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The shear-banding flow in polymer-like micellar solutions is examined here with the Bautista–Manero–
Puig (BMP) model. The expressions derived from the constitutive equations of the model, in addition to
the conservation equations, are formulated for the case of inhomogeneous simple-shear flow. The result-
ing system of equations is hyperbolic, the solution of which can be found with the method of the char-
acteristics. The characteristic trajectories associated to the system encompass a set of equations that is
solved numerically. Here the actual flow initiation in a parallel plate rheometer is mimicked for both
strain-controlled and stress controlled conditions, i.e., starting from rest, the velocity of the upper plate
is allowed to increase stepwise to allow fully-developed flow after each velocity increment. In another
case, the upper-plate velocity is allowed to decrease stepwise from a high shear rate down to low shear
rates. When band formation is predicted, two or multiple bands are generated. Results include the phase
portraits around the flow curve and for the confined fluid, predictions are given for the velocity, stress
and fluidity fields as functions of both space and time. Moreover, it is shown that the values of the stress
plateau and of the critical shear rates approach same values independently of the initial conditions and
shear history for a given applied shear rate or shear stress. This result is obtained without the inclusion of
gradient terms. An important result is that the model predicts the same stress plateau for forward and
backward sweeps under strain controlled conditions and a discontinuity at the shear plateau for
stress-controlled conditions.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

In a complex fluid, flow produces changes in its internal struc-
ture and induces fluctuations in the rheological properties. In com-
plex fluids, the stress constitutive equation may be coupled to an
evolution equation of a scalar representing the flow-induced mod-
ifications on the internal structure of the fluid (a variable such as
the birefringence, the fluidity or the micellar length, in the partic-
ular case of giant micellar solutions).

The classical picture of banded flow describes the phenomenon
by means of a flow curve with a maximum in the stress. Such non-
monotonic flow curve is unstable, but steady flow can often be
recovered by developing shear bands: layers of fluids with unequal
strain rate but equal overall stress, their layers normal in the veloc-
ity gradient direction. The decreasing part of the flow curve is a re-
gion of coexistence between two bands, each one assigned to a
critical shear rate. Assuming that the nature of the coexisting states
does not vary as their amounts change, the steady-state is charac-
terized by a stress plateau [1].
ll rights reserved.
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A constitutive relation describing the shear banding transition
has been analyzed by Dhont [2,3]. The kinetics of the shear-banding
was studied for parallel-plates geometry under controlled shear
conditions. It was found that there exist multiple stationary states,
depending on the initial state of the flow profile. Shear banding was
predicted to occur not only when the system is initially unstable,
but it can also be induced outside the unstable region when the
amplitude of the initial perturbation is large enough. As a conclu-
sion, the stationary state was not uniquely determined because it
depended on the initial unstable perturbation. In this regard, two
different initial conditions may lead to two different stationary
banded structures in the case of parallel-plates geometry.

Greco and Ball [4] studied shear banding in start-up in Couette
flow with the Johnson and Segalman (JS) model and demonstrated
that the curvature produces a simple and well-controlled banded
flow in contrast to planar flow, in which start-up calculations of
similar local models give an uncontrolled number of bands. In
addition, Georgiou and Vlassopoulos [5] studied the degeneracy
of the JS model in Couette and Poiseuille flows, concluding that
selection of a given banded steady state depends on the initial per-
turbation. Olmsted et al. [6] and Malkus et al. [7] studied the con-
sequences of degeneracy for the history dependence of banded
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solutions using the original local JS model by imposing several flow
histories. It was found that the apparent flow curves and the stress
plateau depend on flow history. This is in contrast to experiments
demonstrating that a unique selected shear stress plateau exists
independently of flow history. An alternative to find a unique
stress selection, non-local gradient terms have been heuristically
added to the JS constitutive equation [6].

Although the non-local JS model has been useful to understand
some features of the kinetics and stability of band formation, nev-
ertheless there are two important setbacks of this model. The first
is that the model itself cannot describe the breaking and reforma-
tion processes of the micellar systems under flow to enable an
understanding of the relation between shear-band formation and
microstructural evolution. The second one refers to the inability
of the model to describe the evolution of the stress and normal
stress differences under step-strain experiments in shear flow,
and also, it gives unphysical responses in extensional flow [8]. Fur-
thermore, the non-local JS model may predict reversal in the band
ordering in Couette flows [6] in contrast to experimental data.

A model for wormlike micellar solutions involving scission and
reforming of chains based on non-affine network theory and a dis-
crete version of Cates theory was forwarded [8–10]. The homoge-
neous-flow model predicts non-monotonic flow curves as in
previous versions of the BMP model. The inhomogeneous calcula-
tions predict a unique plateau stress and the progressive develop-
ment of the shear bands in Couette flow.

Most of the published papers related to the comparison of the
BMP model predictions with experiments were made for homoge-
neous flows, to analyze the advantages and limitations of the mod-
el to describe the wormlike micellar rheological response under
flow. In this work, we solve the coupled differential equations for
the stress, conservation of momentum and microstructure evolu-
tion (containing the underlying process of breakage and reforma-
tion of the micelles) to determine the local velocity field and the
local kinematics of shear band formation, that lead to the resulting
apparent flow curve. These coupled equations give rise to the inho-
mogeneous flow spatial inhomogeneities and shear banded states.
The onset and temporal evolution of inhomogeneous states in stea-
dy and transient shear flows are further analyzed.

