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In this paper, we report on the influence of a square (triangular) trench on the supercon-
ducting properties of a perforated mesoscopic sample. Effects associated to the pinning
force of the hole versus the pinning by the trench and interplay between the shape of
the outer boundary and the shape of the inner defects on the vortex configuration are
studied for a thin disk. Using the Ginzburg-Landau theory, we calculate the magnetiza-
tion, vorticity, free energy, magnetic induction, supercurrent and superconducting order
parameter as a function of the applied perpendicular magnetic field. We show that only
in a restricted range of the magnetic field the vortex configuration obeys the geometry
of the trench. Nevertheless, we clearly demonstrate that in our sample new phenomena
are possible due to competing interactions of the geometry of the sample and the added
geometry of the nanoengineered trench.

Keywords: Triangular, square trench; superconducting; mesoscopics.

PACS Number(s): 74.20.De, 74.25.Bt, 74.25.Uv, 74.25.Wx

1. Introduction

Interaction between vortices and pinning centers have attracted the attention of
experimental and theoretical groups due to technological applications of super-
conducting materials, i.e. collective locking of vortices to the pinning sites causes
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enhanced critical thermodynamic parameters of the sample, intermittent motion
of magnetic flux carrying vortices inside the regularly spaced weak conducting re-
gions has been observed in the magneto-transport properties of the superconduct-
ing strip,»"? magnetic flux interacting with arrays of pinning sites placed on vertices
of hyperbolic tessellations and are found capable of trapping vortices for a broad
range of applied magnetic fluxes.® It is now well established that samples with
arrays of holes, pillars, dots, anti-dots, etc. give rise to different kinds of vortex
behavior,* ™ in this respect superconducting samples with arrays of magnetics dots
on top have been studied'?1° founding enhancing of the critical fields, critical cur-
rent and critical temperature. In previous work, we studied the superconducting
matter in circular geometries. We found that the vortex configurations are strongly
influenced by the geometry, boundary conditions, surface roughness and defects on
the sample.?? 26 Other authors had studied the effect of surface roughness, arrays of
pillars and anti-pillars, magnetic dots on superconducting films and found that the
size of the sample determined the vortex configurations, the critical fields?”2® and
local density of states.?? 3! In this work, by solving the time dependent Ginzburg—
Landau equations, we calculate the magnetization, free energy, vorticity, supercur-
rent, magnetic induction and electronic superconducting density for a thin disk with
a central hole, studied frequently before for enhanced critical parameters compared
to the nonperforated sample, but now containing one triangular or square trench
(or barrier), and that as a function of the external magnetic field.

2. Theoretical Formalism

Let us consider a thin superconducting disk with a hole and surrounding square
(triangular) trench (or barrier, as will be explained later), immersed in an insulating
medium in the presence of a perpendicular uniform magnetic field Hy. The general

form of the system of time dependent Ginzburg-Landau equations is:3? 34
0 )
% =V + AP+ (P - 1), )
0A -
s Re[t)(—iV — A)y] — K2V x V x A.. (2)

In Egs. (1) and (2) dimensionless units were introduced as follows: [¢| is the
order parameter in units of [)oo(T")| = [\/a(T)/5], lengths in units of the coher-
ence length £(T), time in units of t) = 7h/8KpT,, A in units of H.o(T)&(T'), where
H.o(T) is the second critical field, temperature in units of the critical temperature
T., supercurrent J = Re[)(—iV — A)%] in units of Jy = hc?/8meg; Gibbs free en-
ergy G in units of Go = H%V/8x, A(T) is the penetration depth.?3:36 Equation (1)

for the variable thickness of the sample can be rewritten as:3”

0
8_2/&):7%(iV+A0)~T(iV+Ao)¢+¢*¢3v
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Fig. 1. Layout of the studied sample. Superconducting disk with a central hole and a square
(left) or triangular (right) trench.

where 7(r,6) is just a function which describes the thickness of the sample. The
magnetic field is considered nearly uniform inside the superconductor Hy = V x
Ag.2 7(r,0) = 1 everywhere, except at triangular and square trench position in
the disk which are simulated by using 7 = 0.9 (7 > 1 simulates a barrier of larger
thickness than the rest of the sample). We simulate a mesoscopic superconducting
disk of radius R = 8¢(T") with a little central hole of radius r; = 0.4&(T) (see Fig. 1).
We will assume that the normal current density vanishes at the sample edges and
at central hole, that is, (—iV — A)¢ - n = 0, simulating superconductor/vacuum
interfaces. n is an unit vector normal to the interfaces and directed outward the
superconducting domain.

