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Abstract Reexamining BCS theory leads one to formu-
late a generalized BEC formalism (GBEC) that is essen-
tially a boson—fermion (BF) model with not two but three
constituents, two bosonic being two-electron Cooper pairs
(2eCPs) plus two-hole CPs (2hCPs), along with unpaired
electrons. This ternary BF model contains three new in-
gredients: (i) CPs as real bosons in contrast to BCS pairs,
which are at best so-called “hard-core bosons,” (ii) 2hCPs
explicitly accounted for on an equal footing with 2eCPs,
and (iii) four BF vertex interactions (analogous to electron-
phonon vertices) describing the formation and dissociation
of both 2eCPs and 2hCPs. The two pure gauge-invariant
GBEC phases (of a total of four including the trivial nor-
mal phase) that result exhibit substantially higher 7;s than
BCS theory. In addition, in contrast to the well-known BCS
exponential rise of T, from zero, the GBEC scheme exhibits
the linear rise as function of doping typically observed in
high-T,. superconductors.

Keywords Bosonic Cooper pairs - Bose—Einstein
condensation - Superconductivity

M. Grether
Facultad de Ciencias, Universidad Nacional Auténoma
de México, 04510 México, D.F., Mexico

M. de Llano (X))

Instituto de Investigaciones en Materiales, Universidad Nacional
Auténoma de México, Apdo. Postal 70-360, N.E., 04510,
México, D.F., Mexico

e-mail: dellano@unam.mx

V.V. Tolmachev
Baumann State Technical University, 107005,
2-ja Baumanscaja St., 5, Moscow, Russia

1 Introduction

Boson-fermion (BF) models of superconductivity were ap-
parently introduced by Ranninger and Robaszkiewicz as
early as 1985 [1]. Soon, a BF field theory with a Bose—
Einstein condensation (BEC) by Friedberg and T.D. Lee ap-
peared [2]. Both of these efforts, however, were binary BF
models as they neglected the possibility of two-hole Cooper-
pair (CP) bosons. Inclusion of 2hCPs leads to a general-
ized BEC (GBEC) formalism [3] describing a ternary BF
model leading to gauge-invariant condensed phases. This
formalism relies on 2¢/2hCP energies E(K) phenomeno-
logically, where K is the CP center-of-mass momentum
(CMM) wavenumber. A (generalized) BEC (or macroscopic
occupation of a given state that appears below a certain
fixed absolute temperature 7 = T;) was found [3] numeri-
cally a posteriori from the GBEC formalism. The latter boils
down to three coupled transcendental equations for the con-
densate densities ng(7T) of 2eCPs and my(T) of 2hCPs, as
well as the electron chemical potential p(T), all three as
functions of 7. As usual, elimination of u(7) permits ob-
taining the two condensate densities of equilibrium thermo-
dynamic states associated with two pure and a mixed phase,
with BCS theory corresponding to a half-and-half mixture.

2 Distinction Between Cooper and BCS Pairs

Whether the pairwise interfermion interaction is between
charge carriers or between neutral atoms, a CP state of en-
ergy E4(K) will clearly be characterized only by a defi-
nite center-of-mass momentum wavevector K = kj + kj but
not definite relative momentum wavevector k = %(kl —kj).
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This is because, e.g., for two-electron CPs E (K) itself is
extracted from the Cooper eigenvalue equation

VY [ m 4 BRK? fAm —2EF — E4(K)] ' =1 (1)

k
which involves a sum over k with the prime over the sum-
mation sign signifying exclusion of states below the Fermi
surface as they are already occupied. Hence, an indefinitely
large number of CPs depending only on K implies that they
satisfy Bose statistics. Although deceptively simple, this is
an elementary but crucial point in all that follows, for a sur-
vey see [4].

