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a b s t r a c t

The dynamics of formation and evolution of vortex rings in non-Newtonian shear-thinning liquids
generated in a piston-cylinder arrangement was studied. The ratio of the piston displacement Lm to
the internal cylinder diameter D0, as well as the mean piston velocity Up determine the vortex properties
and evolution. Experiments with different conditions are presented: translation velocity of the piston and
stroke ratios Lm/D0. Measurements of the 2D velocity field were obtained with a PIV technique. The vortex
circulation C was computed considering a vortex identification scheme (Q criterion). The Reynolds
number was in the range 138 < Re0 < 616. The Reynolds number for these vortices was computed in terms
of the ‘power-law’ model parameters: the power index n and the consistency m. Considering different
shear-thinning liquids and fixed Reynolds number, we observed that the vortex circulation decreases
with the power index n. We show that the total circulation ejected from the cylinder is reduced when
the thinning property of the liquid increases (decrease n); thus, the circulation confined inside the vortex
ring, is reduced too. A value of the non-dimensional vortex circulation C/D0Up � 2 may indicate a
saturation condition beyond which it is not possible to increase the vortex circulation for any Reynolds
number.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Vortex rings are fundamentally important in fluid mechanics
due to their prevalence in a variety of flows including turbulence.
Vortex rings are present in many engineering applications and
natural phenomena. Some examples are starting jets, helicopter
rotors, propulsion, volcanic eruptions, animal locomotion, etc. A
great volume of research in this subject has been published for
over a century. The vortex ring is one of the most common fluid
structures in nature. Many biological flows are characterized by
vortex production and vortex shedding. In animal locomotion,
the production of coherent structures such as vortex rings is com-
mon; these structures have been found in squid jet propulsion by
Anderson and Grosenbaugh [1] and Bartol et al. [2]. Dabiri et al.
[3] studied a species of jellyfish that creates a single vortex ring.
This kind of vortex can also be seen in internal biological flows,
such like the discharge of blood into the heart left ventricle (Gharib
et al. [4]).

In the laboratory, vortex rings can be generated by the motion
of a piston that pushes a column of fluid in a cylinder through an
orifice or nozzle. In the literature it is possible to find theoretical,
numerical and experimental studies that address this problem.
ll rights reserved.
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Many of the early works can be found in the reviews of Shariff
and Leonard [5] and Lim and Nickels [6]. Saffman [7] presented
different theoretical studies of axisymmetric thin cored vortex
rings. There are many experimental studies for the case of laminar
vortex rings in Newtonian fluids: Maxworthy [8] observed that the
vortex formation process is strongly dependent on Reynolds num-
ber. Didden [9] gave information of the role of the internal and
external boundary layers in the formation process and circulation
of the vortex ring. Glezeer [10] analyzed the conditions under
which transition from laminar to turbulent vortex rings is
observed. Weigand and Gharib [11] studied the vortex ring proper-
ties for different Reynolds numbers using the PIV technique and
found that the vorticity distributions in the vortex core have self-
similar Gaussian profiles. Gharib et al. [12] reported that for large
piston displacements the vortex rings attain a maximum circula-
tion during their formation. Querzoli et al. [13] studied experimen-
tally the motion of vortex rings generated by gradually varied
flows which reproduce the characteristics of many biological
conditions. Palacios-Morales and Zenit [14] studied the vortex ring
formation for relatively low Reynolds numbers. Rosenfeld et al.
[15] used the Navier–Stokes equation to simulate the vortex ring
formation and evolution for relatively long discharge times (long
displacement of the piston) and compared their numerical results
with the Gharib et al. [12] experiments. Mohseni et al. [16]
simulated the formation of vortex rings that are generated by
applying a non-conservative force of long duration.
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It is important to highlight that all studies about vortex rings
have been conducted in Newtonian fluids; however, many fluids
in nature and in many industrial applications have non-
Newtonian characteristics. To our knowledge the motion of
annular vortices has not been studied to date for the case of a
non-Newtonian fluid. The understanding of this subject could
have influence of other related subjects. For instance, Coelho
and Pinho [17,18] studied the vortex shedding behind a cylinder
in cross-flow for the case of shear thinning viscoelastic flows.
They attributed an increase of the dimensionless vortex shedding
frequency to shear thinning effects. As we will explain later, the
increment of vortex shedding frequency could be attributed to
the reduced circulation that can be attained by vortices in shear
thinning fluids. In a different study, Bohome and coworkers [19]
studied the vortex breakdown of torsionally driven cavities for
shear thinning fluids. They found that, as a result of the thinning
nature of the fluid, the critical Reynolds number for which the
breakdown is observed is reduced. Again, such observation is in
qualitative agreement with the present results: vortices in shear
thinning fluid cannot contain as much vorticity in their core;
hence, the breakdown occurs sooner.

In particular we are interested in the study of vortex ring
formation using blood-like liquids. Vortex rings are generated
inside the human heart at the left ventricle when blood is dis-
charged during cardiac diastole. It has been shown by [4] that
the optimal ring formation might be an indicator of cardiac
health. To date, it is not possible to predict what is the influence
of non-Newtonian fluid properties in the formation process of
vortex rings. In this investigation, we conducted an experimental
study to provide some insight into this subject. To simplify the
problem as much as possible, we considered only shear-thinning
fluids. In particular we determined the influence of the thinning
properties on the maximum circulation that a single vortex can
attain.

