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 Model for the Shear Viscosity of Suspensions 
of Star Polymers and Other Soft Particles  

    Carlos I.   Mendoza   *   
 A model is proposed to describe the concentration dependence of the viscosity of soft parti-
cles. The softness of the particles is incorporated in a very simple way into expressions origi-
nally developed for rigid spheres. This is done by introducing a concentration-dependent 
critical packing, which is the packing at which the suspension 
loses fl uidity. The resultant expression reproduces the experi-
mental results for suspensions of star polymers in good sol-
vents with high accuracy. The model allows the weak increase 
of the viscosity observed in the case of diblock copolymer stars 
to be explained, suggesting that the reason for this peculiar 
behavior is mainly a consequence of the softness of the parti-
cles. In the semi-dilute regime, suspensions of star polymers 
are modeled using the Daoud–Cotton picture to complete the 
description in the whole concentration regime.   
 It is of basic and applied importance to understand the fl ow 
behavior of fl uids containing colloidal particles and mac-
romolecules. The range of industrial applications of such 
complex fl uids ranges from motor oils, coatings, drilling 
fl uids, and food products among others. Many colloidal 
suspensions consist of hard particles whose rheological 
properties have been studied profusely. By contrast, much 
less attention has been paid to suspensions containing soft 
colloids. Representatives of soft colloids include deformable 
particles and particles that in addition may interpenetrate 
to some extent. 

 The interest in studying soft particles stems from the 
desire to explore the behavior of a number of complex 
fl uids composed of nonrigid structures such as poly-
merically stabilized colloidal spheres, [  1  ]  block copolymer 
micelles, [  2  ]  star polymers, [  3  ]  hard spheres with a grafted 
polymer brush, [  4  ]  dendritically branched polymers, [  5  ]  and 
others. In particular, star polymers, which are branched 
macromolecules with a small central core from where 
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 f  arms of identical linear polymer chains, each one con-
taining  N  segments emerge is considered an important 
prototypical model of soft particle because their size and 
architecture can be tailored between that of linear poly-
mers and ultrasoft colloids to nearly hard spheres. [  6  ]  

 Pioneering theoretical work to calculate the viscosity 
of dilute colloidal suspensions was initiated by Einstein 
who obtained an expression to calculate the viscosity as 
function of the concentration of dilute suspensions of 
spherical hard particles. [  7  ]  Various models to calculate 
the viscosity of dilute suspensions of particles other than 
solid spheres have been proposed. Among them, we can 
mention the case of emulsions of spherical droplets, [  8  ]  
homogeneously porous rigid spheres, [  9–11  ]  and uncharged 
spherical soft particles. [  12  ]  

 For non-dilute systems, the suspension rheology is 
determined by the interplay between the direct particle–
particle interactions and the solvent-mediated hydro-
dynamic interactions (HIs). [  13  ]  Their many body nature 
impose a formidable diffi culty for the calculation of 
rheological quantities such as the shear viscosity of 
the system. The fact that many particles are soft com-
plicates even more the calculation. Nonetheless, it is a 
common practice to correlate the concentration depend-
ence of the viscosity of star polymers and other hairy 
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     Figure  1 .     Schematics of a model for a suspension of core–shell 
spheres. A hard core of radius  a  covered by a porous layer of thick-
ness   δ  . The total radius of the particle is  b   =   a   +    δ  .  
particles using phenomenological models designed for 
solid hard spheres. [  14  ,  15  ]  In particular, experimental data 
are frequently compared with the expression proposed by 
Krieger and Dougherty for hard colloidal particles: [  16  ] 

 
η (φ ) = η0

[
1 −

(
φ

φmax

)]−[η]φmax

  
(1)

   

where   η  (  ϕ  ) is the viscosity of the suspension,   η  0   is the vis-
cosity of the background solvent,   ϕ   is the volume fraction 
of the colloidal particles,   φ   max     is the volume fraction at 
maximum packing and [  η  ]  =  5/2 is the intrinsic viscosity 
of hard spheres. Comparing experimental data for star 
polymers with this expression might be accurate for stars 
with a large number of short arms since they behave 
essentially as hard spheres. However, such comparisons 
do not give satisfactory results in the case of stars with 
larger arms because in this case the particles are much 
softer. In addition to this, it has been shown that the 
Krieger and Dougherty expression underestimates the 
viscosity of the suspension at large volume fractions 
even in the case of hard spheres, as explained thoroughly 
in ref. [   17   ]  

