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We consider the deformation of gas bubbles rising in different liquids over a wide
range of Morton numbers, from O(10~'") to O(1), and bubble diameters. We have
collected data from the literature and performed new experiments for relatively large
Morton numbers. A simple expression is proposed to describe the evolution of the
bubble deformation, which is consistent with the analytical solution of Moore [“The
rise of a gas bubble in a viscous liquid,” J. Fluid Mech. 6, 113 (1959)]. It appears that
deformation can be predicted correctly by considering the Morton and Weber num-
bers. The variation of the bubble interfacial area is also analyzed; this quantity is very
important for the case of bubbly flow modeling but has not been measured directly
to date. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4705527]

. INTRODUCTION

In air water systems millimetric bubbles are known to deform.' The deformation changes
the bubble hydrodynamics and characteristic trajectories of rising bubbles; these issues have been
recently studied in detail by Ellingsen and Risso,? Sanada et al.,> Mougin and Magnaudet,* Zenit and
Magnaudet,’ and Yang and Prosperetti.’ The effect of deformation on the drag coefficient has also
been considered (Moore,” Maxworthy et al.,® Tomiyama et al.,’ and Legendre'?). As a consequence
of hydrodynamic modifications, bubble deformation also impacts the interfacial heat or mass transfer
(Lochiel and Calderbank,'" Favelukis and Ly,'? and Figueroa and Legendre'?). The modeling of
bubble deformation is of great importance in bubbly flows since the deformation results in a bigger
interfacial area for the mass, momentum, and energy transfer between the phases. For practical
applications, it is thus necessary to use a relevant model to characterize bubble deformation.

In this investigation, we have collected data from the numerous sources in the specialized
literature; we have also conducted experiments for a particular range of Morton numbers for which
no detailed, or reliable, information could be found. We propose a simple expression to predict the
bubble deformation. We also propose this expression to be used for the calculation of the interfacial
surface area of air bubbles in liquids.

This note is organized as follows. Section II presents the problem considered. The experimental
device is described in Sec. III. Section IV considers bubble deformation in air water system and
the effect of bubble contamination is discussed. Section V presents the effect of increasing the fluid
viscosity; a simple model able to describe bubble deformation for a wide range of Morton numbers
is proposed in Sec. VI. Finally, results are used to discuss the evolution of the interfacial area in
Sec. VIL

Il. STATEMENT OF THE PROBLEM

Let us consider a gas bubble of constant volume V rising at its terminal velocity U in a liquid
at rest under the action of gravity g. The viscosity and density of the liquid are denoted by p and
W, respectively. o is the interfacial surface tension and d = (6V /7)!/? is the spherically equivalent
diameter. The bubble deformation is first characterized by considering the aspect ratio of a bubble,
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TABLE I. Physical properties of the water-glycerin (W-G) solutions used in this study.

Fluid Density Viscosity Surface tension

water-glycerin ratio (v/v) (kg/m3) (mPa s) (mN/m) Morton number
Water (reference) 1000 1.0 72.5 2.5 x 10711
25/75 W-G 1191 19.9 65.7 4.6 x 1076
11/89 W-G 1225 80.0 62.7 1.3 x 1073
8/92 W-G 1242 173.5 62.6 2.9 x 1072
4/96 W-G 1258 457.8 58.8 1.7 x 10°

X = alb, where a and b are the lengths in the perpendicular and parallel directions (with respect to
the bubble velocity direction), respectively. Since bubbles are flattened due to their motion, we have
x > 1. In Sec. VII, the deformation is characterized by considering the normalized bubble surface
fu = S/md? using the surface of the sphere of same volume. f, thus expresses the relative increase of
interface due to the deformation.

In this note we consider gas bubbles in liquids; hence, the bubble density and viscosity have
a negligible effect on bubble dynamics and deformation. Considering the variables involved in
the problem (namely, d, p, o, i, and g), by simple dimensional analysis, we can show that the
bubble aspect ratio x and the normalized bubble interface f, depend only on two independent
dimensionless numbers. Several can be formed, but the most commonly found in this subject are:
the bubble Reynolds number Re = pUd/u, the Weber number We = pU 2d /o, the E6tvos number
Eo = pgd®/o, and the Morton number Mo = u*g/o3p, to name a few.

lll. EXPERIMENTAL ARRANGEMENT

Although there is a vast experimental database in the literature, we identified a wide range of
Morton numbers for which no detailed information, for the particular case of significant bubble
deformation, could be found. Hence, we conducted some simple experiments considering four
different water-glycerin mixtures corresponding to Mo = 1.24, Mo = 3.0 x 1072, Mo = 1.4 x 107%,
and Mo = 1.6 x 107°. The physical properties of these liquids are shown in Table I. The viscosity of
the liquids was measured with a rheometer (TA Instruments AR1000N) with a cone-plate geometry
(60 mm, 2°, a gap of 65 um). The surface tension measurements were performed with a DuNouy
ring (diameter of 19.4 mm, KSV Sigma 70). The density was measured with a pycnometer (Simax,
50 ml).

