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Abstract
Even though realistic one-dimensional experiments in the field of half-metallic
semiconductors are not at hand yet, we are interested in the underlying fundamental physics.
In this regard we study a one-dimensional ferromagnetic Kondo lattice model, a model in
which a conduction band is coupled ferromagnetically to a background of localized
d moments with coupling constant JH, and investigate the T = 0 phase diagram as a function
of the antiferromagnetic interaction J between the localized moments and the band-filling n,
since it has been observed that doping of the compounds has led to formation of magnetic
domains. We explore the spin-polaron formation by looking at the nearest-neighbour
correlation functions in the spin and charge regimes for which we use the density matrix
renormalization group method, which is a highly efficient method to investigate
quasi-one-dimensional strongly correlated systems.

(Some figures may appear in colour only in the online journal)

1. Introduction

Strongly correlated electronic systems are best exemplified in
the group of transition-metal and rare-earth compounds. Their
half-metallic properties and the possibility of applications in
spin-driven devices have triggered intense research in the
area of materials science. An example of such materials is
the group of manganites with a perovskite structure: the
single layered compound LaxSr1+xMnO4 [1], the bilayered
compound La2−2xSr1+2xMn2O7 [2] and the cubic compound
La1−xSrxMnO3 [3]. The magnetotransport of manganites, and
in general of ferromagnetic semiconductors, is thoroughly
reviewed in [4], where a temperature dependence of the
resistivity is described by the magnetoimpurity scattering
model there proposed in the framework of the s–d model.
Also, a review on some modern approaches on half-metallic
ferromagnets is found in [5]. The s–d model, also known

as the ferromagnetic Kondo lattice model (KLM), is a
generic model to study electrons in a crystal which can be
categorized into two subgroups: those electrons which are
mobile, the s electrons, not necessarily in the s state, and
those electrons which are located into partially occupied d or
f shells. Explicitly, the s–f model is studied in relation to the
construction of electronic states in the spin-wave region at low
temperatures in [6–8]. With transition-metal ions, as is the
case of Mn ions in the compounds mentioned above, placed in
a crystalline environment of definite symmetry, their d orbitals
undergo a break of degeneracy due to the crystal field resulting
in three t2g low-energy orbitals and two eg high-energy
state orbitals. Furthermore, lattice effects are also thought to
play an important role in the observed insulating behaviour
related to a paramagnetic–ferromagnetic transition in the
high-temperature regime [9, 10]. Considering that in the case
of manganites the d orbitals are not doubly occupied, the t2g
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orbitals generate a localized spin background ESi with S = 3/2
in which electrons move in a linear combination of the two
eg orbitals obeying Hund’s rule, which aligns electron spins
ferromagnetically when they are on a ESi site. Electron mobility
is then enhanced if the localized ions are ferromagnetically
aligned or restrained in an antiferromagnetic environment.
In this regard the ferromagnetic KLM succeeded in
explaining the underlying connection between magnetic
correlations and spin-dependent transport [11]. In the case of
manganites, it is strongly believed that the double-exchange
mechanism alone would not suffice to fully understand their
magnetic and charge ordering properties, since doping in
these materials gives rise to a whole world of magnetic
phases from which a consensus regarding the nature of
a true ground state in manganites has not yet been
reached. Charge order observed in experiments is related
to short-ranged antiferromagnetic correlations between the
localized spins which break the symmetry of the electron
hopping energies [12]. To account for such correlations,
antiferromagnetic superexchange interactions are considered
such that antiferromagnetic phases, for example in the
undoped case of LaMnO3, can be explained. At intermediate
band-fillings, however, ferromagnetic interactions, which
favour delocalization, and antiferromagnetic interactions
between the t2g spins, are competing interactions whose
effects have been studied in several intervals. Because
of the three t2g levels, models with large S values have
been proposed and classical approximations, i.e. in the
limit of JH → ∞, have been studied [13–15]. On-site
Coulomb repulsion U is likewise a parameter which has been
considered. From results reported in [13], U drives a phase
separation for finite superexchange interactions. In [16, 17] a
less determinant influence of U on the systems was reported,
which is especially the case when classical spins are used.

In this work we investigate numerically the ground-state
phase diagram of the one-dimensional Kondo lattice model
as a function of the superexchange coupling between
nearest-neighbour localized spins as well as a function of
the electronic concentration. We use the density matrix
renormalization group, which is an efficient method to
investigate low-dimensional, many-body systems rendering
an accurate description of ground-state properties. We
calculate nearest-neighbour spin–spin correlations in order
to analyse the magnetic structures generated within different
parameter regions.