 Alternative expressions have been devised to predict 
the viscosity for concentrated suspensions including in a 
more accurate way hydrodynamic and excluded volume 
interactions. Using a differential effective medium tech-
nique based on a progressive addition of particles to the 
sample in which the new particles interact in an effec-
tive way with those added in previous stages, we have 
shown [  17–20  ]  that the static and high-frequency viscosi-
ties of suspensions of colloidal particles can be correlated 
with the expression:

 
η (φ ) = η0

(
1 − φ

1 − kφ

)−[η]

  
(2) 

  

where [  η  ] is the intrinsic viscosity and  k  is a fi tting con-
stant related to the critical volume fraction   ϕ   c  at which 
the suspension loses its fl uidity and is given by:

 
k =

1 − φc

φc   
(3)

    

 Expression (2) incorporates crowding effects and 
hydrodynamic interactions [  17–20  ]  and has been applied 
successfully to suspensions of hard spheres, [  18  ]  emul-
sions of spherical droplets, [  19  ]  suspensions of arbitrarily 
shaped hard particles, [  17  ]  suspensions of rigid core–shell 
permeable particles, [  20  ]  and suspensions with power-law 
matrices [  21  ]  with excellent results. However, as in the case 
of the Krieger and Dougherty model, when applied to soft 
(interpenetrable) particles,  Equation 2  fails to reproduce 
the viscosity–concentration curves satisfactorily. 
Macromol. Chem.  Phys
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 The purpose of the present work consists in propose 
a method to incorporate the softness of the particles in 
the above-mentioned expressions to obtain a model that 
better correlates with experimental results. 

 Since we have in mind to apply the model to suspen-
sions of star-branched polymers, we have to take into 
account the possibility that the particles are permeable 
to some extent to the surrounding solvent. To do so, we 
consider a core–shell particle consisting of a spherical 
hard core of radius  a  coated with a surface soft layer 
of thickness   δ  . The soft layer may represent a grafted 
poly mer brush [  22  ]  or the outer sections of a star polymer, 
as represented in Figure  1 . Thus, the polymer-coated 
particle or star polymer has a non-porous inner radius 
 a  and an a permeable outer shell of radius  b   =   a   +    δ  . The 
volume fraction   ϕ   is defi ned as the volume occupied by 
the particles including the shell, divided by the volume 
of the sample. To model the permeability of the outer 
shell, the polymer segments are regarded as resistance 
centers distributed in the permeable polymer layer, 
exerting frictional forces  −γu    on the liquid fl owing in 
the layer, where  u  is the liquid velocity relative to the 
particle and   γ   is the frictional coeffi cient. The result of 
this model is: [  12  ]  [  η  ]  =  (5/2) L  2 (  λ b ,  a / b )/ L  1 (  λ b ,  a / b ), where 
 λ =

√
γ /η0   . Expressions for  L  1 (  λ b ,  a / b ) and  L  2 (  λ b ,  a / b ) can 

be found in ref.[    20    ] The quotient  L  2 (  λ b ,  a / b )/ L  1 (  λ b ,  a / b ) 
expresses the effect of the polymer layer coating the par-
ticle upon its intrinsic viscosity, it is an increasing func-
tion of   λ b  and  a / b , it takes the minimum value  L  2 (  λ b   →  
0,  a / b   →  0)/ L  1 (  λ b   →  0,  a / b   →  0)  =  0, and we recover the 
hard-sphere result,  L  2 (  λ b ,  a / b )/ L  1 (  λ b ,  a / b )  =  1 when   λ b   →  
 ∞  or  a / b   =  1. In this way, the permeability of the outer 
shell is incorporated in the intrinsic viscosity [  η  ] of the 
core–shell spheres.  
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 If we consider that the outer core of the soft sphere do 
not exert frictional forces on the liquid fl owing through 
it, that is,   λ    =  0, then the expression for [  η  ] simplifi es con-
siderably and one gets:

 
[η] =

5

2

(a
b

)3

  
(4)

    

 The present model  Equation 2  together with  Equation 4  
allows the viscosity to be obtained as a function of the 
concentration of rigid porous core–shell particles and has 
been successfully applied to calculate the static viscosity 
of surfactant-coated particles and the high-frequency vis-
cosity of homogeneous porous particles. [  20  ]  However, it 
does not give satisfactory results for suspensions of star 
polymers. 