The bubbles were released in a cylindrical glass tube with a diameter D of 9 cm; a detailed
description of the device to release the bubbles can be found in Soto et al.'* The ratio d/D was
less than 0.08 for all the experiments. The motion of the bubbles was captured using a high speed
camera (MotionScope PCI 8000s, 500 frames/s). The resolution of the images was in the order of
15 pixels/mm, and varied only slightly for the different experiments. The camera was placed around
90d above the base of the tube where the bubbles were released to ensure that the bubbles had
reached their terminal properties; the measurement region was about 30d below the liquid surface.

Some typical bubble shapes are shown in Fig. 1. We can observe that the deformation is
significantly affected by the value of the Morton number. The shape evolves from spherical, to
ellipsoidal and to spherical cap as both the Morton number and the bubble size increase.

A. Digital image analysis

The shape and position of the bubbles were determined by digital image analysis (DIA), using the
Image Processing Toolbox of MATLAB. The terminal velocity was calculated from the displacement
of the geometric center of bubble in time. The bubble aspect ratio, x, was determined from the direct
measurement of a and b. Figure 2 shows a typical image of a bubble and its corresponding image
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FIG. 1. The image shows the bubble shape for different sizes and fluids. The rows show experiments for the same fluid
(same Morton number): first row, Mo = 1.7 (images 1-4); second row, Mo = 2.9 x 1072 (images 5-8); third row,
Mo = 1.3 x 1073 (images 9-12); and fourth row, Mo = 4.6 x 10 — 6 (images 13—15). Each column shows bubbles of
approximately the same size: first column, d ~ 1.5 mm; second column, d & 3.9 mm; third column, d & 5.9 mm; and fourth
column, d ~ 9.0 mm. All images are shown at the same scale. The size of each frame is ~14 x 8 mm?. All liquids are
water-glycerin mixtures. The properties are listed on Table 1.

analysis. These measurements, via DIA, are now relatively standard for which an uncertainty of 1%
is expected.

On the other hand, despite its importance in modeling, a measurement of the bubble interfacial
area has not been attempted from DIA. Clearly, for large deformation, the bubbles deviate signifi-
cantly from a spheroidal shape; hence, in this investigation, we measure the bubble surface area and
report its variation for a wide range of parameters.

The surface area, S, is calculated using Pappus first theorem.!> A similar procedure, but consid-
ering the second theorem, was used by Soto et al.'* to measure the volume of bubbles with highly
deformed axisymmetric shapes. The first theorem of Pappus states that the surface of revolution
generated by rotating a curve C about an axis of rotation is equal to the product of the arc length,

FIG. 2. Typical image of a bubble. The x shows the geometrical center of the bubble. The vertical dashed-dotted line shows
the axis of symmetry. The dotted (green online) line shows the detected edge of the bubble. The continuous (red online) line
shows the curve C of length s, which is used to calculate the surface of the bubble, S. The ¢ shows x which is the centroid of
C. For the case shown, d = 8.3 mm for Mo = 1.3x 1073.
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s, and the distance traveled by its geometric centroid, x: S = 27w sx. It is relatively easy to determine
C, s, and x from DIA. We used a standard edge detection algorithm to find the edge of the bubble
image; from the geometric center of the bubble, the position of the vertical axis is determined. The
edge is cut into two parts (left and right). From either part, the curve C is obtained. Since the edge
detection algorithm finds the “inner” bubble boundary (based on the maximum value of pixel inten-
sity gradient), the position and length of C have to be corrected. This is done by radially growing
the curve by one pixel. We verified the accuracy of this correction by measuring the surface area
of a reference sphere of known diameter. Once C is known, x and s are easily calculated. Figure 2
shows these quantities for a typical image. This procedure was applied to all of our experiments to
determine S and f,,. We also obtained measurements for a few data points from Huang,'® Sunol and
Gonzalez-Cinca,!” and Zenit and Magnaudet.5 Since the measurement of the surface area is more
sensitive to pixel-resolution error, the uncertainty of the measurement increases to ~6%.

