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Abstract – The effects of a Planck-scale deformation of the Minkowski energy-momentum
dispersion relation on the phenomenology of non-trapped Bose-Einstein condensates (BECs) are
examined. Such a deformation is shown to cause a shift in the condensation temperature Tc of the
BEC and, for a specific functional form of deformation, this shift can be as large as the current
measured precision on Tc. For a

85
37Rb cold-atom BEC with a particle density n� 1012cm−3 we find

a fractional shift of order 10−4, but this can be much larger for even more dilute BECs. We discuss
the possibility of planning specific experiments with BECs that might provide phenomenological
constraints on Planck-scale physics. These corrections to Tc are found to be extremely small for
ultrarelativistic BECs implying that, in some cases, Planck-scale effects may be more important
in low- rather than high-energy processes.

Copyright c© EPLA, 2012

Lively interest has recently emerged to experimentally
probe quantum-gravitational Planck-scale effects [1] due
to deformations of the standard Minkowski free-particle
energy-momentum dispersion relation of special relativity.
Such deformations are a general feature of quantum-
gravity theories, as, e.g., loop quantum gravity [2–8] or
noncommutative geometries [9–12]. Further, it is also
of great relevance in the general context of Lorentz-
symmetry breaking [13]. Quite generally, a deformed
dispersion relation can be written as

E(p)≡E0(p)+ δE(p,m,MP ), (1)

where E0(p)≡
√
p2c2+m2c4 is the familiar Minkowski

dispersion relation, with p the particle momentum, m its
rest mass and c the speed of light. Here δE(p,m,MP )
represents the deviation from E0(p) which in addition is
a function of the Planck mass MP while its explicit form
depends on the details of the quantum-gravity model used.
The relation (1) is assumed to be universal, i.e., it is the

(a)E-mail: briscese.phys@gmail.com
(b)E-mail: mdgg@hp.fciencias.unam.mx
(c)E-mail: dellano@unam.mx

same for all the elementary particles, including composite
particles such as nucleons or atoms when internal degrees
of freedom are negligible.
The dependence on the Planck mass MP is introduced

since one expects that departures from Lorentz symmetry
become important at Planck scales, but one should require
that this symmetry be restored when p� cMP . Moreover,
one would like to preserve the interpretation of m as the
particle rest mass. In general, therefore, one should impose
the two conditions

δE(p= 0,m,MP ) = 0,
(2)

δE(p,m,MP )−−−−−−−→MP −→∞0.

Initially, attempts to constrain the functional form
of δE(p,m,MP ) were in an astrophysical context
where particles are in the ultrarelativistic (UR) regime,
p�mc [14]. In this limit the dispersion relation defor-
mation can be parameterized quite generally, regardless
of the explicit model under study. Due to the extremely
large value of MP � 1019GeV/c2 a series expansion of
δE(p,m,MP ) in inverse powers of MP might prove
useful along with the leading term in 1/MP as first
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approximation. Accordingly, δE(p,m,MP ) would be
written [15,16] as

δE(p,m,MP )� 1

2Mp

(
η1p

2+ η2mcp+ η3m
2c2
)

(3)

with the three real parameters: η1 associated with the
leading term, η2 to the next leading term, and η3 to
the next-to-next leading term. As pointed out in many
studies [14,17–20], astrophysical data could be sensitive to
a leading-order deformation with |η1| � 1. A preliminary
analysis of the Fermi Space Telescope data [21–25] is
currently underway to constrain η1. Very recently [15,16],
constraining the functional form of (1) in the nonrel-
ativistic (NR) regime p�mc based on ultra-precise
cold-atom recoil frequency experiments was proposed.
In the NR limit, a more appropriate parametrization of
δE(p,m,MP ) is [15,16]

δE(p,m,MP )� 1

2MP

(
ξ1mcp+ ξ2p

2+ ξ3
p3

mc

)
(4)

with parameter bounds obtained as −6.0< ξ1 < 2.4 for the
leading-order deformation parameter and −3.8× 109 <
ξ2 < 1.5× 109 for the next-to-leading order, both within
a 95% confidence level [15,16].
The low- and high-energy bounds just mentioned

are perfectly complementary. To illustrate this fact,
consider the following deformation: δE(p,m,MP ) =

