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An extended boson–fermion (BF) model is introduced describing the evolution of
attractively interacting single electrons into a binary mixture of unpaired electrons
plus incoherent bosonic Cooper pairs as absolute temperature T is lowered. The
new model is employed to determine how the system, upon cooling, exhibits
critical temperatures for: a) incoherent boson formation below T ∗ as well as b)
for creating a coherent boson fluid below Tc. Critical temperatures T ∗ and Tc
are related with the dynamical parameters of the attractively interacting fermion
system. It is shown that the introduction of a uniform Coulomb interaction in an
anisotropic BF binary gas mixture model allows finding not only a self-consistent
description of a pseudogap and a dome-shaped Tc-vs-doping behaviour, but also
to predict, even in a phonon-mediated many-electron dynamics, of an energy–
momentum dispersion that is either gapped or not depending on direction. This
manifests itself in high-Tc superconductors as curves in momentum space along
which the superconducting gap vanishes, hence giving rise to the so-called “Fermi
arcs” observed in angle-resolved-photoemission spectroscopy experiments.

Keywords: boson–fermion models; boson formation; Bose–Einstein
condensation; pseudogap; fermi arcs

1. Introduction

A possible origin for the opening of a so-called pseudogap [1] in the electronic spectrum
of high-temperature superconductors (HTSCs) is the formation [2] of so-called preformed
but incoherent Cooper pairs (CPs), well above the critical superconducting temperature
Tc below which coherence sets in. A growing number of experimental data for pairing
[3–6] above Tc in cuprate superconductors reinforce interest in pseudogap scenarios via
the notion of preformed CPs. Unprecedented experimental findings (see, e.g. in Ref. [3])
reveal a dispersion behaving in a portion of the Brillouin zone as if the sample was a
normal metal and in the remaining portion exhibiting a Bogoliubov-type gapped spectrum.
This bolsters the belief that at temperatures below some T ∗ in the ground state of HTSCs
single fermions coexist with the preformed CPs. Consequently, various boson–fermion
(BF) models became natural candidates to describe novel features of HTSCs. Such BF
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Philosophical Magazine 2897

models are based on the notion that in the presence of an effective interfermion attractive
interaction, the gas of single fermionic charge carriers in an ionic lattice can evolve into
both pairable but unpaired (or itinerant) fermions plus individual bosonic CPs. A simple
enough Hamiltonian, say Ho, describing a binary gas mixture of fermions interacting with
bosons was introduced phenomenologically in Ref. [7]. That Hamiltonian was later derived
from a model [8] based on the presence of two types of electrons–wide- and narrow-
band–interacting with each other. Shortly after the discovery of HTSCs, the pairing model
proposed in Ref. [7] was applied by many authors (e.g. Refs. [9–23]) to manifest its relevance
to HTSCs. The chronological order of the development and perspectives of a mixture model
of local pairs coexisting with the quasifree electrons is sketched in Ref. [22]. In particular,
these models were generalized (see, e.g. Refs. [19,23,24]) to contain additional terms, HeB

describing anisotropic CP formation as well as Coulomb repulsion HU between fermions.
This extension of the usual BF models is embodied in the Hamiltonian

H ≡ Ho + HeB + HU . (1)

The first term Ho includes the sum of Hamiltonians of free (pairable but unpaired)
fermions He and of composite-boson CPs HB , specifically

Ho ≡ He + HB =
∑
k,σ

ξka+
kσ akσ +

∑
k

Ekb+
k bk (2)

where a+
kσ and akσ are the usual fermion creation and annihilation operators for individual

electrons of momenta k and spin σ = ↑ or ↓ while b+
k and bk are postulated [25,26] (for a

brief survey see Ref. [27]) to be bosonic operators associated with CPs of definite total, or
centre-of-mass momentum (CMM), wavevector K ≡ k1 + k2 as the sum of wavevectors
of two electrons.

The second term HeB in (1) is

HeB ≡ L−d/2
∑
q,k

(
fqb+

k aq+K/2↑a−q+K/2↓ + h.c.
)

(3)

and describes boson formation/disintegration processes where fq ≡ f φq is a phenomeno-
logical BF coupling constant distributed around its average value f , nonzero only in the
electron-energy range EF − �ωD ≤ ε ≤ EF + �ωD about the Fermi energy EF of the
ideal Fermi gas. Here, �ωD is the ionic crystal Debye energy while fq contains so-called
anisotropy factors φq = φ−q introduced to mimic the anisotropy of the BF interaction
responsible for CP formation. We note that the Hamiltonian (1) can be derived from the
strongly interacting Hubbard model on a square lattice as a low-energy limit of cluster states
[28].