In this analysis, shear banding is triggered by the characteristics
of the rate of deformation history at the inception of shear flow be-
tween two parallel plates, under the shear rate- or stress-controlled
modes of operation. The upper plate moves with a stepwise increas-
ing speed that departs from rest up to a certain prescribed value of
the velocity. The decreasing stepwise mode departs from a refer-
ence state (high shear region). The dynamics and steady final
banded state are analyzed for various values of the imposed veloc-
ity, with predictions of instabilities arising along the flow curve.
Furthermore, predictions are given for the fluidity, stress and shear
bands along the gap, as functions of distance and time.

We found that, contrary to the results obtained elsewhere, curva-
ture of the flow cell is not a necessary condition to obtain a controlled
number of bands, since these may be predicted in planar geometries,
like parallel plates. Furthermore, we show that although the selection
of banded states depends on the initial perturbations, the selected
stress does not depend of flow history, in agreement with experi-
ments. These results are obtained without the inclusion of gradient
or non-local terms in the constitutive equations. In this paper we re-
strict ourselves to the linearized version of the BMP model, and leave
for a future communication the inclusion of normal stresses.
2. Theoretical description

The following analysis is restricted to the linearized version of
the BMP model in which normal stresses are negligible with small
inertia. For simple-shear (where x is the direction of the macro-
scopic flow velocity, y is the direction of the velocity gradient
and z is the direction of the vorticity), the set of equations of the
BMP model are [11]:

Rxy ¼ rxy þ gs
@vx

@y
ð1Þ

1
G0u

@rxy

@t
¼ 1

u
@vx

@y
� rxy ð2Þ

@u
@t
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k
ðu0 �uÞ þ k0 1þ #@vx
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In this version of the model, we split the total shear stress Rxy

into a non-uniform viscoelastic micellar contribution rxy added
to a Newtonian solvent contribution with viscosity gs. Here @vx

@y is
the velocity gradient, u is the fluidity or inverse of the shear vis-
cosity ðg�1Þ; u0 � g�1

0

� �
is the fluidity at zero shear rate,

u1 � g�1
1

� �
is the fluidity at high shear rates, G0 is the plateau shear

modulus, k is a structure relaxation time, k0 can be interpreted as a
kinetic parameter for structure breaking in the absence of shear
flow, and # is the shear banding intensity parameter. Conservation
of linear momentum reads:

q
@vx

@t
¼ @Rxy

@y
ð4Þ

Eqs. (1)–(4) represent a closed set of time evolution equations for all
the independent variables chosen to describe the behavior of com-
plex fluids, in which the internal structure is modified by flow, and
the non-equilibrium rheological properties which are functions of
the kinetic process of reformation and modifications of the struc-
ture present at time t.

Alternative analyses [2,12] have considered a formulation in
terms of the uniform shear stress, which comprises a non-uniform
viscoelastic micellar contribution and a solvent contribution. In
particular [12], the micellar stress follows a relaxation equation
with length-dependent relaxation times with a steady homoge-
neous state, admitting a cubic equation of state. The micellar
length itself follows an evolution equation related to the rates of
micellar scission and recombination.

Solving for rxy in Eq. (2) and substituting the result into Eq. (1),
we obtain the following expression in terms of the total stress:

Rxy � gs
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which may be arranged to give:
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From conservation of momentum, Eq. (4), the total stress is given
by:

Rxy þ
1

G0u
@

@t
½Rxy� ¼

1
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� �
@vx
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þ gs=q

G0u
@2Rxy

@y2 ð7Þ

The diffusive term in this equation is negligibly small (solvent kine-
matic viscosity times relaxation time) and decreases as the fluidity
increases. In addition, it is assumed that the micellar viscosity is
much larger than the solvent viscosity. In terms of the total stress,
Eq. (3) is given by:

@u
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�uÞ Rxy � gs
@vx

@y

� �
@vx

@y
ð8Þ

Here we neglect the squared gradient term times the solvent viscos-
ity, which means that the dissipation produced by the solvent is
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negligibly small compared to the dissipation of the system as a
whole. The above argumentation implies that in the BMP equations
written in terms of the total stress, the diffusive term therein arises
naturally, but is negligibly small. In this regard, the solvent contri-
bution has also been neglected in previous works [4].

Although the assumption of negligible solvent contribution is a
good approximation in shear flow calculations; however, it is
important to point out that in general flows is not valid. Indeed,
Eq. (8) may be solved for the non-dimensional rate of dissipation
under steady-state, i.e., (u � u0)/(u1 � u), which becomes un-
bounded when the fluidity approaches u1. In addition, the exten-
sional viscosity also diverges at high extension rates [13,14]. To
resolve such inadequacy, here it is assumed that the total viscosity
of the system is composed of the micellar and solvent contribu-
tions, such that 1/u = 1/um + gs; Eq. (7) is then written in terms
of the micellar viscosity 1/um and Eq. (8) contains the total viscos-
ity. This assumption provides with a bounded dissipation rate and
extensional viscosity, and also with additional elasticity at high
shear rates, since the first normal stress is predicted to increase
at high shear rates, in contrast to predictions of the modified model
by Anderson et al. [14].

In the BMP model, the relation between the fluidity, relaxation
time s and micellar length n is:

s ¼ 1
G0u

¼ s0
n
n0

� �
ð9Þ

where s0 is the relaxation time when u = u0. Substitution of Eq. (9)
into Eq. (8), i.e., the evolution equation for the fluidity, yields an
equation that can be expressed in terms of the average micellar
length, which is the microstructural variable. The physical interpre-
tation is that the micellar length n follows an evolution equation re-
lated to the breakage and reformation process of the micelles. This
equation itself is coupled to the total stress, which contains the
non-uniform micellar contribution.

