High CO₂ Capture in Sodium Metasilicate (Na₂SiO₃) at Low Temperatures (30–60 °C) through the CO₂–H₂O Chemisorption Process

Rafael Rodríguez-Mosqueda and Heriberto Pfeiffer*

Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Cd. Universitaria, Del. Coyoacán, México DF, CP 04510 Mexico

ABSTRACT: Na₂SiO₃ was synthesized by two different routes: solid-state reaction and combustion method. It was determined that Na₂SiO₃ sample prepared by the combustion method presented a surface area 3 times larger than the solid-state reaction sample. Different water vapor sorption experiments were performed using N₂ or CO₂ as carrier gases. If N₂ was used as carrier gas, it was evidenced that Na₂SiO₃ is able to trap water in two different ways: physically and chemically producing Na–OH and Si–OH species. Moreover, when CO₂ was used, Na₂SiO₃ continued trapping water, as in the previous case, but in this case CO₂ was trapped, forming Na₂CO₃ and NaHCO₃ phases. Additionally, as it could be expected, the surface area resulted to be a very important factor controlling the CO₂ capture efficiency. The Na₂SiO₃ sample prepared by the combustion method captured up to 8.5 mmol of CO₂ per gram of ceramic (efficiency of 52%), a considerably high CO₂ amount among different materials. Therefore, the presence of water vapor strongly favored the CO₂ chemisorption on Na₂SiO₃.

Article

pubs.acs.org/JPCC

■ INTRODUCTION

The carbon dioxide (CO_2) atmospheric concentration has increased significantly from 280 to 367 ppm in the past 250 years, increasing the so-called green-house effect and global warming.¹ Although the CO_2 increments include anthropogenic and natural emissions, human activity (combustion of fossil fuels, gas flaring, and cement production, among others) is mainly responsible for the equilibrium displacement.^{2–6} Therefore, several strategies have been proposed to reduce or control, at least, the CO_2 emissions.^{6,7}

Among the possible solutions, different materials have been studied as CO₂ captors at low (30–80 °C) or high ($T \ge 200$ °C) temperatures. However, the only commercially proven technology relies on aqueous CO2 absorption on monoethanolamine (MEA).⁸ In that sense, several materials that reversibly react or adsorb CO2 at different temperatures have been proposed.9-16 At low temperatures different activated carbons, hydrotalcites, zeolites, and other organic/inorganic cage structures have been tested as possible CO₂ captors, presenting some advantages and disadvantages.^{9,10} Other groups of materials able to trap CO_2 at high and low temperatures are lithium or sodium zirconates, silicates, or aluminates, 9,11,14,15where the CO₂ capture kinetics and efficiency depend on different factors such as the chemical composition, the structure, and different microstructural factors, among others.^{17–44} For example, if the lithium (Li_2ZrO_3) and sodium (Na₂ZrO₃) metazirconate ceramics are compared, it has been observed that Na2ZrO3 possesses higher efficiencies and the CO₂ capture is produced in a wider temperature range than Li₂ZrO₃. The differences observed between these two ceramics

have been related to structural features.¹⁴ Li₂ZrO₃ has a dense monoclinic structure where lithium ion diffusion is hardly produced, while Na₂ZrO₃ possesses a layered monoclinic structure. In this case, sodium ions can diffuse much more efficiently, enhancing the CO₂ capture process. Additionally, it was recently published that CO₂ capture in Na₂ZrO₃ is importantly improved, at low temperatures (30–80 °C) under the water vapor presence,¹⁹ producing sodium acid carbonate (NaHCO₃) instead of sodium carbonate (Na₂CO₃). It means that Na₂ZrO₃ can trap 1 or 2 mol of CO₂ per mole of ceramic, depending on the dry or humid conditions.

On the other hand, the CO₂ capture process in lithium (Li₂SiO₃) and sodium (Na₂SiO₃) metasilicates has not been deeply studied. In previous papers it has been shown that Li₂SiO₃ showed the ability to capture certain CO₂ under very specific conditions, where it was assumed that the synthesis route increased the reactivity of Li₂SiO₃ as a result of its small particle size and then its high surface area.^{45,46} Conversely, Na₂SiO₃ had not been deeply analyzed. A few years ago, it was showed that Na₂SiO₃ was able to trap very low quantities of CO₂ at low temperatures under dry conditions.⁴⁷ Therefore, the aim of the present paper is to study the CO₂–H₂O capture process on Na₂SiO₃, which may possess a high CO₂ capture capacity, if NaHCO₃ is produced.

 Received:
 March 22, 2013

 Revised:
 June 10, 2013

 Published:
 June 10, 2013

The Journal of Physical Chemistry C

EXPERIMENTAL SECTION

The Na₂SiO₃ was synthesized using solid-state reaction and combustion methods. In the first case, the reagents employed were sodium carbonate (Na₂CO₃, Aldrich) and silicon oxide (SiO₂, Merck). The powders were mechanically mixed and then heated at 900 °C for 4 h. Finally, the Na₂SiO₃ product was pulverized. To obtain pure Na₂SiO₃, a 10 wt % excess of sodium was used during synthesis. Additionally, the same sample was prepared by the combustion method using sodium hydroxide (NaOH, Aldrich), SiO₂, and urea (CO(NH₂)₂, Aldrich). NaOH and urea were dissolved in the minimum water quantity, and then SiO₂ was dispersed in this solution, obtaining a viscous material, which was heated at 70 °C until dried. Finally, the powder was heat-treated at 500 °C for 5 min and then at 700 °C for 4 h in order to crystallize the material.

A diffractometer (Bruker AXS, D8 Advance) coupled to a copper anode X-ray tube was used to identify the phases obtained both during the synthesis and after the CO₂ capture process. The different phases and materials were identified using the Joint Committee Powder Diffraction Standards (JCPDS) files. In fact, the Na₂SiO₃ initial structure was confirmed by the 016-0818 JCPDS file (data not shown).The microstructural characteristics of the Na₂SiO₃ samples were determined via N₂ adsorption–desorption and scanning electron microscopy (SEM). For the N₂ adsorption–desorption experiments, the isotherms were acquired on a Bel-Japan Minisorp II at 77 K using a multipoint technique. The samples were degassed at room temperature for 24 h under vacuum prior to analysis. Then, the SEM experiments were performed on a JEOL JMS-7600F.