Many studies exist supporting either d- or s- (or a s + d mixture) wave scenarios.
Experiments probing the surface of cuprates yield d-wave, but experiments probing the
bulk suggest a substantial s-symmetry (see, e.g. in Ref. [29]). In Ref. [30] support is
argued for extended s-wave rather than d-wave superconductivity in cuprates. In contrast, a
clever experiment [31] was crucial in showing that the superconducting order parameter is
predominantly of d-symmetry with an admixture of s-symmetry of only about 3% inYBCO.
Nonetheless, we note that to describe d-wave superconductivity one needs no explicit
d-wave symmetry in the underlying pairing interaction as already a moderate anisotropy
of the pairing interaction included simultaneously with the uniform Coulomb repulsion
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2898 T.A. Mamedov and M. de Llano

may result in a d-wave-like dispersion of single fermions excited in the superconducting
state. This becomes possible owing to the specific temperature dependence of the pair-
breaking ability of repulsive Coulomb interaction and, as shown in Ref. [24], occurs quite
independently of the symmetry of the pairing interaction which may be d- and moderate
s-wave-like. Thus, we let φq in (3) to be of both types either s- or d .

In a ternary gas formalism that does not neglect two-hole CPs alongside the two-
electron CPs accounted for in the binary-gas Equations (1)–(3), one can make [25–27]
perfect contact with both BCS theory and also with the T.D. Lee BF model [10,12,13] if
the BF vertex coupling constant f is assumed to be

√
2�ωDV where V ≥ 0 is the usual

BCS model effective attractive interaction between electrons. In fact, both BCS and T.D.
Lee theories can be shown to be special cases of the so-called generalized BEC formalism
described in Refs. [25–27].

The last term HU in (1) is taken as

HU ≡ U L−d
∑

k,k′,q
a+

k+q/2↑a+
−k+q/2↓a−k′+q/2↓ak′+q/2↑ (4)

and models the repulsive Coulomb interaction between fermions making up CPs. Here this
is assumed to be a uniform repulsive field of strength U ≥ 0.

In (1) fermion ξk = εk − μ and boson Ek energies are measured from μ and 2μ,
respectively, where the electronic chemical potential μ is fixed from the constancy of the
total electron number whose operator is

N ≡
∑
k,σ

a+
kσ akσ + 2

∑
k

b+
k bk (5)

and includes both the number of unpaired fermions and, of course, twice the number of
bosons. It commutes with (1) and is therefore an invariant of motion for the BF mixture
state. In cuprates (1) implies that by introducing holes of concentration x onto the CuO2
planes N electrons from neighbouring atoms with these hole centres become mobile. Holes
are seen by mobile electrons as hopping centres. These electrons which at T = 0 would
fill states up to the Fermi energy EF interact with each other via repulsive Coulomb forces
plus some pairing attractive interaction due, e.g. to phonons. This results in bosonic CPs.
Equation (5) widely introduced (see, e.g. Ref. [13]) in binary BF gas mixture models,
contrasts sharply with BCS theory. Indeed, CPs (with CMM K = 0) in BCS theory appear
at temperatures above Tc only as superconducting fluctuations [32]. And, in fact, nonzero
CMM CPs are entirely neglected in BCS theory. However, in a BF binary mixture of
bosons and fermions that mutually convert into one another, the temperature- and coupling-
dependent total number density nB of bosonic CPs may be different from zero on either
side of Tc; this suggests the emergence above Tc of incoherent and below Tc of coherent,
equilibrium pair densities.

The main feature of the present model which differs from ordinary binary gas BF models
Refs. [9,10,12,13] is that one starts from CPs shifted in energy at zero K from EF by a
positive gap. That is, the boson spectrum EK in (1) is taken as

EK = 2(EF − μ) + 2� + εK (6)

where εK is a nonnegative CP excitation energy that vanishes for K = 0. Thus, in (6)
EK is assumed to be higher than the total energy 2EF of two individual electrons before
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Philosophical Magazine 2899

confining themselves into bosonic CPs by a positive gap 2�. Separation of the initial
attractively interacting fermion system into bosons plus (unpaired) fermions with spectra
shifted with respect to each other by the coupling-dependent, positive-energy gap of 2� is
a new ingredient in the present BF model (1) introduced in Refs. [24–26,33–36].