Other models also couple the stress constitutive equation to an
evolution equation for the structure variable. One of them [15] is a
one-dimensional model that is essentially the same as Eqs. (2) and
(3), except that Eq. (3) for the fluidity is replaced by the expression:
@u=@t ¼ �f ðuÞ þ hðuÞr _cþ D½@2u=@z2�, where f and h are non-lin-
ear functions of the fluidity. Eqs. (4), (7) and (8) are subjected to
the boundary conditions:

vxðt;0Þ ¼ 0 and vxðt; LÞ ¼ vLðtÞ ð10Þ

where L is the gap between plates. The general initial conditions
are:

vxð0; yÞ ¼ f ðyÞ; Rxyð0; yÞ ¼ gðyÞ and uð0; yÞ ¼ hðyÞ; ð11Þ

where vL(t) P 0 is the upper plate or surface velocity which may be
a function of time, while f(y), g(y) and h(y) are functions of space;
however, in most of the cases, f(y) = 0, g(y) = 0 and h(y) = u0.

The steady state when the upper plate motion is constant, i.e., vx

(t,L) = vL,ss, is obtained by solving the following equations:

@Rxy;ssðyÞ
@y

¼ 0 ð12Þ

_cssðyÞ ¼ ussðyÞRxy;ssðyÞ ð13Þ
0 ¼ u0 �ussðyÞ þ k0k½1þ # _cssðyÞ�½u1 �ussðyÞ�Rxy;ssðyÞ _cssðyÞ ð14Þ

where the subscript ss means steady state, and _cssðyÞ ¼ dvx;ssðyÞ
dy . It is

important to point out that at the inception of flow the stress is a
function of space and time by momentum conservation (Eq. (4)).
At long times, under steady-state conditions, the stress approaches
a value independent of time and position.

As pointed out by Dhont [2], under steady-state Eqs. (12)–(14)
hold with the constriction imposed by the modified Maxwell
equal-area construction [11,16], i.e.
Z c3

c1

ðRxy;ssuss � _cssÞd _css ¼ 0 ð15Þ

which means that the dissipation below and above the plateau
stress is equal. This determines the location of the plateau stress,
Rxy,ss � Rp. It is important to remark that the criterion given in
Eq. (15) is not used in the calculations that follow. Indeed, from
the equations of the model itself is possible to demonstrate, from
the potential derived for the cubic BMP equation of the fluidity as
a function of the stress, the equal minima in this potential corre-
sponding to two of the roots of the cubic equation sets the location
of the plateau (see Appendix A). This derivation does not require ex-
tra conditions, since it is entirely deduced from the model itself, and
moreover, this construction agrees with the equal minima in the
dissipation. Elsewhere [11,17] we have obtained predictions in
agreement with experiments that demonstrate that the dissipated
energy contains two equal minima, which is consistent with the
equal area criterion. Moreover, Greco and Ball [4] suggested a vari-
ational principle that leads to a principle of minimum of the func-
tional containing the shear rate in the shear-rate controlled case.
This in turn leads to a selection of the stress plateau corresponding
to the equal areas of the stress–shear rate curve, in analogy with the
Maxwell construction in equilibrium thermodynamics. The equal
minima in the dissipation, the variational approach and the equal-
areas criterion are then consistent with each other.

Substitution of Eq. (13) into Eq. (14) gives:

0 ¼ ðu0 �ussÞuss þ k0kð1þ # _cssÞðu1 �ussÞ _c2
ss ð16aÞ

Eq. (16a) is cubic in the shear rate, corresponding to a non-mono-
tonic flow curve [5]. On the other hand, this equation is quadratic
in uss with real solution:

uss ¼
1
2
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ss
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þ
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Integrating Eq. (13) with the boundary conditions (10) produces:

vx;ssðyÞ ¼ Rp

Z y

0
ussdy; ð17aÞ

and with y = L,

vL;ss ¼ Rp

Z L

0
ussdy ð17bÞ

Eq. (17) renders two stable steady states, each one with fluidity u1

and u3, respectively, whereas the other one is unstable with fluidity
u2. Eqs. (17a) and (17b) lead to:

vL;ss ¼ RpL½vu1;ss þ ð1� vÞu3;ss� ¼ v _c1;ss þ ð1� vÞ _c3;ss ð18Þ

where v is the spatial proportion with shear rate _c1;ss ¼ u1;ssRp and
(1 � v) is the spatial proportion with shear rate _c3;ss ¼ u3;ssRp. The
global applied shear rate is _cL;ss ¼ vL;ss=L, thus the proportion exist-
ing among the bands is:

v ¼
_c3;ss � _cL;ss

_c3;ss � _c1;ss
ð19Þ

Taking the spatial derivative of Eq. (4), the time derivative of Eq.
(7), and eliminating the derivatives of the velocity, we obtain the
following equation for the stress:

@2Rxy

@t2 ¼ h2 @
2Rxy

@y2 � G0
@

@t
ðuRxyÞ ð20Þ

where h = G0/q. At short times, the resulting wave equation implies
the inception of an oscillatory pattern. As time proceeds, the diffu-
sion character of the equations gradually becomes predominant.