B. Parameter range

The model proposed in this paper is based on the new experiments performed for this study
and on many experimental measurements reported in the literature using different liquids. The
corresponding range of parameters covered here is reported in the phase diagram (Mo, Eo) shown
in Fig. 3. The Morton number is varied from O(10~'") to O(1) and the Eotvos number ranges from
0(1072) to O(10?). For those ranges, the Weber number and Reynolds number are in the ranges
0(10~%) up to 0(10) and O(1072) to O(10%), respectively.

Following Rastello et al. 18 we found that all data can be correlated considering Re, We, and Mo.
Figure 4 shows all the experimental data shown in Fig. 3 written in terms of these three dimensionless
numbers. The data are closely fit to the expression'®

Re =2.05We?* Mo~ '/, (1)

Clearly, a very good correlation is found for all data. This relation is useful. Below, we propose
a relation for the bubble deformation for which only the We and Mo numbers need to be known.

10

@ W W00
I I .

HHHHE HH

>

10

10”

FIG. 3. Phase diagram (Mo, Eo). Experiments from the literature considered for this study: o, ultra purified water (19.6°);2

[, water (~28°);19 +, ethanol;!7 <, A, v, ¢, silicon oil;’ and A, ¢, B, e, this study.
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FIG. 4. Correlation between Re, We, and Mo for all the experiments considered in this study. All symbols are the same as
in Fig. 3. The solid line shows the correlation in Eq. (1).

The Morton number is defined in terms of the gravitational acceleration g, which limits its use
to bubbles ascending as a result of buoyancy. Although, in principle, the gravitational acceleration
could be replaced by the relevant acceleration in another context (either reduced or enhanced gravity),
expression (1) permits us to reformulate our model in terms of We and Re only.

IV. AIR BUBBLE IN WATER

A large number of experimental investigations of the motion of air bubbles in water have been
conducted.! In Aybers and Tapucu,'® experimental measurements for the deformation of air bubbles
in water are reported for a large range of bubble diameters (d € [0.83; 7.11] mm). For this diameter
range the observed shapes were spherical (d < 0.83 mm), ellipsoid without (0.83 < d < 2.0) and with
(2.0 < d < 4.2) surface oscillation and distorted shape leading to spherical cap (d > 4.2). In these
experiments the effect of surface-active impurities was clearly demonstrated: the bubble terminal
velocity was smaller than the theoretical predictions for clean bubbles.

Since water is very sensitive to impurities, Duineveld* performed experiments in an ultra-clean
environment and with high purity water for d € [0.66; 2] mm. He compared the bubble terminal
velocity and deformation with the analytical solution of Moore’ based on the potential flow solution,
i.e., valid in the limit of large bubble Reynolds number. For such conditions the deformation is
controlled by liquid inertia induced by the slip motion. If the distortion is small, Moore?' showed
that the bubble is an oblate spheroid and that the aspect ratio is given by

9
x =1+ a We. 2)
In the opposite limit of very viscous flows (i.e., high Morton numbers and low Reynolds
numbers), Taylor and Acrivos?? showed that, for small inertial effects, the deformation was
x =14+ 35—2We. Note that 9/64 ~ 0.141 and 5/32 ~ 0.156; hence, it is difficult to experimen-
tally observe the difference between these two behaviors since the O(We) correction is observed for
We < O(1) corresponding to small deformation (less than 15% according to relation (2)).
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If the dynamic pressure and the surface tension pressure are balanced exactly at the stagnation
points and at the intersection of the bubble surface and the horizontal plane of symmetry, the
deformation can be shown to be?!

4 (C+x-2

_ 20 1, .2  1\1/272
We—XM3 TEEEE [x“sec™ x —(x"— DI 3)

Duineveld®® observed smaller deformation than that predicted by relation (3) so he proposed
the following relation in order to fit his data:

= 4 )
X= Weg — We’

with Weg >~ 4.412 and a; >~ —4.39. This relation has a limited range of application since the
deformation diverges as We — Wey.

Loth?? collected data from many sources in the literature to provide a new description of the
aspect ratio based on the Weber and Reynolds numbers. From data for pure bubble systems over a
range of Reynolds numbers from 0.2 to 5000, the author proposes the following fit:

1
— =1-(— Eyjp)tanh[cpWe], ®)
X

where E,,;, = 0.25 4+ 0.55exp [—0.09Re] and cg = 0.165 + 0.55exp [—0.3Re]. Note that this relation
is nearly independent of the Reynolds number for Re > 20.