Cuprates have numerous distinct phases observed at different absolute temperatures T
and compositions x of holes doped into the CuO2 planes. Any comprehensive theory of
high-Tc-materials should ideally deduce, within a single unified conception, the dominant
interactions underlying the origin of each region of the phase diagram (see e.g. Figure 1
in Ref. [2]). As seems to be suggested by that diagram, the normal state of cuprates has
very little in common with the ordinary Fermi liquid on which the present paper is based.
Therefore, a more natural question is “how can such a simplified model described by (1)
address such complicated systems as HTSCs?”

To answer this we note that many researchers seem to agree that HTSCs in their
superconducting state obey the standard BCS quasiparticle description. This is the most
striking dilemma of high Tc superconductors boldly emphasized by Anderson. Specifically,
starting from the Fermi liquid concept he has constructed [37] a transformation which
projects the wavefunction of an ordinary Fermi liquid into the wavefunction of HTSC
cuprates. Anderson highlights the notion that high-Tc phenomena might be examples of
“hidden Fermi liquids” (HFLs) a phrase introduced by him to denote nonFermi liquid states
that are related to ordinary Fermi liquids. Quasiparticles of the Fermi liquid emerge in both
the superconducting and pseudogap states, the two regions of the complete phase diagram
[2] addressed in this paper. In Ref. [2] moreover, special attention is given to so-called
“preformed CPs” as well as “Fermi arcs” also addressed in the present paper.

In Section 2, an explicit expression for the boson energies and for total boson number
density is derived in a BF mixture with a spatially uniform Coulomb interaction of strength
U ≥ 0 between the fermions bound up in CPs. Those expressions are then applied in
Sections 3 and 4 to determine the characteristic temperatures T ∗ and Tc wherein the role
of a uniform Coulomb interaction in forming the BF mixture properties is discussed. In
particular, how boson energies given by (6) are feasible is treated in Section 3. In Section
5 concluding remarks are given.

2. Renormalized boson energies and boson number densities

Renormalized boson energies 	Q, as function of the CP CMM wavevector Q, in the BF
mixture may be found, e.g. by use of an infinite chain of equations for two-time retarded
Green functions (GF)

〈〈
A(t) | B(t ′)

〉〉
as defined in Equation (2.1b) of Ref. [38] for dynamical

operators A(t) and B(t ′) at times t and t ′ in the Heisenberg representation. The energy
�ω-dependent Fourier transform 〈〈A | B〉〉ω of

〈〈
A(t) | B(t ′)

〉〉
then satisfies the infinite

chain of equations (see, e.g. Equation (A2) in Ref. [34])

�ω 〈〈A | B〉〉ω = 〈
[A, B]η

〉
H + 〈〈

[A,H]− | B
〉〉

ω
(7)

where the single-angular brackets 〈X〉H of an operator X are T -dependent thermal averages
over the Hamiltonian H, while the square brackets [A, B]η ≡ AB + ηB A denote the
commutator (η = −1) or anticommutator (η = +1) of operators A and B.
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2900 T.A. Mamedov and M. de Llano

Choosing first A ≡ bQ and B ≡ b+
Q in (7) with η = −1 we write (7) as

ω
〈〈

bQ | b+
Q

〉〉
ω

= 1 +
〈〈[

bQ,H]
− | b+

Q

〉〉
ω

(8)

since
[
bQ, b+

Q

]
− = 1. As is customary in BF models, we assume that fermionic a and

bosonic b operators commute with each other. Equation (8) is the first of an infinite chain of
equations containing higher order Green functions. An expression for second-order Green
function on the rhs ofAppendix, Equation (1), can be established if in (7) one takes

[
bQ,H]

−
for A and B is still b+

Q, namely

�ω
〈〈[

bQ,H]
− | b+

Q

〉〉
ω

=
〈[[

bQ,H]
− , b+

Q

]
−

〉
H

+
〈〈[[

bQ,H]
− ,H

]
− | b+

Q

〉〉
ω

. (9)

As to the higher order Green functions on the rhs of (9) for
〈〈[

bQ,H]
− | b+

Q

〉〉
ω

they may
be cast as linear combinations of lower order ones [39]. Lengthy manipulations, the details
of which are given below in Appendix, lead to the final expression for the single-boson
Green function