1.1. Background

For the piston-cylinder arrangement, the parameter L/D0, also
called ‘stroke ratio’, determines many properties of the vortex
rings. L = L(t) is the piston displacement and D0 is the inner diam-
eter of the cylinder exit. The stroke ratio is equivalent to the non-
dimensional time

t� ¼ Upt
D0
¼ L

D0
ð1Þ

referred as the formation time by Gharib et al. [12]. Up is the mean
piston velocity during fluid discharge and t is the discharge time.
The ‘‘total stroke ratio’’ is equivalent to the total non-dimensional
time

T� ¼ UpT0

D0
¼ Lm

D0
ð2Þ

where Lm is the total piston displacement and T0 is the total dis-
charge time. For Newtonian vortex rings Gharib et al. [12] found
that for values smaller than Lm/D0 � 4, a solitary vortex ring was
formed; for larger values of Lm/D0, a leading vortex followed by a
trailing jet and secondary vortices were observed. They also re-
ported that the circulation contained within the leading vortex ring
could not be further increased for Lm/D0 P 4.

The ‘slug model’ considers that the vortex ring is generated by a
cylindrical ‘slug’ of fluid that is ejected from a nozzle using a pis-
ton-cylinder arrangement [6]. The model considers that the bound-
ary layer thickness b� D0/2 and the wall-normal velocity
component ur is much smaller than the streamwise component
ux. Under these conditions, the change in circulation can be written
as:
dC
dt
�
Z D=2

D=2�b
x/ux dr �

Z D=2

D=2�b
ux �

dux

dr

� �
dr ð3Þ

where x/ is the vorticity in the azimuthal direction. Considering
that the velocity at the edge of the boundary layer is equal to the
piston velocity Up, the total circulation ejected through the cylinder
exit is expressed as

Cslug �
Z T0

0
�u2

x

2

� �D=2

D=2�b

dt ¼ 1
2

U2
pT0 ¼

1
2

UpLm: ð4Þ

Previous investigations have found some differences between
the slug model and the actual experimental results; the discrepan-
cies have been attributed to different causes [9]. Nevertheless, the
slug model has been used by many authors to derive analytical and
empirical models (inviscid and viscous) to predict some vortex ring
properties as the translation velocity, size and the vortex circula-
tion [13,20,21].

The experimental results of Gharib et al. [12] and others indi-
cate that for large stroke ratios, the vortex ring separates from its
trailing jet (pinch-off process) at a finite formation time t⁄. In other
words, the vorticity field of the leading vortex ring disconnects
from that of the trailing jet. However, for relatively low Reynolds
numbers this separation does not occur or is not noticeable as dis-
cussed in depth by [2]. For this reason, in this investigation, the Q
criterion [22] is used to identify the vortex core region. For two
dimensional flows, the Q criterion is also known as the Okubo-
Weiss criterion [23,24]. The second invariant Q, for an incompress-
ible flow (r � u = 0) is defined as

Q ¼ 1
2
ðjXj2 � jDj2Þ ð5Þ
where D is the symmetric (rate of strain tensor) and X the antisym-
metric (vorticity tensor) components of the velocity gradient tensor
ru, respectively. The norm of the tensors is defined as
jXj = tr[XXt]1/2 and jDj = tr[DDt]1/2. With this technique we can
find flow regions (Q > 0) where the vorticity magnitude (solid-body
rotation of the fluid) prevails over the strain-rate magnitude (defor-
mation of the fluid); therefore, it is possible to obtain closed areas to
integrate the vorticity and compute the vortex ring circulation.

Some authors have used stream lines or peak vorticity values to
find the vortex centers [12,13]. We used a method to find topolog-
ically relevant points in the flow [25] to locate the vortex ring cen-
ter. In a two-dimensional flow, special points can be found in the
regions where the local velocity becomes zero. When located in a
region of the flow where the vorticity dominates, such points are
elliptic; in a strain-dominated region, they are hyperbolic (i.e., sad-
dlelike). It has been shown that the elliptical points correspond to
the geometric centers of the vortices in the flow [26]. It is possible
to find the elliptic and hyperbolic points by computing the curva-
ture of Lagrangian trajectories, that is, the trajectories of individual
moving fluid elements; in this investigation, we use the 2D velocity
field obtained by the PIV technique. Near both hyperbolic and
elliptic points, the direction of fluid particle trajectories changes
over very short length scales, producing large curvature values.
The curvature was obtained following the scheme of Braun et al.
[27]:

kðtÞ ¼ ju� @tuþ u� ½u � ru�j
juj3

ð6Þ

where u is the velocity field and @t is the partial time derivative.
Once the points of local maximum curvature are identified, it is pos-
sible to classify them as elliptic or hyperbolic using the Q criterion
described above. If the special point has a Q value Q > 0, where
rotation dominates, the point is the center of a vortex. The term
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u � @tu is obtained using a central difference computation of three
successive vector maps. The time resolution of our experiments
(15 Hz) is sufficient to compute the temporal term; however, it is
also possible to compute the curvature without this term obtaining
differences (peak curvature position) lower than 0.8% in the axial
direction.