The experimental results of Aybers and Tapucu'® and Duineveld? are shown in Fig. 5(a) which
also reports more recent experiments performed using high speed camera which allow a more
accurate determination of the bubble shape and terminal velocity for air bubbles in tap water>>* and
ultra filtered water.'®?> We also observe in this figure that the bubble deformation for all the reported
experiments show the same evolution for d < 1.5 mm. For larger diameters, a different behavior is
observed which could be attributed to the purity of the water. Figure 5(b) indicates that this deviation
corresponds to the maximum of the terminal velocity. For d > 1.5 mm the terminal velocity for all
the experiments reported reveals the same evolution predicted by the Moore?! solution. The main
reason is the decrease of bubble terminal velocity, which has been shown to be the result of interface
contamination. The liquid inertia involved in bubble deformation is thus decreased and bubbles are
less deformed.

3 40
(a)
o 35
m]
30
251
—_—
£
3 20
D
15+
10+
5l
. 3.5 4 0 0.5 1 15 2 25 3 3.5 4
d (mm) d (mm)

FIG. 5. Air water system. (a) Bubble aspect ratio x and (b) terminal bubble velocity U as a function of bubble equivalent
diameter d, respectively. A, tap water;2* ¢, ultra filtered water;2> » ultra filtered water;?° o, ultra purified water;2Y and OJ,
filtered water.!” The dashed line (— — —) shows the fit y = 1 + 0.164%. The solid and dotted lines show the predictions of
the model proposed by Moore,?! considering physical properties at 20 °C and 25 °C, respectively.
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FIG. 6. Water and other low viscosity liquids. Bubble aspect ratio x as a function of (a) Weber number We and (b) Eotvos
number, Eo. A, tap water;2* ¢, ultra clean water;?> *, ultra filtered water;?° o, ultra purified water;20 [J, filtered water;!®
+, (Mo =2.3 x 10~%) ethanol;'” and <1, (Mo = 1.8 x 10~ %) silicon oil.” The thick continuous (—) and dashed (—— —) lines
show the predictions from expressions (2) and (6), respectively. The dotted (. .. ), dashed-dotted (— . —), and thin continuous
lines show the correlations proposed by Duineveld,?” Loth,?* and Raymond and Rosant,?¢ respectively.

Figures 6(a) and 6(b) show the deformation as function the Weber and Eotvos numbers, respec-
tively. It is clear from these plots that the relevant dimensionless number to be used to describe the
deformation is the Weber number. Indeed, when deformation is reported versus the Weber number
all the data collapse on the same curve (Fig. 6(a)); on the other hand, considering the Eotvos number
the data are greatly scattered.

It is also very interesting to note that (i) clean and contaminated bubbles also follow the same
evolution and (ii) the experiments of Aybers and Tapucu'® corresponding to various bubble shapes
including spherical cap also follow the same trend. The deformation evolution also appears not to be
significantly affected by the nature of the trajectory. Ellingsen and Risso? and Riboux et al.?* have
shown that the velocity remains aligned with the small axis when the bubble experiences a helical
trajectory.

As shown in Fig. 6, the following simple relation closely describes the bubble deformation for
water for x up to 3:

1

X="T——75—-. (6)
1— 2 We

In the limit of small deformation (i.e., small We) this relation is in accordance with expression (2),
which is valid up to We = 2. Relation (5) is also shown in the figure, for the limit of large Reynolds
numbers. This relation closely predicts the deformation up to x ~ 2.5. Raymond and Rosant?®
proposed a relation, which is very similar to Eq. (6) but based on larger Morton number experiments.
The agreement with this expression is also good for small deformation. However, for both cases, for
We > 2, the predicted deformation is below the experimental data shown in Fig. 6. The source of
this difference with the deformation measured in water systems is discussed in Sec. V considering
larger Morton number.

V. EFFECT OF MORTON NUMBER

Let us now consider the bubble deformation for more viscous fluids in order to cover a
wider range of Morton numbers (see Fig. 3). We first observed that the evolution of the defor-
mation with the Weber number was not affected significantly by the change in Morton number for
Mo < 2 x 1072, Indeed, as shown in Fig. 6(a), the evolution of the aspect ratio for the silicon oil
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FIG. 7. Effect of Weber and Morton numbers on bubble deformation. o, Ultra purified water;20 O, filtered water;!®
o (Mo =99 x 107% and A (Mo = 1.6 x 10~8) silicon oils;> and ¢ (Mo = 1.3 x 1073), B (Mo = 2.9 x 1072),
e (Mo = 1.7), water-glycerin mixtures (this study). The solid lines show the prediction of Eq. (7), considering Eq. (8), for
the corresponding Morton numbers of each experiment.

