration of

CPs, respectively, from and into unpaired electrons and

unpaired holes. It is further simplified by dropping all K 6¼ 0

terms. This is also done in BCS theory in its full} Hamiltonian

H ¼ H0 þ Hint, but kept in the GBEC theory in its unper-

turbed H0 portion (14). The GBEC Hint is made up of four dis-

tinct BF interaction vertices each with two-fermion/one-

boson creation and/or annihilation operators. These vertices

depict how unpaired electrons (subindex þ) [or holes (sub-

index � )] are involved in the formation and disintegration

of the 2e- (and 2h-) K ¼ 0 CPs in the d-dimensional system

of size L, namely.

Hint ¼ L�d=2
X
k

fþðkÞfaþk;"aþ�k;#b0 þ a�k;#ak;"bþ0 g

þ L�d=2
X
k

f�ðkÞfaþk;"aþ�k;#c
þ
0 þ a�k;#ak;"c0g

(15)

where k � 1
2 ðk1 � k2Þ as before is the relative momentum

wavevector of a CP. The interaction vertex form factors f�ðkÞ
in (15) are essentially the Fourier transforms of the 2e- and 2h-

CP intrinsic wavefunctions, respectively, in the relative coordi-

nate of the two fermions. The GBEC theory is thus reminiscent

of the Sommerfeld theory of the electron gas combined with

the Debye picture of the phonon gas which together give a

binary mixture of noninteracting electrons and phonons, a pic-

ture which describes quite well low-T specific heats in metals

and insulators. But to explain either resistance and supercon-

ductivity, they must then be allowed to interact via the

Fr€ohlich electron-phonon interaction[22] of a form analogous

to (15) but without hole terms.

The grand (sometimes called the Landau) thermodynamic

potential X associated with the full Hamiltonian H ¼ H0 þ Hint

given by (14) and (15) is then constructed via (Ref. [23] Eq.

4.14) the definition

XðT ; Ld;l;N0;M0Þ ¼ �kBT ln Tre�bðH�lN̂Þ
h i

(16)

where ‘‘Tr’’ stands for ‘‘trace’’ and b � 1=kBT with T the absolute

temperature. It is related to the system pressure P, internal

energy E and entropy S by X ¼ �PLd ¼ F � lN ¼ E � TS� lN,
where F is the Helmholtz free energy.

Following the Bogoliubov prescription,[24] one sets bþ0 ; b0
equal to

ffiffiffiffiffiffi
N0

p
and cþ0 ; c0 equal to

ffiffiffiffiffiffi
M0

p
in (15), where N0 is the

T-dependent number of zero-CMM 2e-CPs and M0 likewise for

2h-CPs. This allows exact diagonalization for any coupling,

through a Bogoliubov transformation of the aþ; a fermion

operators, giving after some algebra

XðT ; Ld; l;N0;M0Þ=Ld ¼Z1
0

d�Nð�Þ½�� l� Eð�Þ� � 2kBT

Z1
0

d�Nð�Þlnf1þ exp½�bEð�Þ�g

þ ½Eþð0Þ � 2l�n0 þ kBT

Z1
0

deMðeÞlnf1� exp½�bfEþð0Þ þ e� 2lg�g

þ ½2l� Eð0Þ�m0 þ kBT

Z1
0þ

deMðeÞlnf1� exp½�bf2l� Eð0Þ þ eg�g:

(17)

Here Nð�Þ and MðeÞ are respectively the electronic and

bosonic density of states, while

Eð�Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� lÞ2 þ D2ð�Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� lÞ2 þ n0f 2þð�Þ þm0f 2�ð�Þ

q
(18)

since Dð�Þ ¼ ffiffiffiffiffi
n0

p
fþð�Þ þ ffiffiffiffiffiffi

m0
p

f�ð�Þ where fþð�Þ and f�ð�Þ
can be constructed as in Ref. [9] as non-overlapping

Heaviside functions so that fþð�Þf�ð�Þ � 0, while

n0ðTÞ ¼ N0ðTÞ=Ld and m0ðTÞ ¼ M0ðTÞ=Ld are the 2e-CP and

2h-CP number densities, respectively, of BE-condensed (i.e.,

with K ¼ 0 ) bosons.

