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Abstract Reexamining BCS theory leads one to formu-
late a generalized BEC formalism (GBEC) that is essen-
tially a boson–fermion (BF) model with not two but three
constituents, two bosonic being two-electron Cooper pairs
(2eCPs) plus two-hole CPs (2hCPs), along with unpaired
electrons. This ternary BF model contains three new in-
gredients: (i) CPs as real bosons in contrast to BCS pairs,
which are at best so-called “hard-core bosons,” (ii) 2hCPs
explicitly accounted for on an equal footing with 2eCPs,
and (iii) four BF vertex interactions (analogous to electron-
phonon vertices) describing the formation and dissociation
of both 2eCPs and 2hCPs. The two pure gauge-invariant
GBEC phases (of a total of four including the trivial nor-
mal phase) that result exhibit substantially higher Tcs than
BCS theory. In addition, in contrast to the well-known BCS
exponential rise of Tc from zero, the GBEC scheme exhibits
the linear rise as function of doping typically observed in
high-Tc superconductors.
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1 Introduction

Boson-fermion (BF) models of superconductivity were ap-
parently introduced by Ranninger and Robaszkiewicz as
early as 1985 [1]. Soon, a BF field theory with a Bose–
Einstein condensation (BEC) by Friedberg and T.D. Lee ap-
peared [2]. Both of these efforts, however, were binary BF
models as they neglected the possibility of two-hole Cooper-
pair (CP) bosons. Inclusion of 2hCPs leads to a general-
ized BEC (GBEC) formalism [3] describing a ternary BF
model leading to gauge-invariant condensed phases. This
formalism relies on 2e/2hCP energies E±(K) phenomeno-
logically, where K is the CP center-of-mass momentum
(CMM) wavenumber. A (generalized) BEC (or macroscopic
occupation of a given state that appears below a certain
fixed absolute temperature T = Tc) was found [3] numeri-
cally a posteriori from the GBEC formalism. The latter boils
down to three coupled transcendental equations for the con-
densate densities n0(T ) of 2eCPs and m0(T ) of 2hCPs, as
well as the electron chemical potential μ(T ), all three as
functions of T . As usual, elimination of μ(T ) permits ob-
taining the two condensate densities of equilibrium thermo-
dynamic states associated with two pure and a mixed phase,
with BCS theory corresponding to a half-and-half mixture.

2 Distinction Between Cooper and BCS Pairs

Whether the pairwise interfermion interaction is between
charge carriers or between neutral atoms, a CP state of en-
ergy E±(K) will clearly be characterized only by a defi-
nite center-of-mass momentum wavevector K ≡ k1 +k2 but
not definite relative momentum wavevector k ≡ 1

2 (k1 − k2).

mailto:dellano@unam.mx


1916 J Supercond Nov Magn (2013) 26:1915–1919

This is because, e.g., for two-electron CPs E+(K) itself is
extracted from the Cooper eigenvalue equation

V
∑

k

′[
�

2k2/m + �
2K2/4m − 2EF − E+(K)

]−1 = 1 (1)

which involves a sum over k with the prime over the sum-
mation sign signifying exclusion of states below the Fermi
surface as they are already occupied. Hence, an indefinitely
large number of CPs depending only on K implies that they
satisfy Bose statistics. Although deceptively simple, this is
an elementary but crucial point in all that follows; for a sur-
vey see [4].

Clearly, as a “Cooper pair” depends only K and it con-
trasts sharply with a “BCS pair” defined [5] as a dimer
with fixed K and k (or equivalently fixed k1 and k2),
even though only the case K = 0 is considered in [5].
The BCS-pair annihilation and creation operators for any
K > 0 can be defined quite generally as bkK ≡ ak2↓ak1↑
and b

†
kK ≡ a

†
k1↑a

†
k2↓ where a

†
k1s

and ak1s are fermion op-

erators, and as before k ≡ 1
2 (k1 − k2) and K ≡ k1 + k2

are the relative and CMM wavevectors, respectively, asso-
ciated with two fermions with wavevectors k1 = K/2 +
k, k2 = K/2 − k. One finds [6] that [bkK, b

†
k′K] = (1 −

nK/2−k↓ − nK/2+k↑)δkk′ and [b†
kK, b

†
k′K] = [bkK, bk′K] = 0

where nK/2±ks ≡ a
†
K/2±ks

aK/2±ks are fermion number op-
erators. Clearly, these are not the usual Bose commutation
relations. Because two BCS pairs cannot exactly overlap in
real space without violating the Pauli principle, they are of-
ten referred to as “hard-core bosons,” albeit with hard-core
radii of 0+ sufficing to obey this principle.