〈〈
bQ | b+

Q

〉〉
ω

=

⎧⎪⎪⎨
⎪⎪⎩ω − EQ −

f 2

Ld

∑
q

∣∣φq
∣∣2 F(q,Q)

ω−ζ(q,Q)

1 − U
Ld

∑
q

φq
F(q,Q)

ω−ζ(q,Q)

⎫⎪⎪⎬
⎪⎪⎭

−1

(10)

where

F(q, Q) ≡ 1 − nq+Q/2↑ − n−q+Q/2↓ and ζ(q, Q) ≡ ξ−q+Q/2 + ξq+Q/2. (11)

The former expression is the generalization of Equation (B10) in Ref. [34] for an
anisotropic BF mixture with a uniform Coulomb field. Ignoring the Coulomb repulsion
between fermions and assuming the system to be isotropic, then (10) takes the same form
as Equation (B10) in Ref. [34]. Poles ω = 	Q of the (10) which are roots of the equation

	Q = EQ +
⎛
⎝1 − U

Ld

∑
q

φq
F(q, Q)

	Q − ζ(q, Q)

⎞
⎠

−1 ⎛
⎝ f 2

Ld

∑
q

∣∣φq
∣∣2 F(q, Q)

	Q − ζ(q, Q)

⎞
⎠ (12)

define the single-boson spectrum in the BF mixture phase. Here EQ are energies of the initial

noninteracting bosons (6). Energies 	Q determine the average number nBQ ≡
〈
b+

QbQ

〉
of

bosonic CPs for a given CMM wavevector Q; they are found (see, e.g. Equation (12) of
Ref. [34]) to be

nBQ = 1

exp(	Q/kB T ) − 1
. (13)

These numbers nBQ yield for the total boson number density

nB = L−d
∑

Q

nBQ. (14)

Note, however, that nBQ and nB are determined not through the energies EQ of “bare
bosons” appearing in (2) but rather on 	Q given by (12). Indeed, due to interaction with
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fermions, bare bosons become renormalized or “dressed” so that their energies EQ are
replaced with 	Q. Hence, the nBQs and thus nB turn out to be the λ- and T -dependent.
Because nBQ are nonnegative, one must have 	Q � 0 in (13). In analogy to that of a pure
boson gas [40], singularities in the behaviour of nB signal possible anomalies in the system.
Because εQ � 0 in (6) the singularity in (14) occurs at complete softening, i.e. 	Q → 0,
of a boson energy with Q = 0. One such singularity in nB occurs when EF = μ, i.e. at
the boundary where the transition occurs from the normal state with no bosonic CPs to one
with such pairs. This happens at a specific temperature, say, T ∗. Another singularity appears
when μ becomes less than EF . On cooling below T ∗ the value of μ dips below the EF .
The deviation of μ from EF is accompanied by further bosonization, i.e. with modification
of nB as given in Ref. [34] by a factor EF − μ as

nB(λ, T ) = N (EF ) [EF − μ(λ, T )] (15)

where N (EF ) is the electronic density of states (DOS) (per spin and per unit volume) at
the Fermi surface. For sufficiently large EF − μ the total number density of bosons nB

reaches a critical value sufficient for BEC to occur. This takes place when the condition
	0(μ, T ) = 0 is satisfied, i.e. when (13) and therefore (14) undergoes another singularity
at some μ different from EF .

Therefore, precise interpretation of (12) defines the peculiarities of the BF system. In
particular, the condition 	0 = 0 satisfied at different fillings of single-particle states relates,
with the parameters of the attractively interacting fermion system, the temperature T ∗
(below which incoherent CP bosons form) as well as the BEC Tc (below which a coherent
bosonic fluid emerges). We employ this idea to determine T ∗and Tc. Here we note that in an
isotropic model described by (1) without an explicit Coulombic term, an implicit equation
to determine 	Q was found in Equation (13) of Ref. [34].