Minimizing F with respect to N0 and M0, while simultane-

ously fixing the total number N of electrons by introducing

the electron chemical potential m in the usual way, namely

@F

@N0
¼ 0;

@F

@M0
¼ 0; and

@X
@l

¼ �N (19)

ensures an equilibrium thermodynamic state of the system

with volume Ld at temperature T and chemical potential l. Evi-
dently, N includes both paired and unpaired CP electrons. The

following relies on the relation Ef � 1
4 ½Eþð0Þ þ E�ð0Þ� men-

tioned above, which in turn implies that

E�ð0Þ ¼ 2Ef � de: (20)

Some algebra then leads to the three coupled integral Eqs.

(7)-(9) of Ref. [9] with fþð�Þf�ð�Þ � 0. These expressions can be

simplified to the two ‘‘gap-like equations’’

½2Ef þ de� 2lðTÞ� ¼ 1

2
f 2

ZEfþde

Ef

d�Nð�Þ
tanh 1

2 b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�� lðTÞ�2 þ f 2n0ðTÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�� lðTÞ�2 þ f 2n0ðTÞ

q
(21)
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½2lðTÞ � 2Ef þ de� ¼ 1

2
f 2
Z Ef

Ef�de
d�Nð�Þ

tanh 1
2 b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�� lðTÞ�2 þ f 2m0ðTÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�� lðTÞ�2 þ f 2m0ðTÞ

q
(22)

and a single ‘‘number equation’’ (which guarantees charge con-

servation)

2nBðTÞ � 2mBðTÞ þ nfðTÞ ¼ n: (23)

where

nfðTÞ �
Z 1

0

d�Nð�Þ 1� �� l
Eð�Þ tanh

1

2
bEð�Þ

� �
: (24)

In (23) n � N=Ld is the number density of electrons while

nBðTÞ and mBðTÞ are, respectively, the number densities of 2e-

and 2h-CPs in all bosonic states (both K ¼ 0 as well as K > 0 ).

Evidently, nfðTÞ in (24) is evidently the number of unpaired

electrons. The ‘‘complete’’ number equation (23) can be rewrit-

ten more explicitly as

2n0ðTÞ þ 2nBþðTÞ � 2m0ðTÞ � 2mBþðTÞ þ nfðTÞ ¼ n (25)

where nBðTÞ is

nBðTÞ � n0ðTÞ þ nBþðTÞ where

nBþðTÞ �
Z1
0þ

deMðeÞ½exp bfEþð0Þ þ e� 2lg � 1��1 (26)

and similarly for mBðTÞ which is

mBðTÞ � m0ðTÞ þmBþðTÞ where

mBþðTÞ �
Z 1

0þ
deMðeÞ½expbf2l�E�ð0Þþeg�1��1:

(27)

Clearly, mBþðTÞ are precisely the number of ‘‘pre-formed’’

K > 0 2h-CPs, and nBþðTÞ that of 2e-CPs. These CPs are non-

condensed in contrast with the K ¼ 0 CPs which are BE con-

densed. Evaluating the integrals requires knowing the bosonic

density-of-states MðeÞ of CPs of energy e; which in turn

requires knowing the dispersion relation e vs. K. When the

number densities of 2eCPs and 2hCPs are equal in both K ¼ 0

and in all K 6¼ 0 states, one derives the central result that the

original crossover picture for unknowns DðTÞ and lðTÞ is now

supplemented by the central relation

DðTÞ ¼ f
ffiffiffiffiffiffiffiffiffiffiffi
n0ðTÞ

p
¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m0ðTÞ

p
(28)

that links the order parameters of BCS and BEC theories quite

simply.

All three order-parameter functions DðTÞ; n0ðTÞ and m0ðTÞ
have the familiar ‘‘half-bell-shaped’’ forms. Namely, they are

zero above a certain critical temperature Tc, and rise mono-

tonically upon cooling (lowering T) to maximum values Dð0Þ;

n0ð0Þ and m0ð0Þ at T ¼ 0: The energy gap DðTÞ is the order

parameter describing the superconducting (or superfluid) con-

densed state, while n0ðTÞ and m0ðTÞ are the BEC order param-

eters depicting the macroscopic occupation that occurs below

Tc in a BE condensate.

This DðTÞ is precisely the BCS energy gap if the boson-fer-

mion coupling f is made to correspond to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V�hxD

p
within the

GBEC formalism. Evidently, the BCS and BEC Tc s are the same.

Writing (28) for T ¼ 0 and dividing this into (28) gives the

much simpler f-independent relation involving order parame-

ters normalized to unity in the interval ½0; 1�, specifically

DðTÞ=Dð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0ðTÞ=n0ð0Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0ðTÞ=m0ð0Þ

p
�!
T!0

1

�!
T�Tc

0: (29)

The first equality, apparently first obtained in Ref. [25], con-

nects in a simple way the two heretofore unrelated ‘‘half-bell-

shaped’’ order parameters of the BCS and the BEC theories.