3 Generalized BEC Formalism (GBEC)

The GBEC formalism is described in detail in [7, 8]; here
we summarize its main equations. It applies in d dimensions
and is defined by a Hamiltonian of the form H = H0 +Hint.
Here,

H0 =
∑

k1,s1

εk1a
+
k1,s1

ak1,s1
+

∑

K

E+(K)b+
KbK

−
∑

K

E−(K)c+
KcK (2)

where K is the previously-defined CMM wavevector of
the pair, while εk1 ≡ �

2k2
1/2m are the single-electron,

and E±(K) the 2e-/2h-CP phenomenological, energies.
Here, a+

k1,s1
(ak1,s1 ) are creation (annihilation) operators for

fermions, and similarly b+
K (bK) and c+

K (cK) for 2e- and
2h-CP bosons, respectively. These b and c operators depend
only on K and so are distinct from the BCS-pair operators
depending on both K and the relative k ≡ 1

2 (k1 − k2). They
are stated in [5] Eqs. (2.9) to (2.13) for the particular case

of K = 0 and stressed there not to satisfy the ordinary Bose
commutation relations. In contrast, by inspection, CPs do
obey Bose–Einstein statistics, which is all that is required to
ensure a BEC (or macroscopic occupation of a given state
that appears below a certain fixed T = Tc). This was found
[7, 8] numerically a posteriori in the GBEC formalism that
starts from (2) as a zeroth-order picture consisting of an
ideal ternary BF gas.

The interaction Hamiltonian Hint in the expression H =
H0 +Hint describes the formation and disintegration of CPs,
respectively, from and into unpaired electrons and unpaired
holes. It is further simplified by dropping all K �= 0 terms.
In [9, 10], the nonzero-CMM CPs were explicitly consid-
ered via two-time Green functions [11–13] and this leads to
a pseudogap opening up at temperatures higher than Tc, but
below a so-called “depairing” or pseudogap critical temper-
ature T ∗ ≥ Tc.

The simplified GBEC Hint consists of four distinct BF in-
teraction vertices each with two-fermion/one-boson creation
and/or annihilation operators. These vertices depict how un-
paired electrons (subindex +) [or holes (subindex −)] are
involved in the formation and disintegration of the 2e- (and
2h-) K = 0 CPs in the d-dimensional system of size L,
specifically

Hint = L−d/2
∑

k

f+(k)
{
a+

k,↑a+
−k,↓b0 + a−k,↓ak,↑b+

0

}

+ L−d/2
∑

k

f−(k)
{
a+

k,↑a+
−k,↓c+

0 + a−k,↓ak,↑c0
}
.

(3)

The interaction vertex form factors f±(k) in (3) are es-
sentially the Fourier transforms of the 2e- and 2hCP in-
trinsic wavefunctions, respectively, in the relative coor-
dinate of the two fermions. The grand (sometimes also
called the Landau) thermodynamic potential Ω associ-
ated with the full Hamiltonian H = H0 + Hint given by
(2) and (3) is then constructed as Ω(T ,Ld,μ,N0,M0) =
−kBT ln[Tr exp{−β(H − μN̂)}] where “Tr” stands for
“trace” and β ≡ 1/kBT . It is related to the system pres-
sure P , internal energy E and entropy S via Ω = −PLd =
F − μN ≡ E − T S − μN , where F is the Helmholtz free
energy. Following the well-known Bogoliubov prescription
[14], one sets b+

0 , b0 equal to
√

N0 and c+
0 , c0 equal to√

M0 in (3), where N0(T ) is the T -dependent number of
zero-CMM 2eCPs and M0(T ) likewise for 2hCPs. This al-
lows exact diagonalization for any coupling, through a Bo-
goliubov transformation of the a+, a fermion operators. One
introduces N(ε) and M(ε) as respectively the electronic and
bosonic density of states. Finally, an electron dispersion en-
ergy E(ε) emerges as

E(ε) =
√

(ε − μ)2 + Δ2(ε) (4)

≡
√

(ε − μ)2 + n0f
2+(ε) + m0f

2−(ε) (5)



J Supercond Nov Magn (2013) 26:1915–1919 1917

since Δ(ε) ≡ √
n0f+(ε) + √

m0f−(ε) and f+(ε)f+(ε) ≡ 0
where f+(ε) and f+(ε) can be constructed as in [7], while
n0(T ) ≡ N0(T )/Ld and m0(T ) ≡ M0(T )/Ld are the 2eCP
and 2hCP number densities, respectively, of BE-condensed
CP (i.e., with K = 0) bosons.