3. Onset temperature T∗ for boson formation without coherence

Within the description (1) it was possible to calculate the characteristic T ∗ > Tc only
by assuming two-fermion states to be bosons with total bare energies ≥ 2EF (see Ref.
[34]). This is sharply distinct from the BCS model based not on actual bosonic CPs but
on Cooper correlations with energy ≤ 2EF . The question “does a system of attractively-
interacting fermions possess two-fermion-excitations” has been discussed extensively. It
was found (see, e.g. Refs. [35,41–45]) that switching on an attraction between fermions
actually produces two-fermionic resonances but separated from EF by a positive gap. By
virtue of the presence of a gap, however, these resonances hardly become actual states of
two correlated fermions, since: (i) the gapped excitations are accompanied by a rise in the
system total energy associated with the energy of two coupled fermions and (ii) having an
energy higher than the sum of energies of two free electrons, these two-particle states must
be unstable rather than stable bound states.

The intriguing question of how, counterintuitively, a state consisting of single-particles
and two-fermion excitations above the Fermi sea turns out to be energetically lower com-
pared with the single-component Fermi system of attractively interacting fermions was
discussed in Ref. [35]. In particular, assuming single- and bound two-particle objects, not
as independent but as continually mutually converting into each other, was decisive for this
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2902 T.A. Mamedov and M. de Llano

energy lowering to occur. To see this, combine (6) and (12) to rewrite (12) as

	Q(T ) ≡ 	̊Q(T ) + εQ (16)

where

	̊Q(T ) ≡ 2(EF + �) + δ	(Q, T ) − 2μ (17)

with

δ	(Q, T ) ≡
⎛
⎝1 − U

Ld

∑
q

φq
F(q, Q)

	Q − ζ(q, Q)

⎞
⎠

−1
f 2

Ld

∑
q

∣∣φq
∣∣2 F(q, Q)

	Q − ζ(q, Q)
. (18)

Since q  Q, where q and Q are fermion and boson wavevectors, respectively, one
may ignore the Q-dependence in (18) appearing through ζ(q, Q) and F(q, Q) as ±q +
Q/2 and put 	̊Q ≡ 	̊ and δ	(Q, T ) ≡ δ	(T ). Equation (18) defines the magnitude of
renormalization of the energy of interactionless bosons ( 6). In accordance with (16) bosonic
excitations 	Q are now separated from the Fermi sea, i.e. from 2μ, not by 2� as in (6) but
by 	̊ which changes with temperature T and coupling λ: it decreases and vanishes upon
cooling (see, e.g. Figure 1 in Ref. [24]) allowing to account for how boson energies given
by (6) may be feasible.

Indeed, when the new gap 	̊ between single- and two-particle spectra disappears, i.e.
when boson energy (16) and the energy of unpaired electrons become equal, then the
evolution of the pure gas of electrons into a binary BF gas becomes possible. We insert
in (17) 	̊(T ∗) = 0 and EF = μ which must be satisfied simultaneously on the verge
of boson formation. This yields an equation to determine the temperature T ∗ at which a
transition occurs from the normal state of single fermions into an incoherent binary BF
mixture. One then has

1

2Ld

∑
q

φq

ξq

(
f 2φ∗

q

2�
− U

)
tanh(ξq/2kB T ∗) = 1 (19)

where � ≡ �ωD/ sinh(1/λ) is the T = 0 BCS energy gap (see discussion in Ref. [34])
with λ ≡ N (0)V where N (0) was previously designated as N (EF ). To obtain (19 ) one
writes ξ−q ≡ ξq by symmetry, i.e. ζ(q, Q) ≡ 2ξq and insert this into (18 ), keeping (11)
in mind, where nqσ (T ∗) = 1

2 [1 − tanh(ξq/2kB T ∗)] are the unpaired-electron occupation
numbers [34].

The condition EF = μ occuring at T ∗ is equivalent to nB = 0 with nB vanishing for all
T � T ∗. Note that (19) is the same as Equations (28) and (29) in Ref. [34] established in an
entirely different manner for the isotropic BF mixture, i.e. when φq ≡ 1 and no Coulombic
U -term. One then evaluates the sum in (19) as an integral over ξ in the usual way. The DOS
N (ξ) is precisely constant in 2D, i.e. energy independent. In 3D N (ξ) ∝ √

ξ but it varies
little over the integration region if �ωD � EF so that N (ξ) � N (0). Thus, in either 2D
or 3D N (ξ) can be taken outside the integral over ξ . Furthermore, the mean value theorem
allows one to replace φq in the lhs of (19) by some constant φ from the region of integration
over q . Values of φq remain near an averaged value φ̄ = 1 of all anisotropy factors over the
Fermi surface. Then, substituting φ̄ for φ in (19) leaves
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Philosophical Magazine 2903

Figure 1. Pseudogap temperature T ∗ in units of TF as function of λ for �D/TF = 0.35 in 2D for
different values of v ≡ N (0)U .