 As mentioned above, experimental results of the con-
centration-dependent viscosity of star polymers cannot 
be satisfactorily reproduced with models developed for 
hard colloids like the Krieger–Dougherty model,  Equation 
1  or the one given by  Equation 2  even when the intrinsic 
viscosity for core–shell particles,  Equation 4 , is used. The 
problem with these expressions is that they assume that 
the particles are rigid. It is apparent that the softness 
of the stars must be taken into account to obtain better 
results. Here, we propose to model the softness of the par-
ticles by assuming that the critical volume fraction,  ϕ  c , is 
larger than the random close packing value   ϕ   RCP  since soft 
particles can interpenetrate each other. Specifi cally, we 
propose the following ansatz:

 φc = φ RCP + β αφ   (5)   

where   α   and   β   are unknown constants that should be 
determined from the fi tting to the experimental data. 
Equation 5 can be interpreted as follows, when the 
volume fraction is low, the soft particles are far apart from 
each other and therefore on average they do not overlap 
too much. In this situation, since the amount of overlap 
is small, their rheological behavior can be described in a 
manner similar to impenetrable spheres, that is to say, 
the critical packing can take the value   ϕ   c   ≈    ϕ   RCP . As the 
volume fraction is increased, the particles are forced to 
collide more often increasing the average overlap, which, 
in turn, increases the value of   ϕ   c  since now the particles 
with that average overlapping can be more closely packed 
at maximum packing.  Equation 5  then proposes that this 
increase follows a power law on the volume fraction. 

 To test the correctness of this proposal we compare the 
predictions of our model given by  Equation 2  including 
the possibility that the outer sections of the star are sol-
vent permeable, using the intrinsic viscosity (4). Finally 
and most importantly, we incorporate the softness of the 
particles substituting  Equation 5  into  Equation 3 . This is 
done in Figure  2  where we compare the predictions of our 
www.MaterialsViews.com
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model with the experimental results of Roovers, [  15  ]  for the 
relative viscosity of polybutadiene star polymers in the 
good solvent toluene. Typically, the viscosity versus con-
centration curves for star polymers are plotted in terms 
of the polymer concentration  c / c   ∗  , where  c   ∗   is the overlap 
concentration defi ned by  c∗ = [(

NA/M
)
(4π/3)R3V

]−1   , 
where  N  A  is Avogadro’s number,  M  is the molecular 
weight, and  R  V  is the viscosimetric equivalent hard-sphere 
radius of the polymer coil. On the other hand, models for 
the viscosity of colloidal suspensions like  Equation 2  are 
written in terms of the particle volume fraction   ϕ  . In the 
dilute regime, these two quantities are related by: 

 φ = c /c∗
  (6)   

which allows to plot our model in terms of the polymer 
concentration. In Figure  2 , we perform such plot. Panel 
(a) shows the experimental results for stars with  f   =  
128 arms. Notice that the viscosity–concentration curve 
is not very different from the hard-sphere result at low 
concentrations. However at large concentrations, a slight 
departure from the hard-sphere behavior is observed. 
Our model reproduces very well this departure with the 
fi tting parameters shown in Table  1 . If the number of 
arms is decreased, one expects a smaller steric repulsion 
between the arms of different stars allowing a larger 
overlap and therefore a larger departure from the hard-
sphere behavior. This is shown in   2 b where results for 
a star with 64 arms are shown. The softness of the star 
is larger than in the case of the star with 128 arms and 
the departure from the hard-sphere behavior is larger. 
Our model predicts correctly the experimental data and 
the increased softness of this case is refl ected in a larger 
value of the parameter  β , as shown in Table  1 . Panel 
(c) shows the results for a star with 32 arms. The low 
number of arms of this case allows a much larger overlap 
allowing that concentrations above  c   ∗   can be reached. 
Experimental data show clearly a different behavior 
below and above  c   ∗  . The region below  c   ∗   can still be 
described with our model with an even larger value of   β   
than in the previous cases. However, above  c   ∗  , the overlap 
is so large that the conformation of the star polymers 
should be described differently. Here, we use the Daoud 
and Cotton picture [  23  ]  to describe the star conformation in 
this semi-dilute regime.  