3. Results and Discussion

Figure 2 shows the (a) magnetization —4wM (b) vorticity N, (c¢) Gibbs free energy
G and (d) supercurrent J calculated as a function of the applied magnetic field. We
simulated one internal triangular and square trench taking 7 = 0.9. It can be clearly
noticed that this curves have a series of discontinuities signaling that one or more
vortices have entered or exited the sample. It is seen from these figures that both,
the first vortex penetration field and upper critical fields, are independent of the
geometry of the trench in the disk, due to a large value of the 7 function (close to
1 hence weak pinning force). We can appreciate vortex transition from N — N +4
at Hy = 1.096,1.11,1.18,1.23,1.28 for the square trench case. For the triangular
trench case, there are irregular vortex transitions N =3 -5 —-6 -8 — 9 — 11
at low magnetic fields and a regular vortex transition starting from N — N + 2
(from N = 12 to N = 32) at higher fields. Also there are vortex transitions from
N —- N -1 (from N = 32 to N = 1) in part of the downward branch of the
magnetic field for both cases, excepting transitions of 10 — 7 at Hy = 0.35 and
3 — 1 at Hy = 0.12 for a triangular trench case and 11 -9 -7 —-5—3 = 1
at Hy = 0.33,0.25,0.15,0.12 for a square trench case. The lower and upper critical
fields Hy; and Hgs are Hy; = 1.08, Hps = 1.8 and are independent of the type of
trench. With these trenches we can have a better control of the number of vortices
at zero magnetic field than in a flat disk. In a previous work, a similar study was
performed using a disk with a like ring circular trench, our results are consistent
with this work.24
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Fig. 2. (Color online) (a) Magnetization —4wM (b) vorticity N, (c) Gibbs free energy G and

(d) supercurrent J as a function of the magnetic field for the disk with a square and triangular

trench.

Fig. 3. (Color online) We plot (a) the supercurrent J, (b) the square modulus of the order
parameter [4|2, (c) the magnetic induction h, (d) the phase of the order parameter A¢ with the
position of the nucleus of the vortices (black star) at Hy = 0.35 in part of the downward branch
of the magnetic field for a (up) square trench with N = 9 and triangular trench with N = 10.
Red and blue regions represent values of the modulus of the order parameter changes from 0 to 1
respectively and 0 and 27 for the phase.
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Fig. 4. Time evolution of the spatial pattern of the order parameter for a disk with a triangular
trench. NS and S indicates nonstationary and stationary states, respectively.

In Fig. 3, we plot the square modulus of the order parameter, supercurrent,
magnetic induction, position of the nucleus of the vortices and the order parameter
phase A¢ for a superconducting disk at Hy = 0.35 in part of the downward branch
of the magnetic field, containing N = 10 (triangular trench) and N = 9 (square
trench) vortices. In this magnetic field, there are vortices forming a square and
triangular configuration with one single vortex at the center of the disk.

Figure 4 shows the time evolution of the spatial pattern of the order parameter
for a disk with a triangular trench in a Meissner state (Hy = 0). Following the
panels from the left to the right and from the top to the bottom, in this order,
we can see that initially three vortex nucleate the sample by every corner of the
trench, increasing the magnetic field, one vortex goes to the disk center while two
vortices nucleate by the south region of the disk, then they move until symmetric
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Fig. 5. Time evolution of the spatial pattern of the order parameter for a disk with a triangular
barrier. NS and S indicates nonstationary and stationary states, respectively.

north region through transients states. Increasing the magnetic field, two more
vortices entries at the sample forming a square configuration with N = 4 vortices
at Hp; = 1.08, the next vortices penetrate the sample at Hyp; = 1.10 forming a
stationary state with N = 5. It is interesting to note that when we use 7 = 1.1 in
our simulations (triangular barrier), the first three vortex nucleates the sample by
the apices of the trench, then, one vortex goes to the disk center while two vortices
remain in the sample in the north region of the disk and move until south region,
as an inverse geometrical process for the vortex configurations (i.e. we observe
N = 5 vortices forming a regular pentagon for the triangular trench case and a
invert pentagon for the barrier triangle case, this process occurs both increasing
and decreasing the magnetic field for all configuration at lower fields), due to anti-
pinning force of the triangular barrier (Fig. 5). At higher magnetic fields, the vortex
configurations for both triangular trenches are equal and occur in the same magnetic
field. For the square case (Fig. 6), the four first vortices sit on the trench position
forming a stable square vortex configuration with N =4 at Hy; = 1.08. At higher
fields Hy > 1.14, when more vortices come in, the geometry of the sample will
prevail. As the applied field increases, all vortices collapse at the center forming a
giant vortex. An additional vortex only increases the vorticity of the giant vortex
(last panel of Fig. 4).
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Fig. 6. Time evolution of the spatial pattern of the order parameter for a disk with a square
trench. NS and S indicates nonstationary and stationary states, respectively.

4. Conclusion

We studied the effect of the geometry of a square and triangular trench on the
thermodynamical properties of a mesoscopic superconducting disk with a central
hole solving the time dependent Ginzburg-Landau equations. Our results have
shown that the vortex state depend strongly of the geometry of the trench at low
magnetic fields. We also showed that the interplay between the shape of the outer
boundary and the shape of the inner trench allows a regular vortex transition from
N to N +4 for all range of magnetic field for the square trench and N — N + 2 just
at higher fields for a triangular trench. We observe an inverse geometrical process
(m rotation in the perpendicular axis) for the vortex configuration considering a
disk with a barrier triangle for equal magnetic fields. We believe that these findings
are clearly relevant for the groups working or exploring the flux confinement and
manipulation in nanoengineered superconductors, but also for groups studying e.g.
classical, (e.g. colloidal) confined systems where similar competing interactions take
place.
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