In general, the Newtonian constitutive equation accurately de-
scribes the rheological behavior of low molecular weight liquids
and some polymers at very slow rates of deformation. Many mod-
els that depend on the rate of deformation arise from the so called
‘generalized Newtonian model’. The most common is the power
law model [28]:

g ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ð _c : _cÞ

r" #n�1

ð7Þ

where n and m are the power-law index and the ‘consistency’,
respectively. g ¼ gð _cÞ is commonly known as the apparent fluid vis-
cosity and _c is the shear rate tensor. For n = 1 the Newtonian case is
recovered. The power law model is a good approximation for the
behavior of many polymeric liquids and dispersions. In particular
for shear-thinning fluids, for which n < 1, at high shear rate
( _c > 1 s�1), the power law fits experimental data well. This model
has also been used to model shear thickening fluids, for which
n > 1. One of the disadvantages of the power law is that it fails to
describe the low shear rate region in which g goes to infinity rather
than to a constant g0. For a more realistic description of flow, the
Carreau–Yasuda model is used [28]. To avoid ambiguity, we have
defined the Reynolds number in terms of the power law model
parameters. Considering a characteristic shear rate _c � 2Up=D0

and g � m _cn�1 the Reynolds number is defined as

Re0 ¼
21�nqU2�n

p Dn
0

m
ð8Þ

where q is the density of the fluid. For Newtonian liquids n = 1 and
m = l (liquid dynamic viscosity); therefore, Re0 = q UpD0/l which is
the definition of the Reynolds number for Newtonian vortex rings
used by some authors [8,9,15]. Note that this rheological model
does not account for viscoelastic effects. In this investigation the
liquids that were used, were prepared such that viscoelastic effects
were not presented or at the very least, had a negligible effect.

2. Experimental setup

The experimental setup is shown in Fig. 1. Vortex rings were
generated in a tank using a piston-cylinder arrangement. The cyl-
inder is submerged in liquid with a free surface. The tank dimen-
sions are: 20 � 18 � 40 cm. The cylinder is 40 cm long and its
inner diameter is D0 = 19.4 mm. The nozzle exit is placed 	3.6D0

from the back wall (BW), 	6.4D0 from the lateral walls (LWs)
and 	17D0 from the frontal wall (FW). The axial axis x is placed
to coincide with the center-line of the cylinder (r = 0) and the noz-
zle exit plane is located in the plane x = 0. A sharp-edged cylindri-
cal nozzle was coupled at the end of the cylinder. The tip angle of
Fig. 1. Experimental setup.
the nozzle is hnoz = 20� and the exit diameter is also 19.4 mm. This
angle avoids wall effects at the exit on the formed vortex rings.

The piston is coupled to a driving mechanism which is moved,
in turn, by a DC motor with maximum output velocity of
1700 rpm. The DC motor is fed by a power supply which is con-
trolled by a computer such that it is possible to control and fix
the piston velocity and displacement. Specifically, we controlled
the piston velocity program by varying the voltage and duration
of supply. The mean piston velocity Up was proportional to the sup-
plied voltage. If the desired displacement was Lm = jD0, where j = 1,
2, . . . , 10, the piston moved a distance xp so jxp � Lmj/Lm 6 0.02. All
the piston velocity programs were impulsive and the mean piston
velocity was reached at 0.25 s approximately. The maximum pis-
ton velocity was Up = 20 cm/s.

Two dimensional velocity fields were obtained using the parti-
cle image velocimetry (PIV) technique. A Nd:YAG laser system gen-
erates a 50 mJ energy 532 nm laser beam which was converted to a
laser sheet using a cylindrical lens. The laser sheet illuminates a
vertical slice of the tank at the center of the cylinder. A CCD camera
is placed perpendicular to the laser sheet. The camera records
images with a resolution of 1008 � 1016 pixels. For most of the
experiments the typical measurement area was 152 � 153 mm2.
Silver-coated hollow glass spheres with an average diameter
10 ± 5 lm were used as particle tracers. The velocity field consisted
of 62 � 62 vectors using an interrogation area of 32 � 32 pixels and
an overlap of 50%. The sampling rate was 15 Hz. A detailed descrip-
tion of the PIV technique can be found in [29,30]. To calculate vor-
ticity and curvature scalar maps (and also peak values) we first
constructed a subgrid of Dx/3 and Dy/3 (	0.75 mm) nodes, then
the velocity field is interpolated to fit the subgrid using triangle-
based linear interpolation.

2.1. Test liquids

In the present work we used different aqueous solutions of xan-
than gum. This gum is produced by fermentation of glucose or su-
crose and is used as food additive and rheology modifier. The
viscosity of xanthan gum solutions increases with concentration
and decreases with shear rate (shear-thinning behavior). The addi-
tion of xanthan gum to glycerol solutions and also diluted potas-
sium thiocyanate solutions, has been used to produce
transparent blood-like fluids [31]. For all experiments we used a
KELTROL� (distributed by CPkelco) xanthan gum which is used
for food and personal care applications. To prepare the solutions,
we first dissolved the xanthan gum in water (at 55 �C) and left
them to rest for 24 h before experiments. In order to compare with
a Newtonian liquid, a glycerol solution was also used. Table 1 pre-
sents all physical properties of the different solutions used in the
present investigation. For the shear thinning liquids, the increasing
number in the nomenclature indicates a more pronounced shear
thinning effect. Note that we choose the liquids and the conditions
of the experiments that match the Reynolds number. In this man-
ner we can isolate the effect of the thinning property.