Dynamic and isothermal experiments were performed using a humidity-controlled thermobalance (TA Instruments, model Q5000SA) at different temperatures (30-60 °C) and relative humidities (RH). The experiments were performed using distilled water and two different carrier gases: nitrogen (N2, Praxair grade 4.8) or carbon dioxide (CO₂, Praxair grade 3.0). The total gas flow rate used in all of the experiments was 60 mL/min, and the RH percentages were automatically controlled by the Q5000SA instrument. Dynamic water vapor sorption/desorption experiments were performed at different temperatures (between 30 and 60 °C), while varying the RH from 0 to 80% and then from 80 to 0% at a rate of 0.5%/min. Different isothermal experiments were performed at specific temperatures (30, 40, 50, and 60 °C) setting the RH at different values (20, 40, 60, and 80%) for each temperature, for 3 h using CO_2 as a carrier gas. Afterward, the products (~25 mg) were characterized to identify the hydration products. The samples were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The X-ray diffractometer and scanning electronic microscope used were already described above in the present section. For FTIR spectroscopy, samples were analyzed in a Nicolet 6700 spectrometer, using the ATR system. The TGA measurements were performed under a nitrogen atmosphere using a TA Instruments model Q500HR thermobalance at a heating rate of 5 °C/min. Finally, it should be mentioned that different thermodynamics calculations were performed using the HSC Chemistry 5.1 software.

RESULTS AND DISCUSSION

The N_2 adsorption-desorption isotherm for the Na_2SiO_3 sample was acquired to determine its microstructural characteristics. The curve corresponds to a type II isotherm according to the IUPAC classification⁴⁸ (data not shown). The isotherm did not present hysteresis. This behavior corresponds to a nonporous, dense aggregate of particles. Additionally, the surface area of the sample was estimated to be 0.5 m²/g using the BET model. Figure 1 shows some of the morphological

Figure 1. Backscattered electron images of the Na_2SiO_3 sample synthesized by solid-state reaction.

characteristics. The size of the Na₂SiO₃ agglomerates exceeded 30 μ m (see the inset in Figure 1). A closer analysis indicated the presence of polyhedral particles, <1 μ m in average. The two microstructural analyses (N₂ ads and SEM) are in good agreement with the synthesis method (solid-state reaction), which usually produces large and dense particles due to a sintering process.

To further analyze and test this material, CO_2 sorption in presence of water vapor was studied. Based on theoretical thermodynamic data (HSC Chemistry 5.1 software), the reaction between Na₂SiO₃ and CO₂ in dry conditions can take place at temperatures lower than 330 °C (Figure 2).

$$Na_2SiO_3 + CO_{2(g)} \rightarrow Na_2CO_3 + SiO_2$$
(1)

In fact, Rodríguez and Pfeiffer⁴⁷ reported that CO_2 capture on Na₂SiO₃ occurs in spite of its low reactivity and kinetic factors. On the other hand, some researchers have reported water vapor addition affects the CO_2 capture of lithium and sodium ceramics.^{19,30,46,49} They have observed that water addition enhances kinetic properties even at low temperatures. Thus, with these antecedents and taking into consideration the theoretical thermodynamic data (Figure 2A) calculated according to the reaction 2, the CO_2 capture process in Na₂SiO₃ in presence of water vapor was carried out.

$$Na_2SiO_3 + 2CO_{2(g)} + H_2O_{(v)} \rightarrow 2NaHCO_3 + SiO_2$$
 (2)

If the Gibbs free energy (ΔG) values of reactions 1 and 2 are compared, the presence of water vapor clearly induces the NaHCO₃ formation (reaction 2) over the Na₂CO₃ formation (reaction 1) at $T \leq 130$ °C. Additionally, something else has to be pointed out—the quantity of CO₂ that can be trapped by Na₂SiO₃, in the presence of water, is double that captured in reaction 1. Hence, in this case, Na₂SiO₃ has a maximum theoretical CO₂ chemisorption capacity of 16.39 mmol/g. Additionally, it is known that the equilibrium constant (*K*) is related to the ΔG through the equation $K = \exp(-\Delta G_0/RT)$

Figure 2. Gibbs free energy (A) and equilibrium constant (B) changes as a function of the temperature for the CO_2 chemisorption on Na_2SiO_3 in dry (reaction 1) and humid (reaction 2) conditions.

(see Figure 2B). Finally, it must be taken into account that the reaction 2 *K* value is 6 orders of magnitude larger than that of reaction 1 at $T \le 50$ °C. Therefore, the presence of water vapor importantly increases the displacement of the equilibrium to the product formation.

First, Na₂SiO₃ was exposed to water vapor at different temperatures (30-60 °C) using N₂ as carrier gas. These experiments were performed seeking for any possible reaction between sodium metasilicate and water vapor. Figure 3 shows water vapor sorption/desorption isotherms. It is clearly evident that all of the sorption isotherms corresponded to type III according to the IUPAC classification.⁴⁸ Additionally, the water sorption varied as a function of the temperature, and it was not completed or limited to the increasing relative humidity section ramp (0-80% RH) because during some part of the decreasing RH section ramp (80-0% RH), the samples continued gaining weight. The continuous weight increment observed at the beginning of the RH decrease ramp is an indicative that the water vapor sorption continued at these temperatures and RH conditions because the equilibrium has not been reached in these dynamic experiments. When the Na₂SiO₃ sample was treated at 30 °C, the maximum water sorption was equal to 17.7 wt %, but this quantity increased as a function of the temperature to 27.6 wt % at 60 °C. Additionally, the sorption process began at lower RH when temperature was increased. At

Figure 3. Water vapor isotherms of the Na_2SiO_3 sample (A), generated at temperatures between 30 and 60 °C, using N_2 as carrier gas. The derivative thermograms, as a function of time, of the same water vapor isotherms (B). Each curve represents the experimental data, and the symbols were used to differentiate them.