Minimizing F with respect to N0 and M0, while simul-
taneously fixing the total number N of electrons by intro-
ducing the electron chemical potential μ in the usual way,
requires

∂F

∂N0
= 0,

∂F

∂M0
= 0 and − ∂Ω

∂μ
= N. (6)

This ensures an equilibrium thermodynamic state of the sys-
tem with volume Ld at temperature T and chemical po-
tential μ(T ). The constancy of total electron number N

imposed via the third relation in (6) guarantees gauge in-
variance, in contrast to BCS theory based as it is on an
electron-nonconserving variational trial wavefunction. Evi-
dently, N includes both paired and unpaired CP electrons.
The following relies on a so-called pseudo-Fermi energy
Ef ≡ 1

4 [E+(0)+E−(0)] implying E±(0) = 2Ef ± δε with
δε, usefully identified as the Debye energy �ωD in dealing
with the well-known BCS two-parameter model interaction.
The Ef merely serves as a convenient energy scale; it is not
to be confused with the usual Fermi energy EF = 1

2mv2
F ≡

kBTF where vF and TF are respectively the Fermi velocity
and Fermi temperature. If n is the total number density of
charge-carrier electrons of effective mass m, the Fermi en-
ergy EF = (�2/2m)(3π2n)2/3 in 3D, while Ef is similarly
related to another density nf , which serves to scale the ordi-
nary electron number density n. The two quantities Ef and
EF , and consequently also n and nf , coincide only when
perfect 2e/2h-CP symmetry holds as in the BCS theory in-
stance.

Some algebra then leads to the three coupled integral
transcendental Eqs. (7)–(9) in [7]. These expressions can be
rewritten [15] as two “gap-like equations” plus the single
“number equation”

2nB(T ) − 2mB(T ) + nf (T ) = n (7)

which guarantees charge conservation and thus gauge invari-
ance. Here,

nf (T ) ≡
∞∫

0

dεN(ε)

[
1 − ε − μ

E(ε)
tanh

1

2
βE(ε)

]
(8)

is the number density of unpaired electrons, n ≡ N/Ld that
of all electrons while nB(T ) and mB(T ) are, respectively,
the number densities of 2e and 2hCPs in all bosonic states
(both K = 0 as well as K > 0). The “complete” number
equation (7) can be displayed more explicitly as

2n0(T ) + 2nB+(T ) − 2m0(T ) − 2mB+(T ) + nf (T )

= n ≡ N/Ld. (9)

Here, nB(T ) ≡ n0(T ) + nB+(T ) with

nB+(T ) ≡
∞∫

0+
dεM(ε)

[
expβ

{
E+(0) + ε − 2μ

} − 1
]−1

and similarly for mB(T ). Clearly, nB+(T ) and mB+(T )

are precisely the number of “preformed” K > 0 2eCPs and
2hCPs, respectively, entirely neglected in BCS theory. These
CPs are noncondensed in contrast with the K = 0 CPs,
which are BE condensed. The original crossover picture for
unknowns Δ(T ) and μ(T ) is now supplemented by the cen-
tral relation that unifies BCS and BEC

Δ(T ) = f
√

n0(T ) = f
√

m0(T ).

All three functions Δ(T ), n0(T ) and m0(T ) turn out to
be familiar “half-bell-shaped” forms. Namely, they are zero
above a certain critical temperature Tc, and rise monotoni-
cally upon cooling (lowering T ) to maximum values Δ(0),
n0(0) and m0(0) at T = 0. One clearly has the normalized
relation

Δ(T )/Δ(0) = √
n0(T )/n0(0) = √

m0(T )/m0(0) (10)

so that being BF-dynamics (i.e., in f ) independent it ap-
plies to either superconductors or ultracold fermionic-atom
superfluids.