Fig. 1. Steady state constitutive curve obtained under controlled shear rate.
Increasing shear rate starting from rest (+); decreasing shear rate starting from
10,000 s�1 (circles) Constitutive equation for the BMP model (Eq. (14)) (continuous
line) and stress plateau calculated with the modified Maxwell equal-area con-
struction (Eq. (15), dotted line).
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Written in this form, this equation allows for solutions of both the
wave equation and the diffusion equation, depending on the time
scale. The coefficient h, which is the velocity

ffiffiffiffiffiffiffiffiffiffiffi
G0=q

p
, governs the

time scale and spatial dimension of the process.
It is important to point out that due to conservation of momen-

tum, (Eq. (4)), and the flow history, vL(t), the spatial derivative of
the shear stress on the upper plate cannot be zero. Hence, the
boundary conditions needed to solve the system are

vxðt;0Þ ¼ 0; vxðt; LÞ ¼ vLðtÞ;
@Rxyðt;0Þ

@y
¼ 0;

@Rxyðt; LÞ
@y

¼ q
dvLðtÞ

dt

Therefore, the spatial derivative of the shear stress at the upper
plate is zero only when steady-state is reached. This implies that
the boundary condition at the upper plate is also history-depen-
dent, in contrast to alternative approaches [18] wherein the deriv-
ative of the viscoelastic stress is assumed zero at the moving
plate. If this is so, additional conditions imposed at the interface
necessitate the inclusion of non-local terms. In the present analysis
we neglect gradient terms, assuming that a finite interfacial width
would be important only in highly confined flows, which is not
the case we are analyzing here.

3. Results

One of the main objectives of this analysis is to find the relation
between the features of the shear flow produced at the initiation
stage of motion and the resulting steady-state shear-banding pat-
terns. For simulation purposes, the parameters for a 10 wt.% cetyl-
trimethylammonium tosylate (CTAT) wormlike micellar solution at
30 �C, reported elsewhere [11], were used. To proceed further, it is
necessary to simulate the actual initiation of shear flow in a rhe-
ometer. This is accomplished by introducing motor dynamics
linked to the action of a ‘‘controller’’. The motor dynamics are rep-
resented by the following relaxation equation:

dvLðtÞ
dt

¼ vcðtÞ � vLðtÞ
sm

ð21Þ

where vL(t) is the velocity at y = L and sm the response time of the
motor. Considering a Proportional-Integral (PI) controller, the veloc-
ity calculated by the control action, vc(t), may be expressed accord-
ing to the following expressions [19]:

vcðtÞ ¼ sat Kc eðtÞ þ 1
sI

Z t

0
eðkÞdk

� �� �
ð22Þ

where Kc, the proportional gain, and sI, the integration time, are the
controller parameters, while the saturation function

sat½u� ¼ 0 if u < 0
u if u P 0

�
guaranteed that motor works only in one

direction. The error for shear-rate controlled experiments is:

eðtÞ ¼ _cref � vcðtÞ=L ð23Þ

where _cref is the shear-rate reference. In stress-controlled experi-
ments, the error is:

eðtÞ ¼ rref � rmeasured ð24Þ

where rref is the shear–stress reference.
In the following figures, results of various simulations are pre-

sented using the discretization method described in Appendix B
with 500 spatial nodes. In these, the initial conditions considered
are:

vxjt¼0 ¼ 0; rjt¼0 ¼ 0; ujt¼0 ¼ u0 ð25Þ

In Fig. 1, the shear-rate controlled steady-state solutions for the
stress as a function of shear rate are presented. Data represented
with the symbol (+) were obtained increasing the shear rate from
the system at rest; at time zero the controller was activated to reg-
ulate the shear rate. Reference shear-rates assigned as indicated in
Fig. 1 were 0.4894, 7.88, 38.57, 188.7 and 3039 s�1 for points A, B, C,
D and E, respectively; data represented by the symbol (s) were ob-
tained with the initial reference shear-rate of 10,000 s�1 for
decreasing shear-rates (every step in this mode lasted 1.25 min).
Both simulation experiments depict a plateau stress for shear rates
between 10 and 400 s�1, locations of which agree with the equal-
areas minima criterion of irreversible thermodynamics [11,16,20].
It is also important to remark that the system undergoes a meta-
stable region at low shear rates before residing on the plateau
(top-jumping scenario).

In the following figures (Figs. 2–6), the spatial and temporal
dynamics before achieving steady states with or without banded
regimes are shown for the controlled shear-rate mode. In every fig-
ure the constitutive curve is shown together with the temporal
evolution of the shear stress versus shear rate for different spatial
positions (a); arrows show the direction of variables evolution as
time proceeds. In the remaining figures (b–d) the temporal and
spatial evolution of the velocity profile, shear stress and fluidity
are illustrated, respectively.

In Fig. 2, the reference shear rate (0.4894 s�1) is smaller than the
critical shear rate for the onset of shear banding (cc1). In Fig. 2a, tra-
jectories of the stress and shear rate are spatially uniform. The
steady-state is reached after 5 s, represented by point A in Fig. 1.
The velocity, stress and fluidity (Fig. 2b–d) show a single band with
a constant velocity profile, and a monotonically increasing stress
and fluidity.

In Fig. 3, the shear rate corresponds to that of the local maxi-
mum of the stress (7.88 s�1) within the meta-stable region (point
B in Fig. 1). Again, the steady-state is reached after 5 s with a single
velocity profile (Fig. 3b). In Fig. 3c, the stress shows an overshoot
before achieving steady state. The fluidity, in turn, presents a
monotonic increase up to steady state (Fig. 3d).

Fig. 4 shows the dynamics with a reference shear rate of
38.57 s�1, corresponding to the plateau stress (point C in Fig. 1).
In this case, a qualitative change occurs, since the time to attain
steady-state has increased. Initially the trajectories of shear rate
and stress are similar; notwithstanding they depart each other as
time proceeds (Fig. 4a). The shear rate trajectories attain two dif-
ferent values corresponding to the meta-stable branches (bino-
dals), one at low and another one at high shear rate with a bands



Fig. 2. Dynamics and steady-state under controlled shear rate. Reference shear rate is 0.4894 s�1. Temporal trajectory of the stress and shear rate for various spatial positions
(a); evolution of the velocity (b), stress (c) and fluidity (d) in space and time.