The second equality[9,10] implies that a BCS condensate is pre-

cisely a GBE condensate of equal numbers of 2e- and 2h-CPs.

Since (29) is independent of the particular vertex dynamics of

the problem, it can be expected to hold for either supercon-

ductors or fermionic superfluids such as ultracold fermionic

atoms. Using (20) yields precisely the BCS gap equation for all

T, Eq. (3.27) of Ref. [4], provided one picks Ef ¼ l, namely

1 ¼ k
Z �hxD

0

dn
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ D2ðTÞ
q tanh

1

2
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ D2ðTÞ

q
(30)

where n � �� l, since k � NðEFÞV ¼ f 2NðEFÞ=2de while

nBðTÞ ¼ mBðTÞ [see relation between V and f stated just above

(28)], and provided NðeÞ can be taken outside the integral

signs in (21) and (22). This last operation is exact in 2D when

Nð�Þ is independent of Nð�Þ and is otherwise a good approxi-

mation if �hxD � l in 3D.

However, the choice Ef ¼ l cannot be justified, to our

knowledge, without assuming within the GBEC that

nBðTÞ ¼ mBðTÞ as well as n0ðTÞ ¼ m0ðTÞ; i.e., by explicitly rec-

ognizing the existence of 2h-CPs along with 2e-CPs and taking

them in equal or 50-50 proportions.

Condensation Energy

The T ¼ 0 condensation energy per unit volume according to

the GBEC theory, given (18), is

Es � En
Ld

¼ XsðT ¼ 0Þ � XnðT ¼ 0Þ
Ld

(31)

since for any T the Helmholtz free energy

F � E � TS ¼ Xþ lN, with S the entropy, and l is the same

for either superconducting s or normal n phases with internal

energies Es and En, respectively. In the normal phase

n0ðTÞ ¼ 0, m0ðTÞ ¼ 0 so that DðTÞ ¼ 0 for all T � 0, so that

(18) reduces to
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XnðT ¼ 0Þ
Ld

¼
Z 1

0

d�Nð�Þð�� l� j�� ljÞ ¼ 2

Z l

0

d�Nð�Þð�� lÞ

¼ 2

Z 0

�l
dnNðnÞn: ð32Þ

For the superconducting phase, and when n0ðTÞ ¼ m0ðTÞ
and nBðTÞ ¼ mBðTÞ hold one deduces from (20) and (18 ) that

l ¼ Ef . Putting DðT ¼ 0Þ � D in (18) as well as de � �hxD, while

using (20), gives

XsðT ¼ 0Þ
Ld

¼ 2�hxDn0ð0Þ þ
Z 1

�l
dnNðnÞ n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ D2

q� �

¼ 2�hxDn0ð0Þ þ 2

Z ��hxD

�l
dnNðnÞn� 2

Z �hxD

0

� dnNðnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ D2

q
: ð33Þ

The first factor of 2 in the last line comes precisely from the

condition n0ðTÞ ¼ m0ðTÞ while the last two factors of 2 arise

from the condition that the magnitudes of fþð�Þ and f�ð�Þ be

the same and equal to, say, f.

Subtracting (32) from (33) and putting NðnÞ ffi Nð0Þ, the den-

sity of electronic states at the Fermi surface [designated before

as NðEFÞ ] yields

Es � En
Ld

¼ 2�hxDn0ð0Þ þ 2Nð0Þ
Z �hxD

0

dn n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ D2

q� �

¼ 2�hxDn0ð0Þ þ Nð0Þ
"
ð�hxDÞ2 � �hxD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�hxDÞ2 þ D2

q

þ D2 ln
D

�hxD þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�hxDÞ2 þ D2

q
#

ð34Þ

exactly, by standard integrations. Using the expression that fol-

lows from (30) for T ¼ 0 gives Eq. (2.40) of Ref. [4], namely

D ¼ �hxD

sinhð1=kÞ (35)

where k is related to the GBEC BF interaction parameter f

through

k � VNð0Þ ¼ f 2Nð0Þ=2�hxD: (36)

This makes the first term on the rhs of (34) exactly equal to

D2Nð0Þ=k which in turn can be shown to cancel exactly

against the log term if one recalls the hyperbolic-function

identity sinh2x þ 1 � cosh2x. Thus, the GBEC theory condensa-

tion energy (34) is identical for any coupling to that of BCS

theory, Eq. (2.42) of Ref. [4], namely

Es � En
Ld

¼ Nð0Þð�hxDÞ2 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D=�hxDð Þ2

q� �

!
k!0

� 1

2
Nð0ÞD2 1� 1

4

D
�hxD

� �2

þ O
D

�hxD

� �4
" #

:

(37)

This energy, associated with the expectation value of the

BCS trial wavefunction gives a rigorous upper bound to the

exact ground-state energy of the BCS Hamiltonian. Empirically,

for niobium (Nb, bcc, Tc ’ 9:3K, critical magnetic field

Hc ’ 160 kA=m ) the condensation energy to be compared

with the BCS result (37) works out to be just 2� 10�6 eV/

atom.[26] The equivalence of (34) and (37) seems to suggest

that, as in the GBEC theory, there are no pair-pair interactions

in the BCS theory either, as is evident from Hamiltonians (14)

and (15) as well as the well-known BCS Hamiltonian.

The octant depicted in Figure 1 illustrates the applicability

at any temperature T and any electron concentration n of the

BCS-Bose crossover picture (shaded plane) and the BCS theory

(forefront of said plane), both schemes with the familiar

dimensionless coupling k � NðEFÞV where V is the net attrac-

tive interelectronic interaction causing the formation of CPs.

On the other hand, the applicability of the GBEC formalism

spans the entire octant with vertical and horizontal axes

defined by m0ðT ; nÞ and n0ðT ; nÞ, respectively.

Results and Discussion

Numerical elimination of lðT ; nÞ has shown that, in addition to

a normal phase defined by n0ðT ; nÞ ¼ m0ðT ; nÞ ¼ 0 at high T,

Figure 1. Parameter octant defined by the two condensate densities

n0ðTÞ � 0 and m0ðTÞ � 0 as well as the (also non-negative) inverse

1=k � 0 of the interelectronic BCS dimensionless coupling k � 0, and ap-

plicable in principle at all temperatures T. GBEC describes a ternary gas

and applies in the entire octant. The BCS-Bose crossover theory applies

only on the shaded plane defined by n0ðTÞ � m0ðTÞ provided the addi-

tional restriction nBþðTÞ ¼ mBþðTÞ is imposed whereby the total number

of 2p (two-electron) noncondensate CPs equals that of 2h (two-hole) CPs.

BCS theory is valid along the forefront of the shaded plane where k � 1
of the shaded BCS-Bose crossover plane. For quadratically dispersive

bosons the usual BEC theory ensues at the origin of the octant where

m0ðTÞ ¼ 0 for all T and n0ðTcÞ ¼ 0, giving there the implicit expression

Tc ’ 3:31�h2nBðTcÞ2=3=2mkB. This has the same form as the standard

explicit BEC Tc -formula for mass 2m bosons and where the boson number

density nB is, of course, independent of Tc.
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at lower temperatures three condensed phases appear: two

pure phases of 2e-CP- and 2h-CP-BE-condensed states and

one mixed phase with arbitrary proportions of both kinds of

BE-condensed CPs. Figure 2 shows the phase boundaries for

the specific set of BCS interaction parameters k ¼ 1=2 and

�hxD ¼ 10�3EF. Figure 3 shows the sharp linear rise in n=nf of

Tc predicted by the GBEC formalism, this contrasts with the ex-

ponential rise predicted by BCS theory.

In addition, the multiple GBEC-predicted Tc values at the

same n=nf would seem to suggest a possible explanation, to

be explored in the near future, for the intriguing experimental

fact emphasized by Hirsch (Ref. [28] section 6) that regardless

of whether charge carriers above Tc are holes or electrons,

they are always electrons below Tc.

Conclusions

The GBEC formalism therefore predicts the observed[29] linear

rise of Tc with charge-carrier density (e.g., doping, as in under-

doped cuprates such as YBaCuO) in contrast with the expo-

nential rise of BCS theory. The hopefully practical outcome of

the BCS-BEC unification ensuing from that formalism is

enhancement in Tc by up to four orders-of-magnitude in 3D.

These enhancements fall within empirical ranges for 2D and

3D ‘‘exotic’’ SCs, whereas BCS Tc values remain much lower—

being within the empirical ranges for conventional, elemental

SCs using standard interaction-parameter values. Lastly, room-

temperature superconductivity is possible for a material with a

Fermi temperature TF 
 103K, with the same electron-pho-

non[30] interaction parameters used in BCS theory for conven-

tional SCs.

Keywords : Cooper pai r s � Base-E inste in condensa-

tion � superconductors � superfluids
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