In Fig. 2 we present the viscosity as a function of the shear rate _c
for different xanthan solutions. Viscosity measurements were ob-
tained using a stress-control Rheometer AR 1000-N from T.A.
Instruments �. We used a cone-plate geometry with 60 mm diam-
eter, 2� angle and gap equal to 65 lm. All measurements were per-
formed at a temperature of 23 �C. Liquid viscosities were obtained
for shear strain rates in between 1 6 _c 6 200 s�1. Different levels of
shear stress were applied to improve the measurement, particu-
larly for the cases of small shear rates. With this instrument we
also monitored the value of the first normal stress difference to de-
tect possible viscoelastic effects. In all cases the normal stress was
negligible or too small. To measure the Newtonian liquid viscosity
we used the Brookfield �DV-III viscometer. The plotted lines in



Table 1
Physical properties of the test liquids. The number after liquid represents parts per million. For the case of glycerin the number represent the percentage in weight of glycerin in
water.

Liquid Density (kg/m3) Consistency m (mPa sn) Power index n Re0

ST1 Xan-450 1000 23.5 0.6088 138
Xan-450 1000 ’’ ’’ 265
Xan-450 1000 ’’ ’’ 616

ST2 Xan-600 1000 41.5 0.5431 261.8
ST3 Xan-900 1000 88.9 0.4781 262
N Gly-65 1151 l = 13.59 1 263
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Fig. 2. Viscosity as function of shear rate for different xanthan solutions.
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Fig. 2 correspond to the power law model g ¼ m _cn�1; where m and
n are shown in Table 1 for each liquid. We can observe that this
model fits well experimental data for the measured shear rate
range. The shear rates observed in the flow during the formation
of vortices are within this range of shear rates. We also conducted
oscillatory tests (as those of Vélez-Cordero et al. [32]) to further
show that the elastic effects were small. However, the oscillatory
and shear flow tests did not show any measurable evidence of
elasticity, i.e. these effects are too small to be measurable with
our apparatus. The typical relaxation time, k, for diluted polymeric
solutions such as those used in the present investigation is of the
order O(10�5 s) which is much smaller than the characteristic time
for all cases; this indicates that the elastic effects are indeed
negligible. In other words, the Weissenberg number We = 2kUp/
D0 is of order O(10�3) for all cases.
3. Results

3.1. Vortex ring image maps

In Figs. 3 and 4, we present the image maps of two shear-
thinning vortex rings with the same Reynolds number but different
stroke ratio. The image maps are: (a) velocity field, (b) vorticity
field (s�1), (c) stream line field, (d) velocity magnitude (m/s), (e)
Q criterion (s�2), and (f) the local strain (s�1). Fig. 3 shows a vortex
ring generated in the ST1 fluid with stroke ratio Lm/D0 = 4 and
Re0 = 265. In this case we observe an isolated vortex ring located
at a distance x � 4D0 (considering maximum point of curvature).
Compared with higher Reynolds numbers [12], the vortex rings
with Re0	 O(100) tend to broaden in the axial direction, which
can be observed in the vorticity field (Fig. 3b). The center of the
vortex ring in the vector field coincides well with the vortex center
in the stream lines map (r/D0 � 1); however, the vorticity peak
tends to move towards the axis of symmetry where velocity gradi-
ents are higher, as observed by [14]. The Q criterion map shows the
regions where the fluid rotation dominates which correspond to
the vortex ring core. Finally Fig. 3e shows the local strain of the
flow obtained by computing the norm of the ‘strain tensor’ jDj.
We observe that the largest strain occurs in front of the vortex ring.

Fig. 4 shows the image maps for a vortex ring formed with the
same liquid and Reynolds number as the previous case but with
stroke ratio Lm/D0 = 8. In this case we observe that the vortex ring
is connected with a trailing jet flow. As mentioned above, for such
small Reynolds numbers, a physical separation between both re-
gions never occurs. In Fig. 4b we observe zones of large vorticity
in both the leading vortex and the trailing jet. High strain values
(Fig. 4e) appear in front of the leading vortex as well as the trailing
jet where there are high velocity gradients. We observe that for all
cases the maximum local strain rate values are of O(10) s�1 (for
example, 5.8 s�1 in Fig. 4f). In Fig. 2, it was shown that for
10 < _c < 102 s�1, all fluids showed shear thinning behavior.
Therefore, we are certain that at the first stages of formation the
non-Newtonian properties affect the dynamic of the vortex. As
the vortex velocity decreases, the local strain decreases too and
the liquid behaves more as a viscous Newtonian fluid. Several
authors [12,14,15] have studied the transition between vortex
rings with and without a trailing jet flow for Newtonian fluids.
For different experimental conditions the critical stroke ratio for
which the trailing jet appears is Lm/D0 � 4 which agree with our
experimental observations for non-Newtonian vortex rings.

Measurements obtained for the Newtonian liquid show the
same qualitative features as those shown in Figs. 3 and 4 for the
shear thinning fluid. In most cases, no significant variations can
be observed from simple visual inspection. However, we can
observe some qualitative differences in Fig. 5, where we present,
for the same Re0 and stroke ratio, the vector and vorticity fields
for the Newtonian and the most shear-thinning liquid (ST3). Vortex
centers are located at x � 4D0. First, we observe that the axial
velocity profile ux is parabolic at the nozzle exit for the Newtonian
liquid (Fig. 5a); while a more plug-like velocity profile is observed
for the ST3 fluid (Fig. 5b). Consider that, in both cases, the piston
was still moving at the time these pictures were taken. These pro-
file differences in the axial direction are further discussed in this
paper. The vorticity fields show a particular difference in the
trailing jet behavior. We observe two different vorticity regions
for the Newtonian liquid, one for the vortex ring and another for
the trailing jet. Instead, for the ST3 fluid, we observe a single
vorticity region for both the vortex ring and the jet. This vorticity
distribution has not been observed for Newtonian fluids with low
Re0 in the present investigation and previous investigations [14].