(Mo = 1.8 x 1079 and for ethanol (Mo = 2.3 x 10~%) are very close to that observed for water.
The evolution as a function of the Eotvos number, shown in Fig. 6(b), confirms that the correct
dimensionless number for these liquids is the Weber number.

Figure 7 shows the effect of larger Morton numbers on the deformation. For comparison,
the results of Aybers and Tapucu'® and Duineveld® (which correspond to an air-water system)
are used to show the water-like evolution observed up to Morton number Mo ~ 2 x 107°.
The bubble deformation obtained in the present study for a water-glycerol mixture (Mo = 1.68,
Mo =29 x 1072, Mo = 1.3 x 10~?) and by Zenit and Magnaudet® for two silicon oils (Mo = 1.6
x 1078 and Mo = 9.9 x 107°) are also shown in Fig. 7. The deformation is observed to decrease
monotonically with the Morton number.

A detailed inspection of the data, by considering the evolution of 1 — 1/x, reveals that the
following simple expression closely predicts the bubble aspect ratio for all the fluids considered
here:

1
1—2We(l+ K(Mo)We)~!'

X = @)
where K(Mo) is a function of the Morton number only. In order to recover relation (6), valid for
water and other low viscosity liquids, which is consistent with the analytical solution of Moore”!
for small deformation, the condition limyy, . ¢K(Mo) = 0 must be satisfied. Our data suggest that
K(Mo) evolves approximately as Mo'!°. This dependence can be closely fitted by the following
simple expression:

K(Mo) =0.2Mo"'°. (8)

The prediction of expression (7), considering also Eq. (8), is compared with the experimental
measurements in Fig. 7. An excellent agreement is observed. Additionally, we compared our results
with the recent experimental measurements of Rastello et al.'® leading also to a very close agreement
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(not shown in Fig. 7 for clarity). We also observed a very good agreement with the predictions of
Loth’s correlation? for larger Morton number than those reported in Fig. 6. For Mo > 1073 we
found some differences with the data reported by Raymond and Rosant.?® Both our experiments and
model, result in smaller bubble deformation for a given value of We, particularly for We > 2.5. It
is not easy to assess what is the cause of these discrepancies. In general, we think that differences
between data sets may arise from the deformation measurement. The validity of our results rests in
the good agreement with the results reported by Loth?® and Rastello et al.,'® for such Mo values.

In this paper, we show two regimes for the bubble deformation. For Morton number smaller
than 10~° we observe a water-like behavior nearly independent on the Morton number and in good
agreement with recent different sources™ 17:20:24 a5 well as with classic data.!®?° In most cases,
the degree of cleanliness of the bubble surface is not controlled but all these experiments show
deformation in agreement with the model proposed in this study whatever the surface contamination
level. When the Morton number increases, we observe less deformation than the water-like behavior
as clearly shown in Fig. 7 in agreement with the recent experiments of Rastello et al.'® as well as
with the empirical model of Loth.2* As discussed above, neither surface contamination nor bubble
trajectory is expected to produce less deformation. Therefore, other physical mechanisms must
be analyzed to further understand this behavior. It can be argued that the viscous boundary layer
developing at the bubble surface can be responsible for the reduced deformation for a given Weber
number when increasing the Morton number. As shown by Kang and Leal,”’ the bubble Reynolds
number has a significant effect on the pressure distribution at a spherical bubble surface. Same effect
is, of course, expected for deformed bubble, most likely resulting in less deformation for a given
Weber number. We plan to further pursue this argument via numerical simulations in a future study.

Vi. BUBBLE SURFACE AREA

A direct application of the results presented in this paper is their use to describe the interfacial
area «;. This quantity is often used in the Eulerian two-fluid models to account for the interfacial
momentum, energy and mass exchange between the phases. In mono-dispersed bubbly flows, the
interfacial area is a function of the gas void fraction o, the volume V and the surface S of the
bubbles:

S
o] = O{GV.

As shown above, the bubble shape and, therefore, the interfacial area change significantly with both
the Morton number and the Weber number. This parameter can vary significantly, even within the
same flow, in a complex system. To our knowledge, experimental measurements of this parameter
have not been reported to date; only a few numerical studies exists2®28 but their results have not
been verified experimentally.