Clearly, as a “Cooper pair” depends only K and it con-
trasts sharply with a “BCS pair” defined [5] as a dimer
with fixed K and k (or equivalently fixed k; and kj),
even though only the case K = 0 is considered in [5].
The BCS-pair annihilation and creation operators for any
K > 0 can be defined quite generally as bk = ax, ak, ¢
and bltK = ali. Taliz ! where a;ils and ay, are fermion op-
erators, and as before k = %(kl — k) and K = kg + ks
are the relative and CMM wavevectors, respectively, asso-
ciated with two fermions with wavevectors k; = K/2 +
k, ko = K/2 — k. One finds [6] that [bkk, by ] = (1 —
nK/2-k| — NK/2+kt)d and [y, bLK] = [bkk, b1 =0
where nK 2+ks = a; /24ks 0K/ 2tks are fermion number op-
erators. Clearly, these are not the usual Bose commutation
relations. Because two BCS pairs cannot exactly overlap in
real space without violating the Pauli principle, they are of-
ten referred to as “hard-core bosons,” albeit with hard-core
radii of 0T sufficing to obey this principle.

3 Generalized BEC Formalism (GBEC)

The GBEC formalism is described in detail in [7, 8]; here
we summarize its main equations. It applies in d dimensions
and is defined by a Hamiltonian of the form H = Hy + Hjy,.
Here,

Hy = Z ekla;‘l’sl aky.s, + Z E+(K)b§bK
Kki,s1 K

- Z E_(K)cy ek )
K

where K is the previously-defined CMM wavevector of
the pair, while ek, = hzkl2 /2m are the single-electron,
and E4(K) the 2e-/2h-CP phenomenological, energies.
Here, al—:. s (ak, s, ) are creation (annihilation) operators for
fermions, and similarly bIJE (bk) and c;E (ck) for 2e- and
2h-CP bosons, respectively. These b and ¢ operators depend
only on K and so are distinct from the BCS-pair operators
depending on both K and the relative k = %(kl —k3). They
are stated in [5] Eqgs. (2.9) to (2.13) for the particular case
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of K =0 and stressed there not to satisfy the ordinary Bose
commutation relations. In contrast, by inspection, CPs do
obey Bose—Finstein statistics, which is all that is required to
ensure a BEC (or macroscopic occupation of a given state
that appears below a certain fixed T = T.). This was found
[7, 8] numerically a posteriori in the GBEC formalism that
starts from (2) as a zeroth-order picture consisting of an
ideal ternary BF gas.

The interaction Hamiltonian Hjy in the expression H =
Ho + Hip; describes the formation and disintegration of CPs,
respectively, from and into unpaired electrons and unpaired
holes. It is further simplified by dropping all K # 0 terms.
In [9, 10], the nonzero-CMM CPs were explicitly consid-
ered via two-time Green functions [11-13] and this leads to
a pseudogap opening up at temperatures higher than 7, but
below a so-called “depairing” or pseudogap critical temper-
ature T* > T,.

The simplified GBEC Hjy consists of four distinct BF in-
teraction vertices each with two-fermion/one-boson creation
and/or annihilation operators. These vertices depict how un-
paired electrons (subindex +) [or holes (subindex —)] are
involved in the formation and disintegration of the 2e- (and
2h-) K =0 CPs in the d-dimensional system of size L,
specifically

Hin = L7123 £ {a waty  bo+a x yawrby )
k

+ L7472 Z f_(k){aliTaJ_rk&c;)" +a_k,jax 1co}.
k

3

The interaction vertex form factors fi(k) in (3) are es-
sentially the Fourier transforms of the 2e- and 2hCP in-
trinsic wavefunctions, respectively, in the relative coor-
dinate of the two fermions. The grand (sometimes also
called the Landau) thermodynamic potential 2 associ-
ated with the full Hamiltonian H = Hy + Hjy given by
(2) and (3) is then constructed as $2(T, LY, v, No, Mo) =
—kpT In[Trexp{—B(H — ,uN)}] where “Tr” stands for
“trace” and B = 1/kpT. It is related to the system pres-
sure P, internal energy E and entropy S via 2 = —PL¢ =
F—uN=E—TS — uN, where F is the Helmholtz free
energy. Following the well-known Bogoliubov prescription
[14], one sets by, by equal to «/No and c¢f, co equal to
/My in (3), where No(T) is the T-dependent number of
zero-CMM 2eCPs and My (T) likewise for 2hCPs. This al-
lows exact diagonalization for any coupling, through a Bo-
goliubov transformation of the a™, a fermion operators. One
introduces N (¢) and M (¢) as respectively the electronic and
bosonic density of states. Finally, an electron dispersion en-
ergy E(e) emerges as

E(e) =/ (e — w)? + A%(e) “

= J(e — w2 +nof2(e) +mo f2(©) 5)
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since A(€) = /no f+(€) + /mo f-(€) and f1(€) f1(€) =0
where f(¢) and f4(€) can be constructed as in [7], while
no(T) = No(T)/L4 and mo(T) = My(T)/L¢ are the 2eCP
and 2hCP number densities, respectively, of BE-condensed
CP (i.e., with K = 0) bosons.