Fig. 3. Same as in Fig. 2. Reference shear rate is 7.88 s�1.
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proportion of 6% corresponding to the high-shear rate band. This is
indicative of the presence of a shear-banding regime, wherein two
bands are clearly seen in Fig. 4b, with two values of the velocity
gradient. The stress trajectory remains essentially constant on
the plateau stress. The stress shows an initial overshoot with slow
attainment of the steady state (Fig. 4c), whereas the fluidity has
two bands, a narrow one next to the moving plate and another
wider one of low fluidity next to the stationary plate (Fig. 4d);
the boundary between both regions reflects the change in velocity
gradient between the bands.

In Fig. 5, the reference shear rate has now been increased to
188.7 s�1, corresponding to that located at the extreme of the pla-
teau (point D in Fig. 1). Results are similar to those of the previous
figure, in that the shear rate and stress trajectories depart; the
shear rate divides into two meta-stable branches, the binodals,
and the shear stress attains steady values on the plateau



Fig. 4. Same as in Fig. 2. Reference shear rate is 38.57 s�1.

Fig. 5. Same as in Fig. 2. Reference shear rate is 188.7 s�1.
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(Fig. 5a). However, in this case the formation of three bands is
apparent (Fig. 5b), two located next to the walls and another one
located in the intermediate region. In addition, the proportion of
the region of high fluidity (v) has increased to approximately
33% (Fig. 5d).

Fig. 6 shows the results corresponding to the high shear rate
branch (point E in Fig. 1). Although the trajectories of the dynamics
depict increasing dispersion as compared to previous cases, the
velocity profile exhibits a single velocity gradient (Fig. 6b), the
stress shows an initial overshoot (Fig. 6c) and the fluidity attains
steady state monotonically (Fig. 6d) in a short period of time.

The following figures (Figs. 7–10) illustrate results of the simu-
lations under controlled stress. Once again, the points (+) denote
increasing stress mode and circles represent decreasing stresses.
In Fig. 7, steady state values are reproduced in which the stress
is increased every minute stepwise; the procedure is repeated in
the step-down mode for decreasing stresses. As observed, a discon-
tinuity is apparent within the unstable region, in agreement with



Fig. 6. Same as in Fig. 2. Reference shear rate is 3039 s�1.

Fig. 7. Steady state constitutive curve obtained under controlled shear stress.
Increasing stress starting from rest (+); decreasing stress starting from a high stress
(circles).
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experimental results reported in the literature. Moreover, pre-
dicted stress values in the increasing and decreasing modes over-
lap along the whole flow curve.

Fig. 8 shows the dynamics when the reference stress is 60 Pa.
The trajectories depict a stable steady region in the low shear rate
extreme of the plateau. The velocity field is uniform, corresponding
to a single shear rate (Fig. 8b). The initial overshoot in the stress
and fluidity is followed by uniform steady state.

Fig. 9 shows different trajectories when the reference stress is
changed from 85 to 60 Pa, after 5 s of dynamics duration. Here,
the steady region at the extreme high shear rate of the plateau is
attained in a short period of time. The results are similar to those
of the previous figure, i.e., uniform velocity field and overshoot in
the stress and fluidity, followed by uniform steady state, except
that the velocity, stress and fluidity magnitudes are larger.

Fig. 10 shows qualitatively different results than those of the
previous figures. Here, there is a programmed change in the refer-
ence stress (from 85 to 60 Pa) with different periods. The trajecto-
ries end at the two stable points at the extreme of the plateau in
the meta-stable region (binodals). Formation of bands is apparent
in the velocity profile (Fig. 10b), in which three bands are observed.
This is reflected in the two regions of high fluidity next to the walls
with a band proportion of approximately 67% and an intermediate
region of low fluidity (Fig. 10d). Here it is important to point out
that the distribution of bands (v) is similar to that reported for
Fig. 4, i.e., 6% of the high-shear rate band.
4. Discussion

Under start-up of steady shear flow, the time evolution to stea-
dy state depends on the applied flow history, in such a way that
various banded states are predicted when the initial flow condi-
tions correspond to the stable or unstable regions of the underlying
constitutive curve. However, the system selects a unique plateau
independent of flow history, as shown in Fig. 1. The presence of a
top-jumping scenario in the apparent equilibrium flow curve as
well as different time-dependent trajectories have been observed
in experiments with micellar solutions and in predictions with
the non-local JS model or another non-linear models. Remarkably,
experimental observations are consistent with the robustness of
the stress plateau.

With reference to Fig. 1, it can be shown that in a linear plot cir-
cles and crosses overlap to within 5% in average, which is what is
found in the dispersion of experimental data. In fact, the approach
to steady state follows the actual operation of a rheometer and
therefore, predictions should be compared with actual experimen-
tal data. The scatter found in experiments is of the same order as
that of the predictions.

The BMP predictions show abrupt (albeit continuous) transi-
tions at the interfaces of the bands that may be smoothed if gra-
dient terms are added to the system of equations. We believe that
these gradient terms may be included, not in the constitutive
model but in a coupled equation describing the diffusion of mass,



Fig. 8. Dynamics and steady-states under controlled shear stress. Temporal trajectory of the stress and shear rate for various spatial positions (a); evolution of the velocity (b),
stress (c) and fluidity (d) in space and time. Final (steady state) stress reference is 60 Pa.