 In the Daoud and Cotton model, [  23  ]  a single star polymer 
is regarded as a spherical region of a semi-dilute polymer 
solution with a local, position-dependent screening length 
  ξ  ( r ), where  r  is the distance from the center. This is repre-
sented pictorially by associating with each arm a string 
of blobs of increasing size   ξ  ( r ) as shown in Figure  3 . The 
blob size varies as   ξ  ( r )  �   rf   − 1/2  and the corresponding local 
poly mer volume fraction as  c  s ( r )  ≈   f  2/3 ( b / r ) 4/3 . The size of 
the star can be obtained from monomer conservation [  24  ,  25  ]  
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     Figure  2 .     Relative viscosity   η  (  ϕ  )/  η   0  as a function of the particle volume fraction   ϕ   for star polymers with (a) 128, (b) 64, and (c) 32 arms and 
(d) diblock copolymer micelle with 64 arms in the good solvent toluene. While in panels (a) and (b) only the dilute regime appears, in panels 
(c) and (d) a second regime, the semi-dilute regime, is apparent and modeled using the Daoud–Cotton picture as explained in the text. The 
experimental data are from ref. [  15  ]   
to obtain  R   �    β   ξ   p  Nf  1/5 , where   ξ   p  is the Kuhn length. Above 
the overlapping concentration  c∗ = fNξ3

p/R3  , the outer 
sections of the arms overlap and build a semi-dilute solu-
tion, often called the sea of blobs, where the inner parts 
of the actual stars are embedded and where the polymer 
concentration of the sea of blobs levels off (see Figure  3 ). 
The stars embedded in the sea of blobs occupy a volume 
fraction   ϕ   and the sea of blobs the remaining fraction 
1  −    ϕ  . Above the overlapping concentration  c   ∗  , the values 
of the polymer concentration in the sea of blobs  c  p , of 
the fraction occupied by the stars   ϕ  , and of the radius 
   Table  1.     Fitting parameters of the model for the systems of 
Figure  2 . 

System 128 arms 64 arms 32 arms Diblock star 64 
arms

 a / b 0.988 0.989 0.993 0.984

  α  1.90 1.60 1.74 1.50

  β  0.244 0.580 0.966 0.662

 η
0
sb   

– – 9.28 17.4

  γ  – – 2.67 2.88

Macromol. Chem.  Phys. 
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of the embedded stars  R  sd  can be calculated from mass 
conservation: [  25  ] 

 
φ = k1

(
c∗

c

)5/ 4

  
(7) 

  

 
cp � c

  (8)   

and

 
Rsd = Rk2

(
c∗

c

)3/ 4

  
(9) 

   

 The constant  k  1  can be obtained from continuity of the 
volume fraction at   ϕ    =    ϕ   RCP   =  0.637 from  Equations 6  and 
 7  to get  k  1   =  0.3625, while the constant  k  2  is obtained by 
continuity from  Equations 6  and  9  since  R  sd   =   R  at the same 
point, to get  k  2   =  0.7130. Notice that an increase of the 
polymer concentration  c  leads to an increase of the frac-
tion of space occupied by the sea of blobs and a shrinkage 
of the inner star dimensions. Additionally, the stars are 
embedded in a solvent with viscosity   η   sb  formed by the 
sea of blobs and from  Equations 4  and  9  the intrinsic vis-
cosity of the embedded stars is:
www.MaterialsViews.com
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     Figure  4 .       ϕ   c  versus   ϕ   as given by  Equation 5 . The values of the 
parameters   α   and   β   used in each curve are given in Table  1 . Each 
curve is labeled with the letter corresponding to the panel in 
Figure  2  where the parameters were obtained. Only the curve 
labeled  a  satisfi es the condition   ϕ    =    ϕ   c , at   ϕ    ≈  0.795, where the 
viscosity diverges.  

     Figure  3 .     Daoud and Cotton model for a semi-dilute suspension 
of star polymers.  
 
[η] =

5

2

[
a

b
k−1
2

( c

c∗

)3/ 4
]3

  
(10)

    

 The sea of blobs exerts a strong opposition to fl ow 
because movement proceeds through a disentanglement 
of the stars from their neighbors [  26  ]  and since they consist 
of a semi-dilute polymer suspension we suggest to model 
the viscosity of the sea of blobs using the scaling relation:

 
ηsb = η0

sb

( c

c∗

)γ

  
(11) 

  

where  η0
sb    and   γ   are additional fi tting constants that allow 

to model the large viscosity of the sea of blobs.  
 Finally, substituting  Equations 7  and  10  and replacing 

the viscosity of the solvent   η   0  in  Equation 2  with the vis-
cosity of the sea of blobs   η   sb , we obtain the viscosity for  c  
above  c   ∗  . 