Minimizing F with respect to Ny and My, while simul-
taneously fixing the total number N of electrons by intro-
ducing the electron chemical potential p in the usual way,
requires

oF 0 oF 02
INg aMy o
This ensures an equilibrium thermodynamic state of the sys-
tem with volume L¢ at temperature T and chemical po-
tential (7). The constancy of total electron number N
imposed via the third relation in (6) guarantees gauge in-
variance, in contrast to BCS theory based as it is on an
electron-nonconserving variational trial wavefunction. Evi-
dently, N includes both paired and unpaired CP electrons.
The following relies on a so-called pseudo-Fermi energy
Er= %[E+(O) + E_(0)] implying E4+ (0) =2E ¢ & 5¢ with
8¢, usefully identified as the Debye energy hwp in dealing
with the well-known BCS two-parameter model interaction.
The E s merely serves as a convenient energy scale; it is not
to be confused with the usual Fermi energy Ef = %mv% =
kpTr where vr and TF are respectively the Fermi velocity
and Fermi temperature. If n is the total number density of
charge-carrier electrons of effective mass m, the Fermi en-
ergy Er = (h?/2m)(37*n)*/? in 3D, while E is similarly
related to another density n ¢, which serves to scale the ordi-
nary electron number density n. The two quantities £y and
EF, and consequently also n and 7y, coincide only when
perfect 2e/2h-CP symmetry holds as in the BCS theory in-
stance.

Some algebra then leads to the three coupled integral
transcendental Egs. (7)—(9) in [7]. These expressions can be
rewritten [15] as two “gap-like equations” plus the single
“number equation”

2ng(T) —2mp(T) +ns(T)=n 7

0 and N. (6)

which guarantees charge conservation and thus gauge invari-
ance. Here,

8]

ne(T) E/dEN(G)[l —
0

€— 1
E(©) tanh EﬂE(e):| ®)

is the number density of unpaired electrons, n = N/L¢ that
of all electrons while np(T) and mp(T) are, respectively,
the number densities of 2e and 2hCPs in all bosonic states
(both K =0 as well as K > 0). The “complete” number
equation (7) can be displayed more explicitly as

2no(T) +2ng (T) — 2mo(T) — 2mp4(T) +nyp(T)
=n=N/L". )

Here, np(T) =no(T) + np(T) with

o0

npt(T) = /deM(e)[expﬂ{E+(O) te—2u)—1]"
0+

and similarly for mp(T). Clearly, np4(T) and mp4+(T)
are precisely the number of “preformed” K > 0 2eCPs and
2hCPs, respectively, entirely neglected in BCS theory. These
CPs are noncondensed in contrast with the K = 0 CPs,
which are BE condensed. The original crossover picture for
unknowns A(T') and u(7') is now supplemented by the cen-
tral relation that unifies BCS and BEC

A(T) = f/no(T) = f/mo(T).

All three functions A(T), no(T) and mo(T) turn out to
be familiar “half-bell-shaped” forms. Namely, they are zero
above a certain critical temperature 7., and rise monotoni-
cally upon cooling (lowering 7T') to maximum values A(0),
no(0) and my(0) at T = 0. One clearly has the normalized
relation

A(T)/A0) = /no(T)/no(0) = /mo(T)/mo(0) (10)

so that being BF-dynamics (i.e., in f) independent it ap-
plies to either superconductors or ultracold fermionic-atom
superfluids.