Fig. 9. Same as in Figure, with reference stress of 85 Pa for t < 5 s, and reference stress of 60 Pa for t P 5 s.
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as suggested in a recent work on the generalized version of the
model [17]. Indeed, this approach is similar to that studied by
Yuan and Jupp [21] using a two-fluid model, which couples the
viscoelastic stress and the diffusive fluid composition. In this ap-
proach, there is no need to introduce ad hoc diffusive stress terms
into the constitutive equations. This model can select the steady-
state stress in a physical way for non-monotonic constitutive
equations under flow. This aspect is currently under investigation
in our group.
Experimental evidence of three bands formation in micellar
solutions is given in Manneville et al. [22] and Lerouge et al. [23]
in rotational rheometers. In the first one, the banding structure is
made up of three distinct regions: two layers located next to the
walls separated by a mixed layer. This is similar to that obtained
in Fig. 5b, wherein the formation of three bands is apparent, two
located next to the walls and another one located in the interme-
diate region. In the second one, two high sheared bands next to
the walls and a very weakly sheared central band are observed.



Fig. 10. Same as in Figure . Reference stress is 85 Pa for t<3 s and reference stress of 60 Pa for t P 3 s.
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It is worth mentioning that these predictions can be compared
with recent work on wormlike micellar systems using a network
model which incorporates scission and reforming of the chains in
homogeneous conditions [9]; later, this model was extended to
analyze inhomogeneous flows [8,10]. Although diffusion was
inherent to the kinetic theory description, selection of a unique
plateau stress with developed shear banding was obtained past
the initial transients showing progressively growth of the shear
band across the gap. The evolution in the local stress and shear rate
within a Couette fixture exhibits similar behavior to that exposed
by the BMP model. When the imposed stress is within the multi-
valued region of the shear flow curve, the velocity profiles show
shear-banding, with the high shear rate at the moving wall and
the low shear rate at the fixed wall. This behavior is precisely that
exposed in Fig. 4a–d. Moreover, the transient period to attain stea-
dy-state also predicts progressively growth of the shear bands
across the gap.

Time dependent calculations in start-up of steady shear flow
show that the velocity profiles between parallel plates and the to-
tal stress are coupled and evolve in a complex and non-monotonic
form as the shear bands develop. The underlying non-monotonic
constitutive flow curve in homogeneous flow leads to the develop-
ment of shear bands in inhomogeneous flows. This is consistent
with Particle Imaging Velocimetry (PIV) measurements in worm-
like micellar solutions [24].
5. Concluding remarks

Results of the BMP model analysis presented here clearly dem-
onstrate the importance of the initial rate of deformation history
on the final banded state in shear-banding fluids. In the actual
operation in a rheometer, where simple shear is usually generated
in a Couette or cone-and-plate geometries, the tendency to pro-
duce banded flows depends not only on the properties of the fluids
and flow regimes, but also on the initial conditions for inception of
shear flow. Here, we analyzed shear rate- or stress-controlled
modes. It is noteworthy that multiple bands may be generated
depending on initial conditions. Previous analyses require non-lo-
cal diffusive terms added to the constitutive equation [2,3,20] to
generate the particular stable and unique plateau and banded
states.

A novel prediction is that independently of the flow history,
including increasing or decreasing shear rates, the same plateau
stress is obtained. The BMP model also predicts a discontinuity in
the stress plateau when measurements are done with stress-con-
trolled conditions, in agreement with experimental data of the lit-
erature. The analytic part of the solution clearly shows that at short
times the oscillatory pattern is in accord to a wave equation with
propagation velocity h. As time proceeds, the pattern becomes dif-
fusive. An interesting issue is that the prediction of multiple bands
did not require of non-local diffusive terms added to the constitu-
tive equation. The linearized form of the BMP model predicts these
complicated flow patterns.
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Appendix A

The cubic BMP equation for the fluidity as a function of the
shear stress can be written as follows:

u3 � au2 þ bu� c ¼ �k�du=dt ðA:1Þ

where a, b and c are given by:

a ¼ u1 � r2
R=l ðA:2Þ

b ¼ u1ð1� r2
RÞ=l ðA:3Þ

c ¼ u1u0=l ðA:4Þ

Here,

rR ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kku1

q
ðA:5Þ



Fig. 11. Characteristic trajectories obtained from the solution of Eqs. (B.1), (B.2),
(B.3) with boundary conditions (Eq. (B.4)) and initial conditions (Eq. (B.5)).
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and

l ¼ #rr2
R ðA:6Þ

With increasing applied stress r, a tends to an asymptotic value
equal to u1, while b and c decrease to zero. For low stresses, a
and b may become negative. To this end, we redefine the fluidity
to eliminate the quadratic term in (A.1) according to:

/ ¼ u� a=3 ðA:7Þ

And then, we obtain for / an equation in the standard form:

� d/
ds
¼ /3 þ u/þ v ðA:8Þ

where:

u ¼ b� a2=3
v ¼ ab=3� 2a3=27� c

s ¼ t=k

ðA:9Þ

Defining the potential V as:

V ¼ /4=4þ u/2=2þ v/ ðA:10Þ

Eq. (A.8) can be expressed as:

d/
ds
¼ � dV

d/
ðA:11Þ

Eq. (A.8) can have either one real root and a pair of complex conju-
gate roots, or three real roots (/01,/02,/03). These two regimes are
separated in the space of parameters (u,v) by the cubic equation:

4u3 þ 27v2 ¼ 0 ðA:12Þ

It turns out that in the regime of one single root the potential Eq.
(A.10) describes a single minimum, while in the region of three real
roots the potential describes two minima and one maximum. From
a single steady-state, two steady-state solutions emerge. Once in-
side the domain corresponding to multiple steady-states, the two
minima of V generally have different heights, except along a set of
points (the plateau stress) when:

Vð/01Þ ¼ Vð/03Þ ðA:13Þ

while /02 is the value of / at the maximum of V. It can be shown
that the two states /01,/03 are equally dominant attractors. This
is truly the condition for the plateau stress.