30 °C, the weight increased at around 38% of RH, while the sorption process began with 24.7% of RH at 60 °C. Afterward, the final water desorption was proportional to the temperature, which may be attributed to water evaporation; while the final water trapped was 9 wt % at 30 °C (0% of RH), the water trapped decreased to ~ 6.3 wt % at all the other temperatures. Although the final water trapped did not changed significantly, the evaporation rate did. Figure 3B shows the DTG curves of the weight change as a function of time. From the second part of these curves (after the 160 min vertical line) it is clearly evident that evaporation process (seen as a change in the sign of the derivative) began at shorter times if temperature was increased. While at 30 °C the evaporation began after 209.1 min, this time was decreased to 180.5 min at 60 °C. It is seen from the magnitude of the maximum derivative values that the evaporation rate was larger as a function of temperature. In other alkaline and earth alkaline ceramics, it has been shown that the weight gained at the end of similar isothermal experiments can be attributed to H₂O that is physisorbed and/ or chemically (formation of Na–OH and/or Si–OH species) trapped.^{19,30,46,49}

Figure 4 shows the Na_2SiO_3 water sorption-desorption curves using CO_2 as carrier gas. Although the sorption curves

Figure 4. Water vapor isotherms of the Na_2SiO_3 sample, generated at temperatures between 30 and 60 °C, using CO_2 as carrier gas. Each curve represents the experimental data, and the symbols were used to differentiate them.

were type III, as in the N_2 case, the water desorption process and the final weight increments were noticeably different. During the sorption process, the weight increments increased as a function of the temperature. The final weights observed after the desorption process increased between 30 and 50 °C, from 14.1 to 16.9 wt %. However, at 60 °C, the weight increment decreased slightly to 16.6 wt %. In any case the final weight increments were always higher than those observed when a N_2 -H₂O flow was used. Therefore, the CO₂-H₂O flow must produce a different reaction process—the hydration, hydroxylation, and carbonation of Na₂SiO₃—and the hydration may have been reduced at the highest temperature (60 °C) because of water evaporation.

To analyze the Na₂SiO₃-CO₂-H₂O products, some of the isothermal products were analyzed using FTIR and XRD. Figure 5 shows the FTIR spectra of the Na₂SiO₃ initial sample and Na2SiO3 samples isothermically treated at 40, 50, and 60 °C into a CO_2 -H₂O flow. The Na₂SiO₃ initial sample presented different metal-oxygen vibration bands (Na-O and Si-O) between 400 and 1000 cm⁻¹ associated with this phase. Additionally, it should be mentioned that there were not identified any hydroxyl (3000 and 3500 cm^{-1})⁵⁰ and/or carbonate (between 850 and 1410 cm⁻¹)⁵⁰) species. On the contrary, the Na₂SiO₃ samples treated into a CO_2-H_2O flow at different temperatures presented similar FTIR spectra among them, where the following vibration bands were detected. Although metal-oxygen vibration bands were still present, as it could be expected, a wide O-H vibration band was detected between 3000 and 3500 cm⁻¹, corresponding to adsorbed water and/or hydroxyl species produced at the Na₂SiO₃ surface. In fact, this band was more evident in the sample treated at the lowest temperature (40 °C), as the evaporation process is less produced. Moreover, two different phases were evidenced by new vibration bands. While the vibration bands detected at 702, 877, and 1410 cm⁻¹ correspond to $Na_2CO_3^{51}$ the vibration bands located at 835, 1000, 1035, 1295, 1620, 1660, and 1906 $\rm cm^{-1}$ fit to the NaHCO₃ FTIR spectrum.⁵¹ Some of these peaks seem to decrease as a function of temperature, although the final weight increments observed in the Figure 4 increased. Figure 5B shows two characteristic vibration bands of Na₂CO₃ (877 cm^{-1}) and NaHCO₃ (835 cm⁻¹), where the Na₂CO₃/

Figure 5. ATR-FTIR spectra of the Na₂SiO₃ initial sample and Na₂SiO₃ samples isothermically treated at 40, 50, and 60 °C into a CO_2-H_2O flow (A). A specific zoom showing the Na₂CO₃ and NaHCO₃ vibration bands between 800 and 900 cm⁻¹ (B).

NaHCO3 intensity bands ratio slightly increases with temperature. It must be mentioned that the vibration band located at 831 cm⁻¹ corresponds to a CO_3^{2-} vibration mode of the Na₂CO₃·NaHCO₃·2H₂O system.⁵² These results confirm the NaHCO₃ formation but as well the presence of Na₂CO₃. In fact, temperature seems to inhibit the NaHCO₃ formation. In addition, the carbonate phases were confirmed by XRD. Figure 6 shows the XRD pattern of the Na₂SiO₃ sample previously treated at 60 °C into the CO_2 -H₂O flow. As it can be seen, the main peaks correspond to Na2SiO3, but there were other small peaks that can be attributed to Na₂CO₃ and/or NaHCO₃, as the diffraction peaks of these two carbonates are very close. Crystalline SiO₂ was not detected in the XRD pattern, according to reactions 1 and 2. Thus, it may be produced as an amorphous phase. In any case, the formation of these diffraction peaks confirmed the FT-IR analysis and consequently the CO₂ chemical reaction with Na₂SiO₃ at this temperature range.