−η
[
m3c4/

√
m2c4+ p2c2−m2c2

]
/MP [15]. In the low-

energy NR limit this dispersion relation corresponds to
(4) with ξ2 =−η, ξ1 = ξ3 = 0, namely the next-to-leading
order. In the high-energy UR limit, on the other hand,
this corresponds to (3) with η3 = 2η, η1 = η2 = 0 or to the
next-to-next leading order. This example also exhibits
how the the deformation δE can be more important in
the NR than in the UR limit.
It might be objected that (4) can be ruled out for macro-

scopic objects when ξ1 ∼ 1. One has p2/2m� δE for p�
p0 ≡ ξ1m2c/MP so that the deformation δE dominates
over the Minkowski kinetic term. Standard-model particles
with m� 10−16MP makes δE dominate in the extreme
NR limit p� p0 ∼ 10−16ξ1mc. However, for macroscopic
objects one can easily have m∼MP and so that p2/2m�
δE for p� p0 ∼ ξ1mc, i.e., the deformation δE dominates
in the entire NR regime. But this would contradict the
familiar dynamics of classical NR bodies. Note, however,
that (4) is merely the small-p asymptotic expansion of the
full deformation δE(p,m,MP ), and is thus valid for all
momenta up to some pλ, where pλ depends on the explicit
functional form of δE. For example a deformation

δE(p,m,MP , pλ) = ξ1
mcp

2MP
exp(−p/pλ) (5)

behaves as δE = ξ1mcp/2MP for p� pλ and δE � 0 for
p� pλ. Therefore, to apply (5) to macroscopic bodies one
should measure the momenta of extended objects with

p� pλ and this is impossible for sufficiently small pλ below
the lowest measurable momentum for extended bodies.
Since one supposes that this is always the case for pλ, the
relation (4) cannot be ruled out for classical macroscopic
bodies. We also emphasize how (4) is commonly accepted
in the literature [15,16].
This letter addresses the effect of a deformed dispersion

relation on the critical temperature Tc of a spatially
uniform non-trapped Bose-Einstein condensate (BEC).
This effect can be compared with the current precision
in Tc measurements that allows constraining the leading
order parameter of the NR deformation (4) up to |ξ1|�
102.
After languishing for seven decades as a mere academic

exercise in textbooks, BEC was finally observed in the
laboratory in laser-cooled, magnetically trapped ultracold
bosonic clouds of 8737Rb atoms [26],

7
3Li [27],

23
11Na [28],

1
1H

[29], 8537Rb [30],
4
2He [31],

41
19K [32],

133
55 Cs [33],

174
70 Yb [34]

and 5224Cr [35]. The relativistic BEC including antibosons
as well as bosons has been reported [36], but for simplicity
we neglect antibosons even in the UR limit in what follows.
A generalization including antibosons is straightforward.
Nowadays there exist very accurate measurements of
BEC critical temperatures Tc so that the aforementioned
constraints can be addressed. Specifically, in ref. [37]
very accurate measurements of Tc shifts due to strong
interboson interactions are reported for 3919K. Such high-
precision measurements might be useful in constraining
Planck-scale dispersion relation deformations introduced
in (1) in feasible experiments.
Neglecting interboson interactions in the BEC we find

that the leading-order deformation in (4) produces a shift
∆Tc/T

0
c ∝ ξ1m2c/�MPn1/3 where ∆Tc ≡ Tc−T 0c with Tc

the critical temperature of the gas with the deformed
dispersion relation, T 0c that same temperature in the
undeformed Minkowski case, n the boson number density
and m the boson mass. This shift can be unexpectedly
high. For example, we obtain ∆Tc/T

0
c ∼ 10−4 ξ1 for 8537Rb

with a particle number density n� 1012 cm−3. Since in
high-precision measurements of ∆Tc/T

0
c in

39
19K due to

interboson interactions is ∆Tc/T
0
c ∼ 5× 10−2 within a 1%

error [37], the deformation parameter can be constrained
up to |ξ1|� 102. Moreover, since ∆Tc/T 0c ∝ n−1/3 one
could enlarge the temperature shift merely by reducing
n (without however making it so small that it invalidates
the thermodynamic limit), and therefore the bound on the
deformation parameter ξ1 can be improved using dilute
(small n) BECs.
Based on such an unexpected relevant result, it

behooves one to propose experiments with dilute BECs
with the aim of measuring a Planck-scale induced shift
of Tc. Of course, one should eventually generalize our
result concerning ∆Tc/T

0
c to trapped BECs but this is

not trivial. The main task there would be to calculate
the energy levels of the trapped bosons which in the case
of free bosons corresponds to the deformed dispersion
relation (4), with the result expected to depend on the
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specific quantum-gravity framework used. Additionally,
in planning a feasible experiment one should include
effects currently measurable experimentally [37] due to
interboson interactions and compare them Planck-scale
contributions to ∆Tc/T