3.2. Vortex ring properties

For the following results (vortex properties and vortex circula-
tion), two different comparisons are presented. In cases (a), we
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Fig. 3. ST1 fluid Lm/D0 = 4 Re0 = 265 x � 4D0. (a) velocity field, (b) vorticity (s�1), (c) stream lines, (d) velocity magnitude (m/s), (e) Q criterion (s�2), and (f) local strain (s�1).
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evaluate the effect of inertia (Reynolds number) or the stroke ratio
Lm/D0 for a given shear-thinning fluid; in cases (b) we evaluate the
shear-thinning nature (n) of different liquids for the same Reynolds
number.

In Fig. 6 we show the trajectories of the vortex rings: (a) ST1
fluid with different Reynolds numbers and a stroke ratio of Lm/
D0 = 4, (b) All liquids for Re0 � 260 and Lm/D0 = 4. Each data series
represents the trajectory of a single vortex ring; the center position
of the upper vortex ring section (r > 0) is presented considering
maximum curvature. In Fig. 6a we observe that the initial position
of the vortex ring with Re0 = 138 is r � 0.8D0; just after four diam-
eters of travel in the axial direction, the vortex ceases its motion in
this direction and begins to expand radially, i.e the vortex ring
diameter increases. The initial position of the vortex for Re0 = 265
and Re0 = 616 is in the range 0.9 6 r/D0 6 1, which is slightly higher
than the first case; however, in the same way, the vortex ring slows
down in the axial radiation and begins to grow radially before it
dissipates completely. In Fig. 6b we observe that the initial position
for all cases is close to r = D0 and a sudden expansion in the radial
direction is presented for all shear-thinning vortices. We observe
that as we increase the thinning nature of the fluid (decreasing
n), the vortex ring stops its motion at a smaller distance from the
exit nozzle. For the Newtonian case, we observe a more gradual
increase of the vortex radius along the seven diameters presented
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in the figure. To our knowledge, this sudden change in the vortex
radius is not presented in Newtonian vortex rings regardless the
Reynolds numbers.

Fig. 7 shows the non-dimensional vortex ring diameter Dv/D0

for the ST1 fluid with Re0 = 265 and different stroke ratios. Simi-
larly as above, each data series exhibits the evolution (diameter)
of a single vortex ring. xm is the mean x-position of the vortex cen-
ters, i.e. the upper and lower vortex ring sections. First, we observe
that the initial vortex diameter is in the range 1.8 6 Dv/D0 6 2. For
small stroke ratios (L/D < 4) the vortex ring stops its motion close
to the nozzle; for example, when Lm/D0 = 2 the vortex stops at
approximately 3D0. For larger Lm/D0 the ring diameter increases
as the vortex moves away from the exit nozzle. Didden [9] reported
that the vortex (Newtonian) diameter increases with the stroke
ratio when Lm/D0 6 2.2. However, as shown in Fig. 7, there is not
a significant increase on the vortex diameter with the stroke ratio,
i.e. all data overlap for Lm/D0 P 4. This indicates that the vortex
ring reaches a limit size even though the stroke (piston displace-
ment) keeps on increasing. Gharib et al. [10] pointed out this
constraint in their experimental results for Newtonian vortex
rings. Previous investigations [9,11] show that the diameter of
Newtonian vortices does not depend on the Reynolds numbers.
However, as seen in Fig. 6a the diameter Dv = 2r changes with
Re0 for a given shear-thinning fluid; besides, for the same Re0 but
different n (Fig. 6b) the evolution of the vortex trajectory, and
therefore the vortex diameter is different.

Fig. 8 shows the axial velocity profiles ux that the vortices pro-
duce along the axial axis (r = 0): (a) the ST1 fluid for Re0 = 616 and
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(b) all liquids for Re0 � 260 and a stroke ratio of Lm/D0 = 4. Each
curve represents the profile of a single vortex ring and the vortex
center is located at x � 4D0. We can observe that the maximum
axial velocity values coincide well with the vortex ring center
position. Fig. 8a shows that the value of the velocity profile ux

increases with the stroke ratio. For small stroke ratios we observe
that the ux-velocity profile is symmetric, while for Lm/D0 P 4 a
trailing jet flow connected with the leading vortex is observed.
As will be discussed later in this paper, the axial velocity (at
r = 0) inside the cylinder is actually larger than the mean piston
velocity. The above can be observed in the velocity profile of
Lm/D0 = 10 for which the piston is still moving and the velocity
at the nozzle exit is ux(x = 0,r = 0)/Up � 1.2. Fig. 8b shows the
horizontal velocity profile for all liquids with Re0 � 260 and
Lm/D0 = 4. We observe clearly that when increasing the thinning
property (decreasing n) of the fluid, the velocity profiles values
decrease too. The velocity profile from the Newtonian case has
the largest values. We will also explain this further in the discus-
sion section.