It has been described in the literature⁴⁷ that Na₂SiO₃ chemisorbs small amounts of CO₂ (≤ 1 wt %) at dry conditions (see reaction 1). Nevertheless, the water vapor allowed the CO₂ chemisorption to occur in much higher quantities. Thus, water molecules should react with Na₂SiO₃ superficially, producing Na–OH and Si–OH species. Then, the activated surface must be more reactive to CO₂. Therefore, Na₂SiO₃ may have reacted

Figure 6. XRD pattern of the Na_2SiO_3 sample isothermally treated at 60 °C into a CO_2-H_2O flow. The peaks labeled with an asterisk can correspond to the Na_2CO_3 (01-086-0291 file) and/or $NaHCO_3$ (96-901-1049 file).

with CO_2 because of a superficial hydroxylation, according to the following reactions:

$$Na_{2}SiO_{3} \xrightarrow{H_{2}O} Na_{2}SiO_{3(superficially activated)}$$
(3)
$$Na_{2}SiO_{3(superficially activated)} + 2CO_{2} \rightarrow 2NaHCO_{3} + SiO_{2}$$
(4)

In fact, reaction 4 may be divided in the following two stepreactions, the Na_2CO_3 formation and the subsequent $NaHCO_3$ production:

$$Na_2SiO_{3(superficially activated)} + CO_2 \rightarrow Na_2CO_3 + SiO_2$$

(5)

$$Na_2CO_3 + CO_2 + H_2O \rightarrow 2NaHCO_3 \tag{6}$$

Additionally, some microstructure characteristics were evaluated by SEM in the Na_2SiO_3 sample after the CO_2 - H_2O process. As it can be seen, in Figure 7, the morphology of

Figure 7. Backscattered electron images of the Na_2SiO_3 sample isothermically treated at 50 °C into a CO_2 –H₂O flow.

the sample changed significantly, in comparison to the initial Na₂SiO₃ (see Figure 1). New filament-like structures appeared in the morphology, which must be associated with the Na₂CO₃ and NaHCO₃ formation. These filaments were as large as 7.5 μ m, with different thickness (0.2–0.3 μ m). The surface of these particles was considerably smooth. Therefore, the formation of

these carbonate filaments does not produce a rigid external shell over the Na_2SiO_3 particles. This particle growth must allow a further CO_2 chemisorption.

To further understand the influence of RH in the Na₂SiO₃-CO₂-H₂O system, different kinetic experiments are presented in Figure 8, which correspond to the experiments performed at different temperatures (30, 40, 50, and 60 °C) and RH (20, 40, 60, and 80%). For each temperature, the weight increment rates increased as a function of the RH, as it could be expected. For example, at 50 °C (Figure 8C) the samples treated with 20 and 40% of RH only increased their weights in 2.0 and 4.0 wt % after 3 h, respectively. However, when the RH was increased to 60 and 80%, the final weight increments were equal to 11.5 and 42 wt %, respectively. However, a more interesting behavior can be observed if the isotherms are analyzed as a function of the temperature. Figure 9 shows the isotherms treated with 80% of RH at different temperatures. In this case, the final weight increments were 30.6% (30 °C), 41.3% (40 °C), 42.1% (50 °C), and 27.0% (60 °C). The final weight increment at 60 °C decreased, and it may be associated with the NaHCO3 inhibition from Na₂CO₃, evidenced previously, which reduces the weight increments importantly.

To quantify the CO₂ capture through the NaHCO₃ and Na2CO3 formation under the different thermal and RH conditions, all of the isothermal products were characterized using TGA. As example, Figure 10 shows the TGA and DTG curves of Na₂SiO₃ that was isothermally treated at 50 °C with different RHs. These thermograms show two different temperature decomposition ranges. Initially, between room temperature and 200 °C, the samples lost different quantities of weight, which could be attributed to dehydration and NaHCO₃ decomposition processes. In the DTG curves, at temperatures lower than 78 °C, there is one peak, corresponding to a drying process. The intensity of this peak increased as a function of the RH, as it could be expected. Then, between 78 and 200 °C the DTG presented several peaks associated with the NaHCO₃ decomposition process.⁵²¹ The NaHCO₃ decomposition process has been described, producing Na₂CO₃ and two gas species, H_2O and CO_2 , accordingly to the following reaction⁵

$$2NaHCO_3 \rightarrow Na_2CO_3 + CO_{2(g)} + H_2O_{(v)}$$
⁽⁷⁾

The presence of other DTG peaks may be associated with the thermal decomposition of other mixed hydrated-carbonate phases such as Na₂CO₃·3NaHCO₃, Na₂CO₃·NaHCO₃·2H₂O, and Na₂CO₃·H₂O, as was already evidenced by FTIR. However, it was assumed that the only decomposition present in this temperature range was the one of the NaHCO₃ single salt. Therefore, the weight lost observed in this temperature range (78 °C $\leq T \leq 200$ °C) can be associated with the CO₂ and H₂O liberation, where each compound theoretically contributes in 70.9 and 29.1% of the corresponding total weight lost observed (see eq 7). The dehydroxylation process was attributed to the continuous weight lost observed in the TG curves between 200 and 400 °C. In fact, the samples treated at lower RH almost not presented this process. Finally, the weight lost observed at T > 600 °C was attributed to the Na₂CO₃ decomposition process. All of the samples presented a decarbonation process (reaction 8), which appeared to increase as a function of the RH.

$$Na_2CO_3 + SiO_2 \rightarrow Na_2SiO_3 + CO_{2(g)}$$
 (8)

Therefore, to quantify the amounts of CO_2 trapped (as NaHCO₃ or Na₂CO₃) by Na₂SiO₃, all of the weight variations

Figure 8. Kinetic isotherms performed at different temperatures (30, 40, 50, and 60 $^{\circ}$ C) and RH (20, 40, 60, and 80%) with a CO₂ flow of 60 mL/ min. Each curve represents the experimental data, and the symbols were used to differentiate them.

determined from the TGA experiments are plotted in Figure 11. It must be mentioned that the CO_2 quantities reported in these plots correspond to the total CO₂ desorbed by the NaHCO₃ and Na₂CO₃ decomposition processes (reactions 7 and 8). It is clearly evident that when the RH was increased from 20 to 80%, the total amount of CO₂ chemisorbed increased, independently of the temperature, although the CO₂ chemisorbed decreased at 60 °C for 80% RH, in comparison to the other temperatures. As it can be seen, the maximum weight increment (16.5 wt %) was obtained under the following conditions; 40 °C and 80% of RH, which corresponds to a 28.4% efficiency, assuming reaction 4 as CO₂ chemisorption model. This efficiency values are equal to 4.66 mmol of CO₂ per gram of Na₂SiO₃ (mmol/g), where the maximum theoretical value is 16.39 mmol/g. All these results clearly show that CO₂ chemisorption in Na₂SiO₃ is importantly improved by the presence of water vapor in this temperature range, in comparison to the dry conditions. Additionally, the Na₂SiO₃ sample treated in the presence of water vapor appears to be capable of chemically trapping as much CO₂ as many other materials at moderate temperatures $(30-80 \ ^{\circ}C)$, including activated carbons, zeolites, hydrotalcites, and amines, where the maximum CO_2 chemisorption values are around 4-6 mmol/g.⁵