In summary, as the applied stress reaches the value inside the
region of multiple steady states, the condition Eq. (A.13) defines
the loci of the plateau, where the attractors can define the location
of the binodals _cð/01Þ; _cð/03Þ.

Appendix B. Numerical method

Using the dimensionless variables / = u/u0, s = G0 u0t, Y = y/L,
Vx = vx/G0u0L, and r = Rxy/G0, Eqs. (4), (7) and (8) become:

@Vx

@s ¼ h2 @r
@Y

ðB:1Þ

@r
@s
¼ @Vx

@Y
� r/ ðB:2Þ

@/
@s
¼ 1

K
ð1� /Þ þ j 1þ l1

@Vx

@Y

� �
ð/1 � /Þr @Vx

@Y
ðB:3Þ

where j = G0k0, l1 = G0u0#, K = G0 k/g0 and h ¼ 1=u0L
ffiffiffiffiffiffiffiffiffi
G0q

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t0=G0u0L2
q

; s P 0 and Y 2 {0,L}. The boundary conditions are

now:

Vxðs;0Þ ¼ 0 and Vxðs;1Þ ¼ VLðsÞ; with VL ¼ vL=G0u0L ðB:4Þ

and the initial conditions become:
Vxð0;YÞ ¼ f1ðYÞ; rð0;YÞ ¼ f2ðYÞ; /ð0;YÞ ¼ f3ðYÞ ðB:5Þ

Also, from the conservation law (B.1) we obtain two more
conditions

@rðs;0Þ
@Y

¼ 0;
@rðs;1Þ
@Y

¼ 1
h2

dVLðsÞ
ds

ðB:6Þ

Defining:

X ¼
Vx

r
/

0
B@

1
CA; p ¼

@Vx=@s
@r=@s
@/=@s

0
B@

1
CA; q ¼

@Vx=@Y

@r=@Y

@/=@Y

0
B@

1
CA ðB:7Þ

allows rewriting Eqs. (B.1), (B.2), (B.3) as:

0 ¼ p1 � h2q2 ðB:8Þ
0 ¼ p2 � q1 þ X2X3 ðB:9Þ

0 ¼ p3 � jð1þ l1q1Þð/1 � X3ÞX2q1 þ
X3 � 1

K
ðB:10Þ

This system of equations has the form:

@Xðt; yÞ
@t

þM Xðt; yÞ; @Xðt; yÞ
@y

� �
¼ 0 ðB:11Þ

with

MðX; qÞ ¼
M1

M2

M3

0
B@

1
CA ¼

�h2q2

�q1 þ X2X3

�jð1þ l1q1Þð/1 � X3ÞX2q1 þ X3�1
K

0
B@

1
CA

ðB:12Þ

With the method of characteristics [25–27] it is possible to show
that the dimensionless mode, given by Eq. (B.11), the boundary con-
ditions, Eqs. (B.4) and (B.6) as well as the initial conditions, Eq. (B.5),
have three characteristic trajectories that are constant (see Fig. 11).
To find the characteristic trajectories (n1,n2,n3) we need to calculate
the eigenvalues of the system of equations:
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skk �
Xn

j¼1

kj
@Mj

@qk
¼ 0; k ¼ 1;2; . . . ; n ðB:13Þ

which has a non-trivial solution for k = (k1,k2, . . . ,kn) if:

s 1 jð1þ 2l1q1Þð/1 � X3ÞX2

h2 s 0
0 0 s

�������

�������
¼ sðs2 � h2Þ ¼ 0 ðB:14Þ

Eq. (B.14) gives s = 0, ±h. Since the roots are real, the system is
hyperbolic, with three characteristic trajectories given by the fol-
lowing equations:

n1 : y ¼ y0 ðB:15Þ
n2 : y ¼ y0 þ hðt � t0Þ ðB:16Þ
n3 : y ¼ y0 � hðt � t0Þ ðB:17Þ

Following the method of the characteristics, and for the system
(B.7), (B.8), (B.9), we seek solutions to the equation Xjk = 0 wherein,
for Eq. (B.12), is given by:

sj � @M1
@q1

� @M2
@q1

� @M3
@q1

� @M1
@q2

sj � @M2
@q2

� @M3
@q2

� @M1
@q3

� @M2
@q3

sj � @M3
@q3

@q1
@nj
þ
X3

i¼1

@M1
@Xi

qi
@q2
@nj
þ
X3

i¼1

@M2
@Xi

qi
@q3
@nj
þ
X3

i¼1

@M3
@Xi

qi

@X1
@nj
þM1 � sjq1

@X2
@nj
þM2 � sjq2

@X3
@nj
þM3 � sjq3

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

k1

k2

k3

0
B@

1
CA ¼ 0

ðB:18Þ

Eq. (B.18) has a non-trivial solution if Eqs. (B.19c), (B.19d); Eqs.
(B.20c), (B.20d) and (B.21c), (B.21d) hold.

n1 direction :

@s
@n1
¼ 1 ðaÞ

@Y
@n1
¼ 0 ðbÞ

@q3
@n1
� aðX; qÞ @q2

@n1
¼ b11ðX; qÞ ðcÞ

@X3
@n1
� aðX; qÞ @X2

@n1
¼ b12ðX; qÞ ðdÞ

8>>>>>><
>>>>>>:

ðB:19Þ

n2 direction :

@s
@n2
¼ 1 ðaÞ

@Y
@n2
¼ h ðbÞ

@q1
@n2
� h @q2

@n2
¼ b21ðX; qÞ ðcÞ

@X1
@n2
� h @X2

@n2
¼ b22ðX; qÞ ðdÞ

8>>>>>><
>>>>>>:

ðB:20Þ

n3 direction :

@s
@n3
¼ 1 ðaÞ

@Y
@n3
¼ �h ðbÞ

@q1
@n3
þ h @q2

@n3
¼ b31ðX; qÞ ðcÞ

@X1
@n3
þ h @X2

@n3
¼ b32ðX; qÞ ðdÞ

8>>>>>><
>>>>>>:

ðB:21Þ

where

aðX;qÞ¼jð1þ2l1q1Þð/1�/ÞX2

b11ðX;qÞ¼aðX;qÞðX3q2þX2q3Þ�jð1þl1q1Þ½X2q3�ð/1�/Þq2�q1�
1
K

q3

b12ðX;qÞ¼aðX;qÞðX2X3�q1Þþjð1þl1q1Þð/1�/ÞX2q1þ
1
K
ð1�X3Þ

b21ðX;qÞ¼ hðX2q3þX3q2Þ
b22ðX;qÞ¼ hX2X3

b31ðX;qÞ¼�b21ðX;qÞ
b32ðX;qÞ¼�b22ðX;qÞ

Summarizing, the initial and boundary conditions are:
Initial conditions

X1ð0;YÞ ¼ f1ðYÞ� ðaÞ
X2ð0;YÞ ¼ f2ðYÞ ðbÞ
X3ð0;YÞ ¼ f3ðYÞ ðcÞ
q1ð0;YÞ ¼ df1ðYÞ

dY ðdÞ
q2ð0;YÞ ¼ df2ðYÞ

dY ðeÞ
q3ð0;YÞ ¼ df3ðYÞ

dY ðf Þ

ðB:22Þ

Boundary conditions

X1ðs;0Þ ¼ 0 ðaÞ
Vxðs;1Þ ¼ VLðsÞ ðbÞ

q2ðs;0Þ ¼ 0 ðcÞ
q2ðs;1Þ ¼ 1

h
dVLðsÞ

ds ðdÞ

ðB:23Þ

The boundary conditions Eqs. (B.23a) and (B.23b) describe the con-
ditions at the plates, while Eqs. (B.23c) and (B.23d) are the condi-
tions of the stress spatial derivative on the plates, assuming the
conservation Eq. (B.1).

According to Eqs. (B.19a), (B.19b), (B.19c), (B.19d), / and r are
the variables associated with direction n1, which in the space-time
plane are the straight lines, Y = Yn for any s > 0, and Yn 2 [0,1] (see
Fig. 11). Furthermore, Eqs. (B.20a), (B.20b), (B.20c), (B.20d) and Eqs.
(B.21a), (B.21b), (B.21c), (B.21d) reveal that Vx and r propagate
along the characteristic directions n2 and n3, which in the space-
time plane are the straight lines Y = Yn + h(s � sm) and
Y = Yn � h(s � sm) for any boundary or initial point (sm,Yn) (see
Fig. 11). To find the solution at the boundary Y = 0, we need only
to seek the solution of Eqs. (B.19) and (B.21) together with condi-
tions Eqs. (B.23a) and (B.23c) since the characteristic n2 is not in-
volved. Similarly, to find the solution at the boundary Y = 1, it is
only necessary to seek the solution of Eqs. (B.19) and (B.20) to-
gether with conditions Eqs. (B.23b) and (B.23d) since the charac-
teristic n3 is not involved. Notice that these two directions, n2

and n3, are related to the velocity gradient and the stress (Vx and

r). In addition, since h ¼ 1=u0L
ffiffiffiffiffiffiffiffiffi
G0q

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0=G0u0L2

q
, the waves

for Vx and r traveling along time and space depend on the gap, L,
and h can be considered a dimensionless number which is the ratio
of the momentum diffusion (t0) to the viscoelastic diffusion
(G0u0L2). The third characteristic, n1:Y = Y0, given by Eq. (B.15), is
independent of space and travels along time for constant axial
points. This characteristic line is mainly related to stress and fluid-
ity. For this reason, to analyze the behavior of the model we pro-
pose a numerical solution with a discretization method for axial
derivatives, where for a given axial point (s,Yj) we approximate
with central finite differences, given by:

@rðs;YjÞ
@Y

� rðs;Yjþ1Þ � rðs;Yj�1Þ
Yjþ1 � Yj�1

and
@Vxðs;YjÞ

@Y

� Vxðs;Yjþ1Þ � Vxðs;Yj�1Þ
Yjþ1 � Yj�1

;

while in each boundary we use forward and backward finite differ-
ences, respectively,

@rðs;0Þ
@Y

�rðs;Y1Þ�rðs;0Þ
Y1

and
@Vxðs;0Þ

@Y
�Vxðs;Y1Þ�Vxðs;0Þ

Y1
;

@rðs;LÞ
@Y

�rðs;LÞ�rðs;YN�1Þ
L�YN�1

and
@Vxðs;LÞ

@Y
�Vxðs;LÞ�Vxðs;YN�1Þ

L�YN�1
;

The set of Eqs. (B.1), (B.2), (B.3) is integrated along the characteristic
trajectory n1 for an specific number of axial points N with YN = L,
where we define the variables Vx,j(s) = Vx(s,Yj), rj(s) = r(s,Yj) and
/j(s) = /(s,Yj). The dynamics of the motor given in Eq. (22) as well
as the controller in Eq. (23) with error given by Eq. (24) or Eq.
(25), depending of the type of experiment considered, were also
added to the simulation equations.
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Appendix C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jnnfm.2012.05.
006.
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