2. Model and method

We consider the one-dimensional ferromagnetic Kondo
lattice model along with superexchange interactions between
localized spins with total Hamiltonian

Ĥ = −t
∑
i,σ

c†
i,σ ci+1,σ + h.c.

− JH

∑
i

ESi · Eσi + J
∑

i

ESi · ESi+1, (1)

where c†
i,σ (ci,σ ) is the creation (annihilation) operator with

spin σ (=↑,↓) at site i and t = 1 is the nearest-neighbour

Figure 1. The Kondo lattice model with superexchange interaction
J between localized ES spins. The electrons Eσ in the conducting band
are coupled ferromagnetically with the localized spins through the
Hund coupling constant JH.

hopping matrix, which will set our energy scale. ESi is the
localized spin operator on site i and Eσi is the electron spin.
See figure 1. The Hund and superexchange coupling, JH > 0
and J ≥ 0 respectively, are given in units of t. The KLM
alone gained a great deal of attention due to its applicability
in the area of heavy-fermion systems [18]. Furthermore, in
the dynamic research field on low-dimensional devices, the
one-dimensional version of the KLM is a plausible model to
investigate transport properties in structures where a quantum
wire is coupled to a ferromagnetic spin chain [19]. The
ground-state phase diagram for the KLM is clear only in
extreme cases, i.e., at very low carrier concentrations, where
for all |JH| a ferromagnetic phase is identified [20–22], and
at half-filling, where for small interactions Kondo singlet
formation and Ruderman–Kittel–Kasuya–Yosida (RKKY)
interactions occur [23]. In the model of equation (1)
ground-state properties as a function of the competing
interactions are less well understood. At intermediate values
of the charge concentration, as is the case of the doped
materials described in section 1, the model has posed a
significant challenge in materials science since the magnetic
structures arising from key combinations of parameter values
do not seem to converge to the same place, apparently
making the model under consideration tremendously sensitive
to the underlying microscopic structure. Measurement of
ground-state properties of the model in equation (1) are
carried out using the density matrix renormalization group
(DMRG), a well established method which has successfully
handled an otherwise exponentially increasing Hilbert
space of a low-dimensional, many-body, strongly correlated
system [24–29]. Rooted in the numerical renormalization
group by Wilson [30], the DMRG method addresses the
problem of interacting quantum lattice models by building up
iteratively a system from block units representing fermionic
or bosonic degrees of freedom. In contrast to the numerical
renormalization group by Wilson, which is a method in
momentum space, the DMRG method is a real-space method
which variationally optimizes the ground state of a given
system immersed in a particle bath or reservoir. Treatment of
the full Hamiltonian is tackled by performing a systematic
decimation of the complete Hilbert space from which a
smaller sector of interest is chosen as the subset of the
first m most probable states obtained through diagonalization
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Figure 2. Density–density correlation function C(i, i0), with i0 = 3,
as a function of the band-filling n with JH/t = 8.0 and J/t = 0.04.

of the density operator of the system. The error generated
by the truncation can be examined at every iteration by
adding up the weight of the density matrix states discarded.
After convergence of the ground-state energy is reached,
one can directly measure static expectation values of single
operators as well as correlation functions. A great amount
of previous work in which the KLM plus superexchange
interaction problem is studied also using DMRG is already
available [13, 14, 16, 17, 21, 22, 31], and we expect that
our findings could confirm some of these results and incline
the balance towards a better understanding of the problem.
In this work we construct a linear chain of length L = 24
sites with one conduction band reminiscent of the eg level,
which will be coupled to a localized spin-1/2 chain with Hund
coupling JH/t = 8.0. Localized spins will be left to interact
via superexchange coupling interaction with coupling values
J/t = 0, 0.01, 0.02, 0.03 and 0.04. We present measurements
for particle density, density–density and nearest-neighbour
spin–spin correlation functions to investigate in some detail
the structure of the magnetic ordering away from the
half-filled case. In order to achieve better convergence results,
the systems modelled in equation (1) are embedded into the
DMRG method under open boundary conditions and at least
512 matrix-density states are kept, with a maximum truncation
error obtained of approximately 10−6.

3. Results and discussion

To investigate the possible effect of a changing carrier
concentration associated with spin-polaron formation in the
model of equation (1), we measured the density–density
correlation function

C(i, i0) = 〈nini0〉 − 〈ni〉〈ni0〉 (2)

as a function of the band-filling. In figure 2 we show
our results for C(i, i0) with superexchange coupling J/t =
0.04, although these results hold also for all the other J
values in our interval, signalizing that the antiferromagnetic
interaction between nearest-neighbour localized spins has

Figure 3. Particle density as a function of the band-filling n with
JH/t = 8.0 and J/t = 0.04.