This A(T) turns out to be [15] precisely the BCS energy
gap, Eq. (3.27) in [5],

hop 1 1
df ————tanh _B\/£2 + AX(T) (11
S\/man SPVE () an

if the boson-fermion coupling f is made to correspond to
2V hwp within the GBEC formalism. Here, £ = € — u,
and A = N(Ep)V = f2N(EF)/28¢ while ¢ = hwp and
provided N(e) can be taken outside the integral sign in
(11). Equation (11) follows from the GBEC formalism pro-
vided one picks Ey = . This choice cannot be justified,
to our knowledge, without assuming within the GBEC that
np4(T) = mp4(T) as well as no(T) = mo(T), ie., by
explicitly recognizing the existence of 2hCPs along with
2eCPs and taking them in equal or half-and-half proportions.

I=A
0

4 Condensation Energy

The T = 0 condensation energy per unit volume according
to the GBEC theory is

Es— Ey 2,(T =0) - 2,(T =0)

L4 Ld

since for any T the Helmholtz free energy F = E — TS =
£2 + uN, with S the entropy, and u is the same for either
superconducting s or normal n phases with internal energies
E; and E,, respectively. Some algebra then allows one to
show ([15], Sect. 6) that the GBEC formalism condensation

12)
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energy is identical for any coupling to that of BCS theory,
Eq. (2.42) of [5], namely

E,—E,
— = N(0)(hwp)*[1 — /1 + (A/hwp)? ]

SN _1N0A21_1i2+0i4
A—0 2 © 4(710)[)) (th>
(13)

whenever there is perfect 2e- and 2h-CP symmetry. The en-
ergy E;, associated with the expectation value of the BCS
trial wavefunction gives a rigorous upper bound to the exact
ground-state energy of the BCS Hamiltonian. This equiva-
lence indicates that, as in the GBEC formalism, there are no
pair-pair interactions in the BCS theory either; this is evident
from Hamiltonians (2) and (3) as well as the well-known
BCS Hamiltonian.

5 Results

Numerical elimination of w (7, n) has shown that, in addi-
tion to a normal phase defined by no(T,n) =mo(T,n) =0
at high T, three gauge-invariant condensed phases appear at
lower temperatures: two pure phases of 2eCP- and 2hCP-
BE-condensed states and one mixed phase with arbitrary
proportions of both kinds of BE-condensed CPs. Figure 1
shows the phase boundaries for several sets of BCS inter-
action parameters, including the set A = 1/2 and hwp =
1073 EF used extensively in [7, 8]. Clearly, the pure 2¢CP-
GBEC phase rises linearly abruptly from zero in sharp con-
trast to the well-known exponential rise of BCS theory; inset
of Fig. 1.

Finally, the GBEC results would seem to suggest, at least
for n/ny > 1, a possible explanation, to be explored in the
near future, for the intriguing experimental fact emphasized
by Hirsch ([16], § 6) that regardless of whether charge carri-
ers above T, are holes or electrons, they are always electrons
below T,.

6 Conclusions

The GBEC formalism introduced gives four gauge-invariant
phases, three condensed along with the normal one, and pre-
dicts the observed linear and abrupt rise of T, with charge-
carrier density (e.g., doping, as in cuprates) in contrast with
the exponentially smooth rise of BCS theory. The hopefully
practical outcome of the BCS-BEC unification ensuing from
that formalism is enhancement in T, by up to four orders-
of-magnitude in 3D. These enhancements fall within empir-
ical ranges for 2D and 3D “exotic” SCs [17, 18], whereas
BCS T, values remain much lower. The latter are within
the empirical ranges for conventional, elemental SCs using
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Fig. 1 Phase boundaries of pure GBEC of 2hCPs (thin curve) and of
2eCPs (thick full curve) for several values of BCS model-interaction
coupling A that creates the CPs. Note linear abrupt rise of 7, in di-
mensionless charge-carrier densities n/ny with ny as defined in text,
contrasted with the exponential rise in n/n s of BCS theory, Inset. Dots
represent BCS 7, values calculated with BCS weak-coupling expres-
sion T, = 1.134hwp exp(—1/A)

standard interaction-parameter values. Lastly, room temper-
ature superconductivity is possible [19] for a material with
a Fermi temperature T < 103K, with the same electron-
phonon model-interaction parameters used in BCS theory
for conventional SCs.
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