(
λ − v

sinh(1/λ)

) �ωD∫
−�ωD

dxx−1 tanh(x/2kB T ∗) = 2

sinh(1/λ)
(20)

where λ ≡ N (0)V and v ≡ N (0)U are both dimensionless. In the absence of reliable
estimates for N (0)U below we take v as a phenomenological parameter fitting it to get
physically reasonable solutions of (20) and (25).

In Figure 1 the dimensionless depairing temperature T ∗/TF is graphed as a function
of λ for �ωD/EF ≡ �D/TF = 0.35 in 2D for different values of v. The gap 2� in the
interactionless boson spectrum is smaller for smaller λ. Lesser 2� provides satisfaction of
	̊ = 0 (necessary at the T ∗) at higher T s, thus explaining the rapid decrease of T ∗shown
in Figure 1. The peculiarities of T ∗as a function of λ within a BF mixture model with
positive-energy bosons have been discussed in Ref. [34] where the coupling parameter λ

was related with the concentration of charge carriers x to explain the empirical behaviour
of T ∗as x varies. But the new ingredient now is the role of Coulomb repulsion. In a model
without Coulomb repulsion the appearance of bosons below T ∗ was possible for any pairing
interaction. However, switching on a Coulomb repulsion drastically changes this situation.
As seen in Figure 1, T ∗ rapidly approaches zero as v increases (up to approximately v � 1 in
Figure 1). In other words, the evolution of single fermions into a BF mixture now becomes
possible only for a restricted interval of λ wherein T ∗remains nonzero. This in turn explains
the “dome-shaped” structure of Tc as observed in HTSC materials (viz. in Figure 2 of Ref.
[2]). In the limit of very large λ (i.e. for unreasonably large values of 2�) the condition
	̊ = 0 is satisfied only at T = 0. Therefore, pairs might appear only at very low temperatures
if λ is sufficiently large.

It is customary to apply the two extreme coupling limits of weak coupling (large pairs)
and strong coupling (small pairs). In weak coupling the presence of any, however small,
attractive interaction produces an unstable Fermi distribution. This leads to the BCS ground
state of pairwise correlated fermions. And when the pairing interaction is strong enough,
single fermions devolve into tightly bound two-particle composites. This is the central idea
behind the various BF models. However, (6) and ( 17) provide a new weak-coupling scenario
quite different from that of either BCS or strong-coupling BF models. This new scenario
relies on the appearance of two-fermion resonances above the Fermi sea which inevitably
occur in a system of attractively interacting fermions, followed by their disintegrations. The
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2904 T.A. Mamedov and M. de Llano

frequency of their occurrence is rare at high temperatures but increases due to the gap (16)
decrease upon cooling between the least energy of two-fermion resonances and the top of
the band of unpaired electrons. They become, when 	̊(T ∗) = 0, energetically favourable
and thus a mixture state appears of single-fermions and two-fermion formations. Note that
this coupling scenario does not lead to a departure from the Fermi distribution as occurs in
BCS theory. However, due to the decrease in the number of unpaired fermions, the EF of
free fermions moves down to a value μ < EF . The most prominent manifestation of this
coupling scenario is perhaps that found in Figure 1, namely, that T ∗ is much higher than Tc

for small interaction λ.

4. Onset BEC temperature Tc for a coherent fluid

The value of Tc is related implicitly with total number density nB of bosons at Tc. To
consider (14) which is a T - and λ-dependent property characterizing a BF mixture, insert
into (6) a boson dispersion εQ of general form

εQ ≡ Cd Qs (21)

where the exponent s � 0 and the dimensionality d- and interaction-dependent coefficient
Cd is chosen to match units on both sides of (21). For ordinary bosons of mass m in vacuum
s = 2 and Cd = �

2/2m, while for a CP in the Fermi sea εQ is linearly dispersive (i.e. s = 1)
and Cd in (21) equals (λ/2π)�vF in 2D and (λ/4)�vF in 3D (see, literature cited in Ref.
[34]). The sum in (14) is then evaluated as an integral over Q. The volume of a hypersphere
of radius Q in d � 0 dimension is Vd(Q) = πd/2 Qd/�(1 + d/2) [46] where �(z) is the
gamma function and �(1 + z) ≡ z�(z). For d = 2 it is the area π Q2 of a circle of radius
Q and for d = 3 it is the sphere volume 4π Q3/3. Using this for d > 0 the summation in
(14) over the d-dimensional wavevector Q becomes

1

Ld

∑
Q

(· · · ) −→ 1

2d−1πd/2�(d/2)

∫
(· · · )Qd−1d Q.