This Δ(T ) turns out to be [15] precisely the BCS energy
gap, Eq. (3.27) in [5],

1 = λ

∫
�ωD

0
dξ

1√
ξ2 + Δ2(T )

tanh
1

2
β

√
ξ2 + Δ2(T ) (11)

if the boson-fermion coupling f is made to correspond to√
2V �ωD within the GBEC formalism. Here, ξ ≡ ε − μ,

and λ ≡ N(EF )V = f 2N(EF )/2δε while δε = �ωD and
provided N(ε) can be taken outside the integral sign in
(11). Equation (11) follows from the GBEC formalism pro-
vided one picks Ef = μ. This choice cannot be justified,
to our knowledge, without assuming within the GBEC that
nB+(T ) = mB+(T ) as well as n0(T ) = m0(T ), i.e., by
explicitly recognizing the existence of 2hCPs along with
2eCPs and taking them in equal or half-and-half proportions.

4 Condensation Energy

The T = 0 condensation energy per unit volume according
to the GBEC theory is

Es − En

Ld
= Ωs(T = 0) − Ωn(T = 0)

Ld
(12)

since for any T the Helmholtz free energy F ≡ E − T S =
Ω + μN , with S the entropy, and μ is the same for either
superconducting s or normal n phases with internal energies
Es and En, respectively. Some algebra then allows one to
show ([15], Sect. 6) that the GBEC formalism condensation
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energy is identical for any coupling to that of BCS theory,
Eq. (2.42) of [5], namely

Es − En

Ld
= N(0)(�ωD)2[1 −

√
1 + (Δ/�ωD)2

]

−−→
λ→0

− 1

2
N(0)Δ2

[
1 − 1

4

(
Δ

�ωD

)2

+ O

(
Δ

�ωD

)4]

(13)

whenever there is perfect 2e- and 2h-CP symmetry. The en-
ergy Es , associated with the expectation value of the BCS
trial wavefunction gives a rigorous upper bound to the exact
ground-state energy of the BCS Hamiltonian. This equiva-
lence indicates that, as in the GBEC formalism, there are no
pair-pair interactions in the BCS theory either; this is evident
from Hamiltonians (2) and (3) as well as the well-known
BCS Hamiltonian.

5 Results

Numerical elimination of μ(T ,n) has shown that, in addi-
tion to a normal phase defined by n0(T ,n) = m0(T ,n) = 0
at high T , three gauge-invariant condensed phases appear at
lower temperatures: two pure phases of 2eCP- and 2hCP-
BE-condensed states and one mixed phase with arbitrary
proportions of both kinds of BE-condensed CPs. Figure 1
shows the phase boundaries for several sets of BCS inter-
action parameters, including the set λ = 1/2 and �ωD =
10−3EF used extensively in [7, 8]. Clearly, the pure 2eCP-
GBEC phase rises linearly abruptly from zero in sharp con-
trast to the well-known exponential rise of BCS theory; inset
of Fig. 1.

Finally, the GBEC results would seem to suggest, at least
for n/nf ≥ 1, a possible explanation, to be explored in the
near future, for the intriguing experimental fact emphasized
by Hirsch ([16], § 6) that regardless of whether charge carri-
ers above Tc are holes or electrons, they are always electrons
below Tc.

6 Conclusions

The GBEC formalism introduced gives four gauge-invariant
phases, three condensed along with the normal one, and pre-
dicts the observed linear and abrupt rise of Tc with charge-
carrier density (e.g., doping, as in cuprates) in contrast with
the exponentially smooth rise of BCS theory. The hopefully
practical outcome of the BCS-BEC unification ensuing from
that formalism is enhancement in Tc by up to four orders-
of-magnitude in 3D. These enhancements fall within empir-
ical ranges for 2D and 3D “exotic” SCs [17, 18], whereas
BCS Tc values remain much lower. The latter are within
the empirical ranges for conventional, elemental SCs using

Fig. 1 Phase boundaries of pure GBEC of 2hCPs (thin curve) and of
2eCPs (thick full curve) for several values of BCS model-interaction
coupling λ that creates the CPs. Note linear abrupt rise of Tc in di-
mensionless charge-carrier densities n/nf with nf as defined in text,
contrasted with the exponential rise in n/nf of BCS theory, Inset. Dots
represent BCS Tc values calculated with BCS weak-coupling expres-
sion Tc = 1.134�ωD exp(−1/λ)

standard interaction-parameter values. Lastly, room temper-
ature superconductivity is possible [19] for a material with
a Fermi temperature TF ≤ 103K , with the same electron-
phonon model-interaction parameters used in BCS theory
for conventional SCs.
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