As it has been shown in previous papers, 21,40,44,46 the CO₂ capture efficiency can be modified by the initial surface area. Therefore, the Na₂SiO₃ was synthesized by the combustion method in order to obtain a larger surface area, which may

enhance the CO₂ capture. After the corresponding Na₂SiO₃ structural (XRD) and microstructural (N₂ adsorption and SEM) characterizations (data not shown), it was confirmed the Na₂SiO₃ synthesis and the variation of microstructural properties as the BET surface area increased to 1.6 m²/g, in comparison to the previous solid-state sample (0.5 m²/g). It means 3 times more surface area. Figure 12 shows the SEM image of this sample. It can be seen that Na₂SiO₃ particles has morphological variations in comparison to the solid-state sample. In this case, the particles seem to be sintered forming irregular particles of around 10 μ m. However, these particles presented a corrugated surface, which may be responsible of the larger surface area determined by N₂ adsorption.

Again, the CO_2-H_2O capture behavior of the Na_2SiO_3 synthesized by the combustion method was tested (Figure 13). In this figure, it was added the isotherm performed at 50 °C with the Na_2SiO_3 solid-state sample, for comparison purposes. Again, all the sorption curves were type III, as in the solid-state sample. Nevertheless, the initial sorption processes and final weight increments were considerably higher. In addition, the final weight increments (between 41.5 and 47.0 wt %) observed in the combustion sample were more than twice larger than those observed in the solid-state sample.

The final weight increments observed after the desorption process increased between 30 and 40 $^{\circ}$ C from 41.5 to 47.0 wt %, but at 50 and 60 $^{\circ}$ C the weight increments decreased to 44.0 and 41.7 wt %, respectively. In the solid-state case, only at 60 $^{\circ}$ C it was observed the final sorption decrement and it was

Figure 9. Comparison of the different kinetic isotherms performed between 30 and 60 $^{\circ}$ C with 80% of RH (A). First 800 s of the isotherms performed between 30 and 60 $^{\circ}$ C with 80% of RH (B). Each curve represents the experimental data, and the symbols were used to differentiate them.

attributed to the water evaporation. Therefore, in this case, as the weight increments were higher, due to the surface area, the water adsorption may be larger as well, producing an important evaporation since 50 °C. In any case, if the water adsorption was higher, the CO₂ capture, as NaHCO₃ and Na₂CO₃, must be higher as well.

In order to prove it, different and specific isothermal experiments were performed to quantify the total CO₂ chemisorbed by the Na₂SiO₃ combustion sample. Figure 14A shows four isotherms performed at 50 °C at different RH. As it could be expected, the isotherms increased their weights as a function of the RH, reaching final weight increments of 13, 24.9, 40.2, and 60.3 wt %, for RH of 20, 40, 60, and 80%, respectively. If these results are compared to those obtained with the Na_2SiO_3 solid-state sample (Figure 8C), it can be seen a very important increment of CO₂-H₂O sorbed, which may be attributed to the surface area. For example, in the solid-state sample the isotherms performed between 20 and 60% of RH did not increase their weights (wt < 13%) more than the combustion sample (wt = 13%) with 20% of RH. Specifically, Figure 14B shows a comparison between Na₂SiO₃ samples prepared by solid-state and combustion methods isothermically treated at 50 °C and 80% of RH and the corresponding TG

Figure 10. TG (A) and DTG (B) curves of Na_2SiO_3 samples isothermally treated at 50 °C and different RH (20–80%).

decomposition experiments of the final corresponding products. From the isothermal experiments, it is clearly evident that the Na₂SiO₃ sample prepared by the combustion method gained faster and more weight than the solid-state sample. In fact, after 3 h the combustion sample gained ~20% more weight than the solid-state sample. Finally, although the TG decomposition thermograms showed similar trends, the weight lost observed in the different steps were larger in the combustion samples (Figure 14C). The NaHCO₃ decomposition process associated with the second weight lost showed decrements of 8.78 and 27.19 wt % for the solid-state and combustion samples, respectively. Then, the weight lost associated with the Na₂CO₃ decomposition ($T \ge 600$ °C) presented differences as a function of the Na₂SiO₃ sample as well. In the solid-state sample the weight lost was 10.35 wt % and the combustion sample presented a weight loss of 18.32 wt %; however, in this sample the Na₂CO₃ decomposition did not finished, as the wt % continued decreasing above 900 °C. Moreover, in the combustion sample, it was evident a third weight loss at around 450 °C, associated with the dehydroxylation process. As this sample has a larger surface area, all the sorption phenomena are extrapolated and consequently more evident. Results obtained from the Na₂SiO₃ combustion sample showed an important CO₂ capture increment. This sample was able to increase the CO₂ capture efficiency to 52%, corresponding to a final CO_2 capture of 8.5 mmol/g, almost twice the CO_2 captured by the solid-state sample (4.6 mmol/g). Therefore, the Na_2SiO_3 prepared by the combustion method is able to trap more CO₂ than other

Figure 11. Quantification of the CO_2 desorbed during the TG analyses from NaHCO₃ (A) and Na₂CO₃ (B) by Na₂SiO₃, varying temperature and RH.

Figure 12. Backscattered electron images of the Na_2SiO_3 sample synthesized by the combustion method.

materials such as zeolites, hydrotalcites, and activated carbons.⁹ Thus, Na_2SiO_3 must be considered as a possible option for the CO_2 capture process at moderated or environmental temperatures.