Fig. 9 shows the non-dimensional propagation velocity Uv of
vortex rings; again considering the ST1 fluid first (Lm/D0 = 8) for
different Reynolds number (Fig. 9a); and then, keeping the Rey-
nolds and stroke ratio fixed, varying only the thinning property
of the liquid (varying n) in Fig. 9b. The propagation velocity is ob-
tained by the numerical differentiation of the center position of
single vortex rings. In Fig. 6a we observe that the initial velocity
is in the range 0.4 6 Uv/Up 6 0.5 for the three Re0. The maximum
vortex velocity (	0.6Up) is reached at x � 3D0; beyond this distance
the vortex propagation velocity remains constant for Re0 = 265 and
Re0 = 616, but a reduction of velocity is expected at farther dis-
tances. For the lower Reynolds number the vortex ring velocity de-
cays faster, as was expected. Fig. 9b shows the propagation velocity
of vortex rings for all the liquids with Re = 260 and Lm/D0 = 4. The
initial velocity also lays in the range 0.4 6 Uv/Up 6 0.5. It is inter-
esting to note that the vortex propagation decreases with the thin-
ning property of the liquid. For the Newtonian case the
propagation velocity is the highest. This graph is consistent with
Fig. 8b where we observe that the axial velocity ux decreases with
the thinning property. Didden [9] and Weigand and Gharib [11]
showed that the vortex ring velocity decays with time. For an invis-
cid fluid, Mohseni and Gharib [16] predicted analytically a propa-
gation velocity of Uv = 0.5Up while Linden and Turner [21] also
predicted a maximum propagation velocity of Uv � 0.7Up for a Nor-
bury [33] family of vortex rings. Querzoli et al. [13] reported exper-
imental results of the propagation velocity and obtained maximum
velocities in the range 0.6 6 Uv/u⁄(t) 6 0.8 where u⁄(t) is the inte-
grated velocity over the discharged time. Compared with different
data reported in the literature, for Newtonian vortices and Re0	
O(1000), the vortex velocity decays faster because viscous
dissipation.

3.3. Vortex circulation

Fig. 10 shows the non-dimensional vortex ring circulation as a
function of the distance x/D0, considering again the two compari-
son used in Figs. 6, 8 and 9. In the present investigation, we used
the Q criterion to compute the vortex ring circulation. The vortex
circulation is obtained by
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C ¼
Z

AQ

x/ dA ð9Þ

where x/ is the azimuthal vorticity (normal to the measurement
plane) and AQ is the region of flow where Q > 0 (for our calculations
we consider Q P 0.01s�2). Querzoli et al. [13] used the D criterion
proposed by Chong et al. [26] to identify the vortex ring area on
the measurement plane. Note that considering this method to mea-
sure the circulation, only the vorticity in the core of the vortex is
considered. The points plotted in Fig. 10 (and all data with error
bars presented in this paper) correspond to the average of five dif-
ferent runs of the piston and the error bars represent the standard
deviation. It is important to note that for all the non-Newtonian flu-
ids studied in the present investigation, we did not observe a ‘phys-
ical separation’ between the leading vortex ring and its trailing jet
for large stroke ratios.

In Fig. 10a, we present the vortex circulation for the ST3 fluid at
a fixed Re0 and different stroke ratios. For low stroke ratios Lm/
D0 6 4 we observed that the vortex circulation decreases as soon
as the vortex ring is formed. For larger stroke ratios the vortex cir-
culation first increases, reaches a maximum value and beyond a
certain distance x/D0 from the the exit, it decreases. This means
that the vortex ring is initially fed of vorticity until it gets a satura-
tion condition for which is not possible to attain more vorticity in
its core; after some time, the vorticity in the vortex is dissipated.
These features are similar to those observed for Newtonian liquids;
the distance for which the vortex circulation decays depends on
the stroke ratio and, in general, on the Reynolds number [15]. In
Fig. 10b we present the vortex circulation for all the liquids pre-
sented in previous sections for a stroke ratio Lm/D0 = 8. The Rey-
nolds number is the same in all cases. We observe that, at any
distance, the circulation value is slightly larger for liquids with lar-
ger n. In other words, the vortex circulation decreases as the fluids
become more shear-thinning. Similarly, the vortex circulation first
increases, reaches a maximum value and finally decreases. It is
interesting to note that the trend for all liquids is similar.

Fig. 11 shows the non-dimensional vortex ring circulation as a
function of the stroke ratio Lm/D0 for the ST1 liquid with
Re0 = 265. Each data series corresponds to different vortex ring
positions x/D0. As expected, the maximum vortex ring circulation
for each stroke ratio is reached at different distances of measure-
ment; similar results have been reported by Rosenfeld et al. [15]
for Newtonian vortex rings. Fig. 11 shows that the maximum val-
ues of vortex ring circulation for Lm/D0 6 3 occur at a distance close
to x/D0 = 1 which is markedly close to the exit. For larger stroke ra-
tios the maximum circulation is reached farther. For Newtonian
vortex rings and Reynolds numbers of O(1000), Gharib et al. [12]
presented maximum values of vortex circulation at a distance close
to x = 10D0. We also observe that all the vortex ring circulation val-
ues in this case and for larger Reynolds numbers, were below the
saturation value C/D0Up � 2. With this information it is possible
to obtain the maximum vortex ring circulation for each stroke ratio
regardless the position where it is reached.