Figure 4. Phase diagram in the spin regime for the model in
equation (1) as a function of the band-filling n and the
superexchange coupling J. For very low densities a ferromagnetic
phase is found, whereas an almost full antiferromagnetic phase,
∼af, is found for higher density and stronger superexchange
coupling. In the intermediate regime several magnetic structures are
found and described in detail in subsequent figures.

no effect whatsoever on the conducting band regardless
of the band-filling. From these results, the formation of
charge-density waves is ruled out for our systems. On the
other hand, if we look at the plain average particle density,
〈ni〉, shown in figure 3, one finds finite-size effects such as an
oscillating behaviour in the particle distribution. For very low
densities the amplitude in the charge-density oscillations is
markedly smaller than for densities closer to half-filling, while
for a quarter-filling, the particle density distributes rather
evenly along the chain.

The ground-state phase diagram in the spin regime was
investigated by computing the nearest-neighbour spin–spin
correlations on the localized sites 〈ESi · ESi+1〉 and, as
expected, a known magnetic behaviour was found in extreme
cases whereas for intermediate electronic concentrations spin
arrangements associated to, although not only determined
by, charge ordering were observed. Our results on the phase
diagram are summarized in figure 4. In [20, 21] the KLM
(Hund’s model in the last reference) was investigated in
the limit of low carrier concentrations and a ferromagnetic
ground state was found. Such results correspond to the top-left
corner in the phase diagram shown in figure 4, where J = 0.
We also report a ferromagnetic phase for other values of

3



J. Phys.: Condens. Matter 24 (2012) 335601 Y Arredondo et al

the superexchange interaction J in the low-density limit. At
the other extreme, at the bottom-right corner, the system
with n = 3/4 and J/t = 0.04 displays an antiferromagnetic
ground state up to extremely weakly polarized regions at
both ends of the chain. In going from one to the other
extreme of the phase diagram, an uneven evolution of the
magnetic structures in the ground state is observed. Upon
increasing both the carrier concentration and the value of
J, spin fluctuations become relevant and generate different
ground states, gradually turning the ferromagnetic state into
an antiferromagnetic one close to half-filling. In figure 5 we
show results for the static spin structure factor Szz,

Szz(q) =
1
L

∑
i,j

ei(rj−ri)q〈Sz
i S

z
j 〉. (3)

The steadiest magnetic structure was found for the system
with a quarter-filled band and J > 0, with wavevector q =
π/2. For the n = 2/3 case, the spin structure factor does
not stabilize as quickly as in the former case. The peaks
locate very close to q = 2π/3, and for J/t = 0.01 there is
a broader peak at q = π/4. For a band-filling of n = 3/4,
there is a steady phase for 0 ≤ J/t < 0.03. For J/t = 0.04, the
peak departs slightly outwards from the expected value and a
broader peak is localized at q = π/4. In [21] structures found
at commensurate wavevectors were labelled as island-like
phases, while those found at incommensurate wavevectors
were called spiral phases which stands in close relation to the
real-space form of the spin–spin correlation function, which
we will look at in the coming lines. To gain a deeper insight
into the found magnetic structures and to also relate them
to the influence of the charge distribution to the different
magnetic phases, we plotted for intermediate band-fillings
the average particle density along with the local spin–spin
correlation function. The phase for n = 1/2 is highly uniform,
just like the particle density, and extends to all values of J; see
figure 6. Such a phase corresponds to an island phase where
the localized spins order pairwise in antiferromagnetically
aligned polarons as in ↑↑↓↓ · · · ↑↑↓↓. The three phases
above described, i.e. the ferromagnetic phase at low densities,
the antiferromagnetic at densities close to half-filling, and the
island phase at exactly a quarter-filling, have been previously
observed in other numerical studies such as [17]. In [13], as
well as in [14], their results for the phase diagram, which are
alike in their cases, disagree with our results for 1/2 < n < 1,
mainly because they study systems with localized 3/2-spins
or classical spins, respectively, which are much greater than
in our case. In particular, at quarter-filling they both report
ferromagnetic phases where we report an island phase instead.
The magnetic phase diagram for the ferromagnetic Kondo
model has also been studied in [15]. Their and our results
coincide for low densities, finding the ferromagnetic phase.
Our incommensurate spin correlations for higher densities
agree as well with their results.

With band-fillings greater than n = 1/2, a rich variety
of magnetic orderings starts appearing as a function of J
and can be related to the charge modulation corresponding
to these particular concentrations. For n = 2/3 three different
regions establish along the chain, a left block with pairwise

Figure 5. Spin structure factor for different values of the
superexchange coupling J and for different band-fillings. The
phases found are further detailed in the coming figures and text.