The integral form of (14) is then

nB(T ) = 1

(2π)d

∫
Q

dQ
exp(	Q/kB T ) − 1

= 1

2d−1πd/2�(d/2)

∞∫
0

Qd−1d Q

A(T ) exp(Cd Qs/kB T ) − 1

(22)
where A(T ) ≡ exp[	̊(T )/kB T ]. In terms of the dimensionless variable x ≡ Cd Qs/kB T

(22) becomes

∞∫
0

xd/s−1dx

A(Cd Qs/kB x) exp x − 1
= 2d−1πd/2s−1�(d/2) (Cd/kB T )d/s nB(T ). (23)

This relates the unknown integral [47] on the lhs to nB(T ). The singularity associated
with the condensation of an infinite number of composite bosons into a state with wavevector
Q occurs in (22) when 	Q → 0. Hence, one approaches momentum-space condensation
temperature as 	̊ = 0 so that A = 1 in (23) for any d . The condition A(Tc) = 1 inserted
into (23) yields the simple but implicit Tc formula for a dispersion (21) and BF mixtures in
any dimension d . Namely
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kB Tc = Cd [2d−1πd/2�(d/2)]s/d

⎛
⎝ ∞∫

0

xd/s−1dx

exp x − 1

⎞
⎠

−s/d

n
s/d

B (Tc).

Finally, since
∞∫
0

xd/s−1[exp x−1]−1dx =�(d/s)ζ(d/s)where�(x)≡
∞∫
0

exp(−t)t x−1dt

and ζ(s) ≡
∞∑

n=1
n−s is the Riemann Zeta function, one arrives at

kB Tc = Cd

(
2d−1πd/2s�(d/2)

�(d/s)ζ(d/s)

)s/d

n
s/d

B (Tc). (24)

This generalizes Tc for all d > 0 and s > 0 the linear (i.e. s = 1) result for dispersive
bosons in d = 2 and 3 given by Equations (33) and (34) of Ref. [34]. Note that (24) gives
Tc = 0 for all 0 < d � s since ζ(1) = ∞. In particular, (24) contains the familiar textbook
result of the impossibility of BEC in 2D which is a strictly true only for quadratically
dispersive (i.e. s = 2) bosons.

It is remarkable that in spite of (24) having been derived for an interacting BF-binary
mixture with Coulombic repulsions between fermions, it is precisely of the same form as
Equation (7) of Ref. [40] valid for a pure boson gas. The reason for this is clear. Let us assume
that there exists some unitary transformation T̂ separating boson and fermion degrees of
freedom in (1). Renormalized energies 	Q(T ) found as (16) to (18) actually approximate
the energies of “pure bosons” as can be established after such a transformation. However,
there is of course a significant difference between BECs in noninteracting bosonic gases
and an interacting BF mixture. Indeed, the necessary condition A(Tc) = 1 for BEC to occur
leads to the important equality connecting the chemical potential μ at the BEC Tc with
parameters of the interacting BF mixture such as interelectronic coupling λ, coulombic U ,
anisotropy factors φ, the numbers nkσ of unpaired fermions at Tc and their dispersion ξk.
Setting Q = 0 in (23) we find that, in the thermodynamic limit Ld → ∞ and N → ∞
such that N/Ld is constant, the number density nB0 of bosons condensed in the state Q = 0
becomes appreciable for BEC to occur on cooling whenever

EF − μ = −�(λ) + [1 + U

2Ld

∑
k

φk

Ek
tanh

(
Ek

2kB Tc

)
]−1 f 2

4Ld

∑
k

|φk|2
Ek

tanh

(
Ek

2kB Tc

)
(25)

is satisfied. In (25) we have used T -dependent occupation numbers nkσ of unpaired electrons
in a state with momentum wavevector k and spin σ , namely

nkσ = 1

2

[
1 − ξk

Ek
tanh

(
Ek

2kB T

)]

where Ek is the unpaired-electron energy. As shown in Ref. [24] at temperatures between
the higher T ∗ and the lower Tc the spectrum of unpaired fermions appears partially gapped
via a generalized gap Egk so that

Ek =
√

ξ2
k + E2

gk (26)

D
ow

nl
oa

de
d 

by
 [

U
N

A
M

 C
iu

da
d 

U
ni

ve
rs

ita
ri

a]
 a

t 1
5:

01
 0

4 
A

pr
il 

20
14
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Egk(λ, T ) ≡
{

f
(
φk − 	0

2�ωD

U
V

)√
nB(λ, T ) for φk − 	0

2�ωD

U
V > 0

0 for φk − 	0
2�ωD

U
V ≤ 0.