Summarizing, Na_2SiO_3 is able to trap, chemically, high CO_2 quantities in the presence of water vapor. The CO_2 trapped produced Na_2CO_3 and $NaHCO_3$ as products. The formation of these carbonates was determined by the temperature, but mainly as a function of the relative humidity. Finally, the quantities of CO_2 trapped by the Na_2SiO_3 are higher in

Figure 13. Water vapor isotherms of the Na_2SiO_3 sample prepared by combustion method, generated at temperatures between 30 and 60 °C, using CO₂ as carrier gas. The 50 °C isotherm of the Na_2SiO_3 sample prepared by solid-state reaction was added for comparison purposes. Each curve represents the experimental data, and the symbols were used to differentiate them.

comparison to other materials. Therefore, more and deeper analyses have to be performed on the Na₂SiO₃-CO₂-H₂O system, as in this temperature range, most of the materials used trap CO₂ physically (zeolites, activated carbons, etc.). In the present case, as the CO₂ is chemically trapped, CO₂ desorption must be performed chemically or at high temperatures, which may be an interesting industrial issue. However, in the present case, the CO₂ chemisorption is selective and it is not necessarily limited to the surface, which may be an important advantage over the CO₂ physisorbent materials.

CONCLUSIONS

The CO_2 -H₂O sorption process on Na₂SiO₃, with different microstructural properties, was evaluated at low temperatures (30–60 °C). Na₂SiO₃ samples were prepared by solid-state and combustion methods in order to obtain different textural properties. The surface areas obtained were 0.5 and 1.6 m²/g for the solid-state and combustion methods, respectively.

Initial results, using N₂ as carrier gas, showed that Na₂SiO₃ traps water physically and chemically, where the water vapor adsorption and/or absorption depended on temperature and relative humidity. When CO₂ was used as carrier gas, important changes appeared in the results. Although Na₂SiO₃ continued trapping water, by the same mechanisms, CO₂ was chemically trapped as well, producing Na₂CO₃, NaHCO₃, and SiO₂. In fact, different isothermal analyses and the characterization of the isothermal products showed that the formation of NaHCO₃ was determined by the temperature, but mainly as a function of the relative humidity. It means that under the thermal humidity conditions, Na₂SiO₃ would be able to absorb up to 16.39 mmol of CO₂ per gram of ceramic, which is 2 times more CO₂ than the quantity absorbed under dry conditions.

Additionally, it was probed that the Na₂SiO₃ sample prepared by the combustion method (larger surface area) showed an important CO₂ capture increment, in comparison to the Na₂SiO₃ solid-state reaction sample. The combustion sample increased its CO₂ capture efficiency to 52% (8.5 mmol/g), almost twice the CO₂ captured by the solid-state sample (4.6 mmol/g). The CO₂ capture efficiency differences in these

Figure 14. Na₂SiO₃ combustion isotherms treated at 50 °C at different RH. (A) Comparison of the Na₂SiO₃ solid-state and combustion isotherms performed at 50 °C and 80% of RH (B) and their corresponding decomposition TG (C). Each curve represents the experimental data, and the symbols were used to differentiate them.

samples were attributed to the different surface areas. Thus, Na₂SiO₃ must be considered as a possible option for the CO₂ capture process at moderated or environmental temperatures.

AUTHOR INFORMATION

Corresponding Author

*Phone +52 (55) 5622 4627, Fax +52 (55) 5616 1371, e-mail pfeiffer@iim.unam.mx (H.P.).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by the project SENER-CONACYT 150358. The authors thank A. Tejeda, O. Novelo, and M. A. Canseco for their technical help. Rafael Rodríguez-Mosqueda thanks CONACYT for financial support.

REFERENCES

(1) Pires, J. C. M.; Martins, F. G.; Alvim-Ferraz, M. C. M.; Simões, M. Recent Developments on Carbon Capture and Storage: An Overview. *Chem. Eng. Res. Des.* **2011**, *89*, 1446–1460.

(2) Yang, D. A.; Chou, H. Y.; Kim, J.; Yang, S. T.; Ahn, W. S. CO_2 Capture and Conversion Using Mg-MOF-74 Preapred by a Sonochemical Method. *Energy Environ. Sci.* **2012**, *5*, 6465–6473.

(3) Zhao, Y.; Zhao, L.; Yao, K. X.; Yang, Y.; Zhang, Q.; Han, Y. Novel Porous Carbon Materials with Ultrahigh Nitrogen Contents for Selective CO₂ Capture. *J. Mater. Chem.* **2012**, *22*, 19726–19731.

(4) Zhai, Q. G.; Tao-Wu, Q. L.; Wang, L.; Zheng, S. T.; Bu, X.; Feng, P. High CO_2 and H_2 Uptake in an Anionic Porous Framework with Amino-Decorated Polyhedral Cages. *Chem. Mater.* **2012**, *24*, 2624–2626.

(5) Shen, W.; Zhang, S.; He, Y.; Li, J.; Fan, W. Hierarchical Porous Polyacrylonitrile-Based Activated Carbon Fibers for CO₂ Capture. *J. Mater. Chem.* **2011**, *21*, 14036–14040.

(6) Markewitz, P.; Kuckshinrichs, W.; Leitner, W.; Linssen, J.; Zapp, P.; Bongartz, R.; Schreiber, A.; Müller, T. E. Worldwide Innovations in the Development of Carbon Capture Technologies and the Utilization of CO₂. *Energy Environ. Sci.* **2012**, *5*, 7281–7305.

(7) Wang, M.; Lawal, A.; Stephenson, P.; Sidders, J.; Ramshaw, C. Post-combustion CO_2 Capture with Chemical Absorption: A State-of-the-Art Review. *Chem. Eng. Res. Des.* **2011**, *89*, 1609–1624.

(8) Pacciani, R.; Torres, J.; Solsona, P.; Coe, C.; Quinn, R.; Hufton, J.; Golden, T.; Vega, L. Influence of the Concentration of CO_2 and SO_2 on the Absorption of CO_2 by a Lithium Orthosilicate-Based Absorbent. F. *Environ. Sci. Technol.* **2011**, *45*, 7083–7088.