For a spherical bubble, a; = 6ag/d.,. When the bubble deforms, according to Figueroa and
Legendre,'® we can express the interfacial area as

6
ar = a6 fu(X), ®

where f;, is a measure of the relative increase of the interfacial area with the deformation.
For a spheroidal bubble of aspect ratio x, an expression for f, can be readily obtained:>!

2/3 1 =1
Xy Ln [ 25X . (10)
20 4By -1 x—vVx*—1

From digital image analysis, described in Sec. III, a measurement of the surface area, S, of
a given bubble can be obtained. Despite its importance, surprisingly, a direct measurement of the
surface area of bubbles has not been reported to date. We can directly calculate f, for a wide range
of deformations.

Figure 8 shows the measured value of f;, for all the experiments conducted in this study. For the
largest deformation considered here (x & 3) the increase of the interfacial area is significant since it

fot(X) =
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FIG. 8. Normalized bubble surface, f,, as a function of bubble aspect ratio. Measurements for: A (Mo = 1.6 x 10’6),
¢ (Mo =132 x 1073), B (Mo = 0.029), e (Mo = 1.68), water-glycerin mixtures (this study). For comparison some other
data are shown: Huang et al.®® (x, Mo = 2.6 x 10’10); Sunol and Gonzalez-Cinca!” (+, Mo =23 x 10’9); Lai et al.?8
(>, 2.0 < Mo < 7.7 x 1077); and Raymond and Rosant?¢ (<1, 2.0 < Mo < 7.7 x 10~7). Shown also are the data of Zenit
and Magnaudet® for silicon oils: o (Mo = 9.9 x 107%), v (Mo = 6.2 x 1077), and A (Mo = 1.6 x 10~%). The solid and
dashed lines show the predictions of Egs. (10) and (11), respectively.

canreach 20% for y = 3. The measurements are contrasted with the prediction from expression (10).
Clearly, the agreement is good, for the whole range of Morton numbers and deformations but the
expression overestimates the increase of the surface area for most values of . The following fit,

fu=140.07(x — 174, (11)

is shown in the figure. It is simple and closely fits the evolution of the surface increase for the
range of Morton number considered in this study. Nevertheless, despite the wide range of defor-
mations, the interfacial area can be approximated by assuming an ellipsoidal shape. Finally, using
relations (9) and (10) or (11) coupled with (7), it is possible to have a good description of the inter-
facial area for a wide range of fluid properties and deformation. An explicit dependence with We
and Re can also be obtained considering Eq. (1).

In the figure, the simulation results from Raymond and Rosant?® and Lai et al.?® are also shown.
The results of Lai et al.”® show an increasing value of the normalized bubble surface as the aspect
ratio increases, in accordance with the experimental measurements; however, their computed results
are below the rest of the data. Such underestimation of the bubble surface may result from the
particular simulation technique used in their study. The results of Raymond and Rosant?® show a
very different trend: they report that the bubble surface decreases with aspect ratio. These results are,
most likely, flawed. For a spherical bubble (x = 1) the surface is minimized; hence, as deformation
increases, the surface of the bubble should increase.

VIl. CONCLUDING REMARKS

The bubble deformation has been analyzed for different gas-liquid systems. For the air-water
case, the relevant parameter to describe the deformation is the Weber number. By considering only
this number, the bubble deformation can be described universally for all bubble shapes, contamination
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levels and path trajectories. A water-like behavior is observed for low viscosity fluids for Morton
numbers of up to Mo of O(10~°). For more viscous liquids the deformation for a given Weber
number decreases with the Morton number. The relation obtained for small Morton numbers was
extended for more viscous liquids, considering a simple correction to account for variations on both
Weber and Morton numbers. This study indicates that the bubble deformation can be fully described
by only knowing We and Mo. This result is, in fact, consistent with what is expected from a simple
dimensional analysis of the system.

The evolution of the bubble surface area has also been briefly discussed. A simple model has
been proposed to describe the evolution of the interfacial area for moderately deformed bubbles.
With such a model it is possible to have a dynamic representation of the bubble deformation.
Thus in regions where the Weber number is reduced because of a smaller slip velocity (for ex-
ample in recirculation zone in a downcomer), the interfacial area should decrease. The simple
relation proposed here is of interest for practical applications and for CFD tools where bubble
deformation has to be characterized since it directly affects the surface of exchange in many flow
configurations.
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