Figure 6. Particle density and nearest-neighbour spin–spin
correlation function for n = 1/2 and J = 0.04t. The magnetic phase
found consists of spins ordered pairwise forming polarons ordered
antiferromagnetically as in ↑↑↓↓↑↑↓↓.

polarons aligned in the same direction and separated by a
single spin aligned antiferromagnetically, a central block with
J-dependent polarization, and a right block also with pairwise
polarons all aligned in the same direction, antiparallel to the
direction of the polarons in the left block, and separated
also by a single spin aligned antiferromagnetically. See
figures 7–10. For all values of J the order in both the left
and right blocks remains unchanged, whereas an evolution
into antiferromagnetic correlations is driven for increasing
J only in the central block. For J/t = 0, 0.01 there form
three spin-polarized zones arranged antiferromagnetically.
With J/t = 0.02, 0.03 spin flips in the central sites of the block
occur leaving pairwise polarons still antiferromagnetically
aligned. Once with J/t = 0.04, another pair of spin flips
takes place leaving the central block with antiparallel arranged
single spins. In all cases the peaks of the correlation function
are associated with the positions of the minima of 〈ni〉, an
effect signalizing that it is actually holes around which the
magnetic polarons form [13]. For n = 3/4 the magnetic phase
shown in figure 11 extends over the superexchange coupling
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Figure 7. Particle density and nearest-neighbour spin–spin
correlation function for n = 2/3 and J/t = 0.0. Two polaronic
structures with three spins each and aligned in opposite directions
are found around the middle of the chain.

Figure 8. Particle density and nearest-neighbour spin–spin
correlation function for n = 2/3 and J/t = 0.02. The influence of
the superexchange coupling causes spin flips around the middle of
the chain, generating structures of two-spin polarons.

from J/t = 0 up to 0.03. It consists of an arrangement
of two-spin polarons antiferromagnetically ordered and
intercalated with ↓↑ and ↑↓ spin pairs. With J/t = 0.04 the
spins align antiferromagnetically along the chain and only
two-spin polarons barely survive at both ends of the system.
See figures 12 and 13. Note that, in this case, the valleys in the
charge distribution do not pin a polaron anymore; however,
they are still related to the peaks in the spin–spin correlation
function. It is interesting to observe that, although the phase
shows antiferromagnetic correlations up to the endings of the
chain, such results are not reflected in the spin structure factor.
The evolution of this phase is rather drastic compared to the
n = 2/3 case.

4. Summary and conclusions

In this work we investigated magnetic ordering in one-
dimensional systems where a conduction band is coupled

Figure 9. Particle density and nearest-neighbour spin–spin
correlation function for n = 2/3 and J = 0.04t. The central
polaronic structure is destroyed and an antiferromagnetic one forms.

Figure 10. Summary of spin-polarized regions for n = 2/3 as a
function of the superexchange coupling J, which causes a central
polarization to evolve into an antiferromagnetic ordered region.

to a spin background and for which the ground-state phase
diagram is not fully understood. Some key cases such
as ferromagnetic, island and antiferromagnetic phases, as
reported in [16, 17, 21], were found. Still, the carrier
concentration interval 1/2 < n < 1 seems to offer a very
sensitive behaviour. It seems that the relation between charge
distribution and the formation of magnetic regimes holds only
in one direction; i.e., an oscillating charge distribution due
to particle densities away from half-filling in finite systems
does not necessarily imply the formation of distinct polarized
regions, as was the case for n = 1/4, 1/3. However, polarons
can be associated with holes, which seemed to pin down some
of the magnetic structures. It is the superexchange coupling
between the localized spins which drives and details the
ordering of the spins in the end. Furthermore, [32] reported
on the contributions of the diagonal part SzSz or transverse
scattering associated with the S+ and S− operators in
experiments of quasielastic scattering in La0.67Ca0.33MnO3.
Our findings show that precisely for the n = 2/3 case
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Figure 11. Particle density and nearest-neighbour spin–spin
correlation function for n = 3/4 and J/t = 0.02. The same
behaviour is found for J = 0 up to J = 0.03t with two-spin polarons
found alternating antiferromagnetically.

Figure 12. Particle density and nearest-neighbour spin–spin
correlation function for n = 3/4 and J/t = 0.04. Up to two polarons
at the edge of the chain, the system behaves antiferromagnetically.

Figure 13. Summary of spin-polarized regions for n = 3/4 as a
function of the superexchange coupling J, which causes an
alternating polarization to evolve into an antiferromagnetically
ordered region.

(corresponding to a doping of x = 1/3) both diagonal and
off-diagonal spin contributions are important, this not being
the case for other concentrations.
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