(9) Choi, S.; Dresse, J. H.; Jones, C. W. Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources. *ChemSusChem* **2009**, *2*, 796–854.

(10) D'Alessandro, D. M.; Smit, B.; Long, J. R. Carbon Dioxide Capture: Prospects for New Materials. *Angew. Chem., Int. Ed.* **2010**, *49*, 6058–6082.

(11) Nair, B. N.; Burwood, R. P.; Goh, V. J.; Nakagawa, K.; Yamaguchi, T. Lithium Based Ceramics Materials and membranes for High Temperature CO_2 Separation. *Prog. Mater. Sci.* **2009**, *54*, 511–541.

(12) Wang, Q.; Luo, J.; Zhong, Z.; Borgna, A. CO₂ Capture by Solid Adsorbents and their Applications; Current Status and New Trends. *Ener. Environ. Sci.* **2011**, *4*, 42–55.

(13) Hedin, N.; Chen, L. J.; Laaksonen, A. Sorbents for CO₂ Capture from Flue Gas-Aspects from Materials and Theoretical Chemistry. *Nanoscale* **2010**, *2*, 1819–1841.

(14) Pfeiffer, H. Advances in CO_2 Conversion and Utilization; ACS Symposium Series; Hu, Y. H., Ed.; American Chemical Society: Washington, DC, 2010; Vol. 1056, pp 233–253.

(15) Duan, Y.; Luebke, D.; Pennline, H. Efficient Theoretical Screening of Solid Sorbents for CO_2 Capture Applications. *Int. J. Clean Coal Energy* **2012**, *1*, 1–11.

(16) Olivares-Marín, M.; Maroto-Valer, M. Development of Adsorbents for CO_2 Capture from Waste Materials: A Review. *Greenhouse Gases: Sci. Technol.* **2012**, 2, 20–35.

(17) Korake, P. V.; Gaikwad, A. G. Capture of Carbon Dioxide Over Porous Solid Adsorbents Lithium Silicate, Lithium Aluminate and Magnesium Aluminate at Pre-Combustion Temperatures. *Front. Chem. Eng. China* **2011**, *5*, 215–226.

The Journal of Physical Chemistry C

(18) Alcérreca-Corte, I.; Fregoso-Israel, E.; Pfeiffer, H. CO_2 Absorption on Na_2ZrO_3 : A Kinetic Analysis of the Chemisorption and Diffusion Processes. J. Phys. Chem. C **2008**, 112, 6520–6525.

(19) Santillán-Reyes, G. G.; Pfeiffer, H. Analysis of the CO_2 Capture in Sodium Zirconate (Na_2ZrO_3). Effect of the Water Vapor Addition. *Int. J. Greenhouse Gas Control* **2011**, *5*, 1624–1629.

(20) Halabi, M. H.; de Croon, J.; van der Schaaf, J.; Cobden, P. D.; Schouten, J. C. Reactor Modeling of Sorption-Enhanced Autothermal Reforming of Methane. Part I: Performance Study of Hydrotalcite and Lithium Zirconate-Based Processes. *Chem. Eng. J.* **2011**, *168*, 872–882.

(21) Xiao, Q.; Tang, X.; Liu, Y.; Zhong, Y.; Žhu, W. Citrate Route to Prepare K-Doped Li_2ZrO_3 Sorbents with Excellent CO₂ Capture Properties. *Chem. Eng. J.* **2011**, *174*, 231–235.

(22) Iwan, A.; Stephenson, H.; Ketchie, W. C.; Lapkin, A. A. High Temperature Sequestration of CO_2 Using Lithium Zirconates. *Chem. Eng. J.* **2009**, *146*, 249–258.

(23) Yin, X. S.; Zhang, Q. H.; Yu, J. G. Three-Step Calcination Synthesis of High-Purity Li_8ZrO_6 with CO_2 Absorption Properties. *Inorg. Chem.* **2011**, *50*, 2844–2850.

(24) Yin, X. S.; Song, M.; Zhang, Q. H.; Yu, J. G. High-Temperature CO_2 Capture on $Li_6Zr_2O_7$: Experimental and Modeling Studies. *Ind. Eng. Chem. Res.* **2010**, *49*, 6593–6598.

(25) Radfarnia, H. R.; Iliuta, M. C. Surfactant-Template/Ultrasound-Assisted Method for the Preparation of Porous Nanoparticle Lithium Zirconate. *Ind. Eng. Chem. Res.* **2011**, *50*, 9295–9305.

(26) Yin, X. S.; Li, S. P.; Zhang, Q. H.; Yu, J. G. Synthesis and CO₂ Adsorption Characteristics of Lithium Zirconates with High Lithia Content. J. Am. Ceram. Soc. **2010**, 93, 2837–2842.

(27) Xiao, Q.; Liu, Y.; Zhong, Y.; Zhu, W. A Citrate Sol-Gel Method to Synthesize Li₂ZrO₃ Nanocrystals with Improved CO₂ Capture Properties. *J. Mater. Chem.* **2011**, *21*, 3838–3842.

(28) Khokhani, M.; Khomane, R. B.; Kulkarni, B. D. Sodium-Doped Lithium Zirconate Nano Squares: Synthesis, Characterization and Applications for CO_2 Sequestration. *J. Sol-Gel Sci. Technol.* **2012**, *61*, 316–320.

(29) Kang, S. Z.; Wu, T.; Li, X.; Mu, J. Low Temperature Biomimetic Synthesis of the Li_2ZrO_3 Nanoparticles Containing $Li_6Zr_2O_7$ and High Temperature CO₂ Capture. *Mater. Lett.* **2010**, *64*, 1404–1406.

(30) Martínez-dlCruz, L.; Pfeiffer, H. Towards Understanding the Effect of Water Sorption on Lithium Zirconate (Li_2ZrO_3) During its Carbonation Process at Low Temperatures. J. Phys. Chem. C 2010, 114, 9453–9458.