Fig. 12 shows the maximum vortex circulation for each Lm/D0

following the comparison scheme described above. In Fig. 12a we
observe that for stroke ratios Lm/D0 6 4 the vortex circulation is lar-
ger for lower Reynolds numbers (compare the cases Re0 = 138 and
Re0 = 616). For the case Re0 = 138, when Lm/D0 � 3, the circulation
achieves a maximum value and does not increase significantly,
i.e. the vortex ring circulation saturates at this stroke ratio. How-
ever, for the other Reynolds numbers, we observe that is possible
to further increase the vortex ring circulation. Note that as we in-
crease the strain rate (increasing the piston velocity) for a shear-
thinning fluid, the viscosity is reduced at the cylinder wall.
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Fig. 12b shows the maximum vortex ring circulation for different
liquids (shear thinning and Newtonian). To study the effect of
the power index n on the vortex ring circulation, we kept the Rey-
nolds number fixed. Remember that n represents the thinning
property of the fluid (as n decreases the fluid becomes more shear
thinning). First, we observe that the largest circulation is achieved
for the Newtonian fluid (n = 1); as the thinning property of the fluid
increases (decreasing n) the circulation that the vortex ring can at-
tain is reduced. In other words, the vortex ring circulation de-
creases with n. It is important to observe that the trend of the
curves for all liquids is very similar: the vortex ring circulation in-
creases with the stroke ratio and close to Lm/D0 = 6, we detect a
change of slope, which suggest that the vortex has reached a ‘sat-
uration’ state of formation. This is in accordance to what has been
observed for Newtonian vortices for larger Re0.

4. Discussion

To help explain why the vortex circulation decreases with n, we
consider the flow inside a round pipe for a power law fluid. The
purpose of this exercise is to gain some insight on the production
of vorticity and circulation within the tube which in turn, affects
the formation of the vortex ring. Consider the flow through a circu-
lar tube with radius R shown in Fig. 13. We assume that the flow is
axisymmetric, steady, laminar, incompressible and fully devel-
oped; the gravity is negligible and there are isothermal conditions.
d is a given distance from the wall to the tube center d = R � r. The
axial velocity ux = ux(r), uh = 0 and ur = 0. The standard solution for a
pipe flow of a power-law liquid gives [34]:

ux ¼
n

nþ 1
G

2m

� �1=n

½Rðnþ1Þ=n � rðnþ1Þ=n� ð10Þ

where the pressure gradient G = �@p/@x = constant. The flow rate
can be determined by integrating the velocity profile

Q ¼ pR3

1=nþ 3
GR
2m

� �1=n

ð11Þ

Observe that for n = 1 and m = l, we recover the Newtonian case
of a Poiseuille flow from Eqs. (10) and (11). The pressure gradient G
can be interpreted as the constant force acting over the volume of
fluid to conserve the flow rate Q constant. This force is that acting
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over the piston that displaces the fluid. The actual flow rate can be
determined considering the volume of fluid discharged through the
tube exit during a known time:

Q ¼ pR2Lm

T0
ð12Þ

For an impulsive velocity program Q = pR2Up. Substituting
expression (12) in Eq. (11), we obtain an effective value of G:

G ¼ 2m
R

Up

R

� �
1
n
þ 3

� �� �n

ð13Þ

Considering the properties of the liquids presented in Table 1,
we can compute the axial velocity profile using Eqs. (10) and
(13). The velocity profiles are presented in Fig. 14 for all the liquids
considered experimentally for a Reynolds number Re0 � 260. For
all cases the maximum velocity value is located at the center of
the tube. For the Newtonian fluid (n = 1) we observe a parabolic
profile while a more plug-like velocity profile is observed as n de-
creases; i.e. the axial velocity at the tube center becomes flatter.
The maximum velocity for the Newtonian fluid is umax = 2Up while
the maximum velocity for the shear-thinning is reduced. However,
as n decreases, the axial velocity close to the wall can be slightly
larger for the shear-thinning fluids than the Newtonian case. This
can be explained as follows: the shear rate is larger close to the
wall; in this zone, the apparent liquid viscosity for shear-thinning
liquids decreases considerably and thus, the liquid flows more eas-
ily. The vorticity distribution can also be calculated for this flow:

x/ ¼ �
@ux

@r
¼ G

2m

� �1=n

r1=n ð14Þ

In Fig. 15 we show the vorticity distribution for the test liquids
at different distances from the tube center. We observe that for all
cases, the vorticity value increases as we approach to the wall. For
the Newtonian case the dependence with r is linear. It is interesting
to note that for the ST1 liquid with n = 0.61 (Xan-450 ppm), the
vorticity is always lower than the Newtonian case, while for the
ST3 liquid the vorticity increases considerably close to the wall.
The vorticity close to the tube center is larger for the Newtonian
liquid.