 Using this approach, we can reproduce the viscosity–
concentration curve of the star with  f   =  32 above  c   ∗   as 
shown in Figure  2 c. Notice that in this regime, the volume 
fraction occupied by the stars decreases with concentra-
tion and this effect alone would produce a decrease of the 
viscosity with concentration. However, this decrease is 
offset by the increase of the viscosity of the sea of blobs 
with concentration. The parameters   α   and   β   used in this 
region are the ones obtained in the dilute regime and  η0

sb
   

and   γ   are also shown in Table  1 . Finally, in panel (d), we 
show the case of a diblock copolymer star with 64 arms, 
www.MaterialsViews.com
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an inner core composed of polybutadiene arms with 
 N  inner   =  20 000 and an outer shell of polystyrene arms 
with  N  outer   =  10 000. The viscosity data were collected in 
toluene, which is a good solvent for both blocks. Again, 
two different regions are apparent and additionally a 
shoulder appears at a concentration near  c   ∗  . Surprisingly, 
our model reproduces correctly this shoulder. Therefore, 
our model suggests that the origin of this characteristic 
is an intrinsic feature of the softness of the particles. The 
semi-dilute region is again well described by the Daoud–
Cotton picture. The reason why the shoulder is visible 
in the case of the copolymer and not in the case of the 
star polymer is because in the last case the semi-dilute 
regime appears before the shoulder can be observed. 
This is shown in Figure  2 c, where the theoretical curve 
corresponding to the dilute regime is plotted to values 
 c / c   ∗    >  1. If it were not by the appearance of the semi-dilute 
regime, the shoulder would be visible. Notice that in all 
the cases considered the thickness of the porous layer is 
very small as compared with the core size (see the values 
of the parameter  a / b  in Table  1 ). In other words, for any 
practical purpose, the star polymers behave as nonporous 
particles and the value [  η  ]  =  5/2 can be used. 

 At this point, we would like to emphasize that the 
 ansatz ,  Equation 5  does not preclude the existence of 
a critical packing where the viscosity diverges. This is 
shown in Figure  4 , where we plot   ϕ  c   versus   ϕ  . The solid 
lines correspond to   ϕ    c   as given by  Equation 5  with the 
parameters   α   and   β   used to fi t the data of Figure  2  and 
given in Table  1 . Each curve is labeled with the letter of the 
panel of Figure  2  where the parameters were extracted. 
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The divergence of the viscosity occurs when   ϕ    =    ϕ   c . It is 
clear that only in the case of the star with  f   =  128 arms 
(curve labeled a) this condition is satisfi ed and the vis-
cosity diverges at a value   ϕ    ≈  0.795. The other cases do not 
satisfy the condition   ϕ    =    ϕ   c  since   ϕ   always lies behind   ϕ    c   
and thus no divergence in the viscosity is expected. It is in 
these cases where the shoulder appears and it represents 
the transition onset from a regime where   ϕ   c  is dominated 
by   ϕ   RCP  (when   ϕ   is small) to a regime where   ϕ   c   ≈    β  ϕ   α    (for 
larger values of   ϕ  ). Finally, let us mention that a some-
what related way to treat the softness of the particles, 
has been proposed in the context of the glass transition of 
dense fl uids of compressible spheres in ref. [   27   ]   

 Summarizing, in this work, we have presented a simple 
model for the calculation of the concentration depend-
ence of the viscosity for suspensions of soft spherical par-
ticles consisting of a hard core of radius  a  covered with 
a porous shell of thickness   δ    =   b   −   a . The model contains 
three main ingredients, the fi rst one consists in using 
an accurate model for the viscosity originally developed 
for rigid particles ( Equation 2 ). Secondly, we use a simple 
expression for the intrinsic viscosity of permeable core–
shell particles ( Equation 4 ) to allow the possibility that the 
outer region of the particle is solvent permeable. Thirdly 
and most importantly, we incorporated in a very simple 
way the effects of the softness of the particles through 
 Equation 5 . Using this model, we were able to reproduce 
the experimental results for the viscosity of star-branched 
polymers and explained the appearance of a shoulder 
seen in the viscosity–concentration curves of the diblock 
star near the overlap concentration. We conclude that this 
peculiar behavior is an intrinsic feature of the softness of 
the particles and there is no need to invoke alternative 
mechanisms as a shrinking of the polybutadiene block [  15  ]  
when the total polymer concentration increases. Addi-
tionally, in the semi-dilute regime  c / c   ∗    >  1, the suspension 
is modeled using the Daoud–Cotton picture, which com-
pletes the description of the viscosity in the whole con-
centration regime. We have tested our model comparing 
with experimental results fi nding an excellent agree-
ment in spite of the numerous simplifi cations used in the 
obtention of our model. 
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