(31) Shan, S.; Jia, Q.; Jiang, L.; Wang, Y. Effect of different Silicon Sources on CO_2 Absorption Properties of Li_4SiO_4 at High Temperatures. *Adv. Mater. Res.* **2011**, *213*, 515–518.

(32) Olivares-Marín, M.; Drage, T. C.; Maroto-Valer, M. Novel Lithium-Based Sorbents from Fly Ashes for CO_2 Capture at High Temperatures. *Int. J. Greenhouse Gas Control* **2010**, *4*, 623–629.

(33) Duan, Y. Structural and Electronic properties of Li_8ZrO_6 and Its CO_2 Capture Capabilities: An *ab initio* Thermodynamic Approach. *Phys. Chem. Chem. Phys.* **2013**, *15*, 9752–9760.

(34) Inoue, R.; Ueda, S.; Wakuta, K.; Sasaki, K.; Ariyama, T. Thermodinamic Consideration on the Absorption Properties of Carbon Dioxide to Basic Oxide. *ISIJ Int.* **2010**, *50*, 1532–1538.

(35) Wang, K.; Guo, X.; Zhao, P.; Wang, F.; Zheng, C. High Temperature Capture of CO_2 on Lithium-Based Sorbents from Rise Husk Ash. *J. Hazard. Mater.* **2011**, *189*, 301–307.

(36) Duan, Y.; Parlinski, K. Density Function Theory Study on the Structural, Electronic, Lattice Dynamical, and Thermodynamic Properties of Li_4SiO_4 and Its Capability for CO₂ Capture. *Phys. Rev.* B 2011, *84*, 104113.

(37) Ávalos-Rendón, T.; Casa-Madrid, J.; Pfeiffer, H. Thermochemical Capture of Carbon Dioxide on Lithium Aluminates (LiAlO₂ and $Li_{s}AlO_{4}$): A New Option for the CO₂ Absorption. *J. Phys. Chem. A* **2009**, *113*, 6919–6923.

(38) Ueda, S.; Inoue, R.; Sasaki, K.; Wakuta, K.; Ariyama, T. CO₂ Absorption and Desorption Abilities of Li₂O-TiO₂ Compounds. *ISIJ Int.* **2011**, *51*, 530–537. (39) Ortiz-Landeros, J.; Ávalos-Rendón, T.; Gómez-Yáñez, C.; Pfeiffer, H. Analysis and Perspectives Concerning CO_2 Chemisorption on Lithium Ceramics Using Thermal Analysis. J. Therm. Anal. Calorim. **2012**, 108, 647–655.

(40) Rodríguez-Mosqueda, R.; Pfeiffer, H. Thermokinetic Analysis of the CO₂ Chemisorption on Li₄SiO₄ by Using Different Gas Flow Rates and Particle Sizes. *J. Phys. Chem. A* **2010**, *114*, 4535–4541.

(41) Qi, Z.; Daying, H.; Yang, L.; Qian, Y.; Zibin, Z. Analysis of CO₂ Sorption/Desorption Kinetic Behaviors and Reaction Mechanism on Li₄SiO₄. *AIChE J.* **2013**, *59*, 901–911.

(42) Quinn, R; Kitzhoffer, R. J.; Hufton, J. R.; Golden, T. C. A High Temperature Lithium Orthosilicate-Based Solid Absorbent for Post Combustion CO₂ Capture. *Ind. Eng. Chem. Res.* **2012**, *51*, 9320–9327.

(43) Xiao, Q.; Tang, X.; Zhong, Y.; Zhu, W. A Facile Starch-Assisted Sol-Gel Method to Synthesize K-Doped Li_2ZrO_3 Sorbents with Excellent CO₂ Capture Properties. *J. Am. Ceram. Soc.* **2012**, *95*, 1544–1548.

(44) Radfarnia, H. R.; Iliuta, C. R. Application of Surfactant-Template Technique for Preparation of Sodium Zirconate as High Temperature CO_2 Sorbent. *Separ. Purif. Technol.* **2012**, *93*, 98–106.

(45) Khomane, R. B.; Sharma, B. K.; Saha, S.; Kulkarni, B. D. Reverse Microemulsion Mediated Sol-Gel Synthesis of Lithium Silicate Nanoparticles Under Ambient Conditions: Scope for CO_2 Sequestration. *Chem. Eng. Sci.* **2006**, *61*, 3415–3418.

(46) Ortiz-Landeros, J.; Gómez-Yáñez, C.; Pfeiffer, H. Surfactant-Assisted Hydrothermal Crystallization of Nanostructured Lithium Metasilicate (Li₂SiO₃) Hollow Spheres: II. Textural Analysis and CO₂-H₂O Sorption Evaluation. J. Solid State Chem. **2011**, 184, 2257–2262.

(47) Rodríguez, M. T.; Pfeiffer, H. Sodium Metasilicate (Na_2SiO_3) : A Thermokinetic Analysis of Its CO_2 Chemical Sorption. *Thermochim. Acta* **2008**, 473, 92–95.

(48) Lowell, S.; Shields, J. E.; Thomas, M. A. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Particle Technology Series; Kluwer Academic Publishers: London, 2004.

(49) Ávalos-Rendón, T. L.; Pfeiffer, H. High CO_2 Chemisorption in α -Li₅AlO₄ at Low Temperatures (30–80 °C): Effect of the Water Vapor Addition. *Energy Fuels* **2012**, *26*, 3110–3114.

(50) Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; Wiley: New York, 2004.

(51) Huang, C. K.; Paul, F. Infrared Study of the Carbonate Minerals. *Am. Mineral.* **1960**, *45*, 311–325.

(52) Dei, L.; Guarini, G. G. T. The Thermal Decomposition of NaHCO₃. J. Therm. Anal. Calorim. **1997**, 50, 773–783.

(53) Heda, P. K.; Dollimore, D.; Alexander, K. S.; Chen, D.; Law, E.; Bicknell, P. A Method of Assessing Solid State Reactivity Illustrated by Thermal Decomposition Experiments on Sodium Bicarbonate. *Thermochim. Acta* **1995**, 255, 255–272.