Finally, we can use the ‘slug’ approximation model (described in
Section 1.1) to determine the circulation ejected through nozzle.
The circulation was defined in Eq. (4); integrating the vorticity over
a distance d from the tube wall we have:

C ¼
Z T0

0
�u2

x

2

� �R

R�d

dt ð15Þ

hence, we obtain

CT ¼
n2

2ðnþ 1Þ2
G

2m

� �2=n

Rðnþ1Þ=n � ðR� dÞðnþ1Þ=n
h i2 Lm

Up
ð16Þ

With this formula we can obtain the total circulation produced
within the tube during the piston displacement. This circulation
will, then, be ejected through the nozzle to form the vortex ring
(and a trailing jet for large Lm/D0). Note that the only unknown var-
iable is d. In Fig. 16 we show the total circulation as a function of d
for a stroke ratio of Lm/D0 = 5. We consider this value to make sure
that only a single vortex is generated. For small d the total circula-
tion is slightly larger as n decreases; the circulation for the Newto-
nian liquid is the lowest. For d close to 1, the total circulation is
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Fig. 13. Flow through a circular tube.
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larger as n increases; the circulation for the Newtonian liquid case
is notably larger than the others as d ? R. Note that this calculation
considers the same Reynolds number for all liquids. There is a crit-
ical d value where all shear thinning curves coincide the Newto-
nian curve. This point is located at different d for each liquid, but
it is always close to d � 0.45R. When d has this value the total cir-
culation values are approximately the same for all liquids for any
Lm/D0.

The question is, how large should the distance d be for a given
liquid?. The slug approximation for Newtonian vortices described
before, assumes that a boundary layer forms near the wall
(b� R) and the velocity at the edge of the boundary is equal to
the piston velocity Up. This is correct only when the Re0 is suffi-
ciently large. As the Reynolds number decreases, this approxima-
tion becomes incorrect. From the velocity profiles shown in
Fig. 14b we can see that for this particular Reynolds number the
boundary layer is not thin. Therefore, the calculation of the circu-
lation considering small values of d is not the most appropriate.
Didden [9] also reported that at large discharge times, boundary
layer grows leading to an increment in the velocity at the center
of the cylinder in order to satisfy continuity. From our calculations,
the velocity at the center is uxjr=0 > 1.5Up which is in agreement
with the discussion of Didden [9].

These arguments suggest that d might be as large as the pipe ra-
dius. In Fig. 17 we show the total circulation as a function of Lm/D0
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for all liquids and d = R. The total circulation increases linearly, but
the slope decreases with n. The total circulation ejected from the
tube is reduced as n decreases for all the stroke ratios.

In Fig. 18 we show total circulation for the test liquids obtained
from the experiments. The total circulation is determined by inte-
grating the vorticity x/ > 0 in the entire visible domain. The aver-
age of five different runs of the piston is plotted with its standard
deviation (error bars). Similar to the vortex circulation, the total
circulation changes with time; therefore, we plot the maximum
circulation value for each Lm/D0. We observe that the total circula-
tion increases with the stroke ratio and is the largest for the New-
tonian case. As n decreases the total circulation decreases too.
These experimental results are in agreement with the results pre-
sented if Fig. 17 for which d = R. Although the trend predicted by
our model is in agreement with that found experimentally, the
quantitative comparison reveals that the predicted circulation is
about twice the experimental value. This difference might be ex-
plained by different factors. First, at the beginning of the piston
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Fig. 17. Total circulation as a function of Lm/D0 for the test liquids d = R.
movement the flow inside the tube is not fully developed; thus
our calculated vorticity is over-predicted. For low Reynolds num-
bers, vorticity dissipation is important: as the jet of fluid is ex-
pelled from the nozzle and the vortex ring is forming, circulation
is lost by vorticity dissipation at the axis of symmetry.

Despite these differences, the simple model give us the correct
trend and explains why the circulation attained by a vortex ring
decreases with the thinning nature of the fluid.
5. Conclusions

The experimental results presented in this paper indicate that
the vortex ring circulation decreases with n. We have derived a for-
mula to obtain the total circulation ejected from a cylinder tube
considering the slug model and the solution for a pipe flow of a
power-law liquid. We have shown that the total circulation ejected
from the tube is reduced as the thinning property increases; thus,
the circulation confined inside the vortex is reduced too. The trend
predicted by our model is in agreement with the experimental re-
sults; however, the circulation values are over predicted by a factor
of about 2. We also observed that the initial size (diameter) of the
vortex ring does not depend on the rheological properties of the
fluid; however, shear-thinning vortices expands in the radial direc-
tion after some discharge time for low stroke ratios. The measure-
ments of the vortex propagation velocity for the same Reynolds
number, indicate that the travel velocity is reduced with the thin-
ning property (decreasing n) of the fluid.

It is important to note that as we increase the thinning nature of
the fluid (decreasing n) the consistency m also increases. In regions
of flow where the local velocity is low (low shear strain) the appar-
ent viscosity increases considerably. Hence, slow moving fluid sur-
rounding the moving vortex rings will have a larger viscosity.
Therefore, we can expect the vortex ring propagation velocity to
be smaller and to decrease quickly as n decreases.

All the non-Newtonian vortex rings studied in this investigation
have relatively small Reynolds numbers; hence, it was not possible
to observe a ‘physical separation’ between the leading vortex ring
and its trailing jet. Some authors have stated that there is not vor-
tex ring pinch-off if it is not possible to guarantee the mentioned
separation. Therefore, it is difficult to study a vortex ring formation
number as defined by Gharib et al. [12]. However, we observe that
the vortex ring circulation increases with the stroke ratio Lm/D0
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until it reaches a ‘saturation state’ close to Lm/D0 = 6 where we de-
tect a change of the slope. This suggests that the vortex ring cannot
attain vorticity in the same rate as Lm/D0 increases. This observa-
tion is valid for Newtonian and shear thinning fluids; however,
the maximum circulation that a vortex can attain is reduced as
the liquid becomes more shear-thinning.
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