0
c . These caveats are currently

under scrutiny [38] (see also refs. [39,40]).
We also analyze the effect of the next-to-leading-

term deformation in (4) and show that one obtains
∆Tc/T

0
c = ξ2m/MP which, being an extremely small and

constant shift, cannot constrain the deformation parame-
ter ξ2 with Tc measurements alone. Therefore, the next-
to-leading-order deformation in (4) cannot be excluded
nor even bounded. Lastly, we derive the effect of a
Planck-scale dispersion relation deformation in the UR
limit (3) and find the remarkable result that this effect is
always negligibly small. All this suggests that Planck-scale
corrections to Tc can be important for NR BECs rather
than UR ones.
The general procedure to calculate ∆Tc/T

0
c is first

sketched. We write the general form

δE(p) = xf(p) (6)

for the dispersion relation deformation δE(p) where
x� 1 is a dimensionless deformation parameter. For
the dispersion-relation deformation defined in (6) the
condensation temperature Tc(x) is a function of the
deformation parameter x and is obtained by extracting
Tc(x) from its defining implicit relation

2π2�3n=

∫ ∞
p0

[
exp

[
E0(p)+x f(p)−mc2

kBTc(x)

]
− 1
]−1
p2dp,

(7)
where p0 ≡ π�/L for free particles in a box of volume L3.
Clearly, for x= 0 one recovers the usual Minkowski value
Tc(0) = T

0
c that in the NR limit E0(p)�mc2+ p2/2m

gives the familiar BEC formula

T 0c = T
NR
c ≡ 2π

ζ(3/2)2/3
�
2n2/3

kBm
. (8)

Since the lhs of (7) is independent of x one has ∂xn= 0.
After some algebra one readily obtains

∂xTc(x)/Tc(x) =

∫ ∞
p0

f(p)g(p, x)p2dp/

∫ ∞
p0

p2dp

× [E0(p)+x f(p)−mc2] g(p, x), (9)

where we have defined

g(p, x) ≡
(
exp

[
E0(p)+x f(p)−mc2

kBTc(x)

]
− 1
)−2

× exp
[
E0(p)+x f(p)−mc2

kBTc(x)

]
. (10)

This expression is quite useful to calculate the shift in Tc
due to the dispersion relation deformation. In fact, since
x� 1, one can take

∆Tc
T 0c
=
Tc(x)−Tc(0)
Tc(0)

� x
(
∂xTc(x)

Tc(x)

)
|x=0

(11)

and the last term can be evaluated by use of (9). Let
us consider the leading term of the NR deformation
given in (4), i.e., δE = ξ1mcp/2MP . This corresponds to
x= ξ1m/2MP and f(p) = cp. In the NR limit one can
write E0(p)�mc2+ p2/2m and Tc(0) = TNRc , so that (11)
becomes

∆Tc
T 0c
� 0.1

(
m2c

�MP n1/3

)
ξ1 ln(N), (12)

where N ≡ nL3 is the total number of particles. This shift
can be evaluated for a 8537Rb BEC with number density n�
1012 cm−3 [41] and boson mass m� 150× 10−27 kg and
N = 109. Hence ∆Tc/T

0
c � 8.6× 10−5ξ1. Since one expects

ξ1 ∼ 1 in quantum-gravity theories, this can be extremely
large when compared to the strength of the deformation
in (4) which is of order δE/E � ξ1p/2cMP � ξ1m/Mp ∼
10−17. Evidently, the temperature shift (12) being ∝ n−1/3
can be enlarged for BECs with sufficiently small n, but not
so small to render the thermodynamic limit inapplicable.
This fact is vital since one can then seek low-density BECs
with a correspondingly large ∆Tc/T

0
c in order to constrain

and perhaps even measure the deformation parameter ξ1.
Moreover, from (12) another way of enlarging ∆Tc/T

0
c is

to consider more massive bosons.
As mentioned initially, if one is to deal with actual

laboratory measurements of ∆Tc/T
0
c one should generalize

(12) to the case of a trapped gas. However, such a
generalization is a delicate matter well beyond the intent
of this paper and that will be presented elsewhere [38].
Here we merely stress that, for non-trapped BECs the
shift ∆Tc/T

0
c due to Planck-scale effects can be as large as

∼ 10−4ξ1 and even larger for dilute BECs. Since we expect
a comparable effect for trapped BECs, it makes sense to
compare such a shift with empirical values of ∆Tc/T

0
c .

In high-precision measurements of ∆Tc/T
0
c in

39
19K [37]

due to interboson interactions, the order of magnitude is
∆Tc/T

0
c � 5× 10−2 with at most a 1% error so that such

measurements may be sensitive to Planck-scale effects. As
seen above, the Planck-scale-induced shift in the conden-
sation temperature is ∆Tc/T

0
c � 10−4 ξ1 for a 8537Rb BEC,

which allows to constrain the deformation parameter up
to |ξ1|� 102. Moreover, since the temperature shift can be
enhanced for even more dilute and/or more massive BECs,
even better bounds on ξ1 are obtainable.
Note also that (12) may theoretically suggest the exclu-

sion of the leading term in (4) as it would cause an
unbounded shift for very small n. Even though the temper-
ature shift becomes arbitrarily large for small n the critical
temperature vanishes as n1/3 when n→ 0, since one has

Tc � 2π

ζ(3/2)2/3
�
2n2/3

kBm

[
1+30

(
m2c

�MP n1/3

)
ξ1

]
. (13)

Thus, a nonzero deformation parameter ξ1 is not inconsis-
tent. Remarkably therefore, a measured nonzero shift of Tc
in a low-density BEC, but unrelated to interboson inter-
actions, would imply a leading-order dispersion relation
deformation.
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Let us briefly examine the next-to-leading-order term
in (4), corresponding to ξ2 	= 0 and ξ1 = ξ3 = 0 with the
bound |ξ2|� 109 [15,16]. This implies the energy disper-
sion relation

E �mc2+ p2/2m+ ξ2p2/2Mp ≡mc2+ p2/2mξ2 , (14)
where mξ2 ≡mMp/(ξ2m+Mp). This gives Tc = T 0c [1+
ξ2(m/MP )] so that the temperature shift becomes

∆Tc
T 0c
= ξ2

m

Mp
. (15)

Sincem/MP � 1 such a shift is extremely small and there-
fore the next-to-leading term in (4) cannot be excluded nor
bounded even for very large values of ξ2.
So far our focus has been limited to the NR limit of

the deformed dispersion relation (4). We now show that
Planck-scale corrections to Tc are negligibly small as a
result of the leading term in the UR limit (3). In this
case δE(p) = η1p

2/2MP and the temperature shift can be
calculated via (9)–(11) with x= η1m/2MP and f(p) =
p2/m. Moreover, one has E0(p)� cp and Tc(0) = TURc ,
where TURc is the UR condensation temperature,

TURc ≡ � c π2/3n1/3/kBζ(3)1/3. (16)

The resulting temperature shift is thus

∆Tc
T 0c
� 1.8 η1

(
kBT

UR
c

c2MP

)
(17)

and such a shift can be appreciable only for extremely
high densities n such that kBT

UR
c ∼ c2MP ∼ 1019GeV.

This result is significant as being counterintuitive since
one expects that Planck-scale effects be appreciable in UR
rather than NR phenomena. In fact, the situation is quite
the opposite: Planck-scale corrections to BEC critical Tc’s
are appreciable in NR BECs (12) but are extremely small
for UR BECs (17).
Lastly, we briefly discuss the cosmological consequences

of our analysis. It was recently proposed [42–64] that dark
matter in the universe might consist of a BEC phase
due to some boson. Since the condensation temperature
determines the epoch of formation of such a condensate,
a shift in Tc may delay or anticipate the condensation of
dark-matter particles, thus affecting the phenomenology
of the model. This motivates exploring whether Planck-
scale deformation can in fact affect BECs. At any rate,
one is far from a direct observation of such a cosmological
condensate so that at present its existence is speculative,
even though one can search for its indirect cosmological
traces. Indeed, this suggests an interesting avenue of
research.
To conclude, we have determined the effects of Planck-

scale deformation of the dispersion relation on the conden-
sation temperature of a non-trapped BEC. In particular,
assuming a nonrelativistic leading-order dispersion rela-
tion defined in (4) one finds that such an effect may be

comparable with the precision measurement of Tc [37] and
that one can bound the leading-order deformation para-
meter up to |ξ1|� 102. We thus argue that one should
generalize this result to the case of trapped BECs [38] in
order to propose feasible experiments sensitive to Planck-
scale physics. We have also shown that the next-to-leading
correction in (4) causes an extremely small shift that is
unobservable with any experiment so such a deformation
can neither be excluded nor fixed outside presently exist-
ing bounds. Finally, it is noteworthy that Planck-scale
corrections to Tc are extremely small for UR condensates.
This leads one to the conclusion that Planck-scale physics
may be relevant for cold-atom NR BECs rather than UR
BECs.
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