(27)

When applied to (25), because 	0(Tc) = 0 at and below Tc, (27) simplifies to

Egk(λ, T ) = f φk
√

nB0(λ, T ) (28)

with nB0 the condensed boson number density [34]. In Refs. [24] (27) was applied to explain
the appearance in angle-resolved-photoemission spectroscopy (ARPES) experiments of
so-called “Fermi arcs” in the spectrum of HTSCs (see, e.g. Refs. [3–6]). Fermi arcs are
certain curves in momentum space along which the HTSC sample behaves as if it were a
normal metal, i.e. is gapless. Equation (27) is found by calculating single-fermion occupation
numbers nk ≡ 〈

a+
k ak

〉
within the model (1) with the new f (3) and U (4) terms.

According to (26), the dispersion of single particles in a BF state exhibits below T ∗ an
energy gap, but present not over the full Fermi surface. Rather, there exist disconnected
segments with temperature dependent extensions along which the gap vanishes. Due to the
decreasing 	0 in (27) the “sizes” of gapless areas diminish on cooling. These areas disappear
at the points of the k-space alongside of which the BF interaction strength fk = f φk prevails
over the pair-breaking ability R ≡ U	0/

√
2�ωDV of the Coulomb repulsions, as discussed

in [24]. If fk becomes larger than R throughout the Fermi surface then gapless areas vanish
entirely.

In Ref. [24] it was crucial to emphasize that Fermi arcs seen in many experiments below
T ∗ appear even for moderate s-wave symmetry of the pairing interaction. We stress here
that, if the pairing interaction is of d-symmetry, i.e. if the parameter fk = f φk vanishes
for some specific directions then the conditions for Fermi arcs to disappear completely and
for BEC to occur are the same, namely 	0 = 0. Specifically, for d-wave symmetry of φk
Fermi arcs persist for all T < T ∗ down to Tc and vanish only at and below the Tc for BEC.
However, for s-wave symmetry of fk, according to (27), the two specific temperatures a)
say, T1 � Tc, at which Fermi arcs disappear and b) the BEC Tc, are in general distinct.And in
the latter case within some temperature interval above the BEC Tc the energy–momentum
relation of single fermions in a BF mixture becomes gapped, i.e. exhibit a Bogoliubov
dispersion over the entire Fermi surface. We believe that the sole presence, or its absence,
immediately above the BEC Tc of a phase with a real gap opening up over the entire Fermi
surface may shed light on the question of the gap symmetry in HTSCs.

As done to obtain (20), if the anisotropy factors φq in the sum over q in (25) are replaced
by their average value φ̄q = 1, and evaluating the sum as an integral over ξ , leaves a closed
expression to determine the shift at the BEC Tc of μ from EF of interactionless fermions,
namely

EF − μ = −�(λ) + λ�ωD

2
I
(

1 + ν

2
I
)−1

(29)

where we defined

I ≡
�ωD∫

−�ωD

dx√
x2 + 2λ�ωD [EF − μ(λ, T )]

tanh

(√
x2 + 2λ�ωD [EF − μ(λ, T )]

2kB Tc

)
.

(30)
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Figure 2. Same as in Figure 1 but for the BEC superconducting Tc/TF . Increasing λ monotonically
increases the magnitude of Tc/TF for v ≡ N (0)U = 0 but maximizes at inordinately large λs.
However, inclusion of a uniform Coulomb repulsive field converts the Tc/TF -vs-λ behaviour from
monotonically increasing to dome shaped. BEC now becomes possible only for a restricted interval
of λ values, and increasing v narrows the interval of λ within which BEC occurs.

In actual calculations, from (15) one first extracts Tc/TF from (24), with TF ≡ EF/kB ,
in terms of EF −μ(λ, T ). Then Tc/TF is inserted into (25) which gives closed expressions
for the BEC Tc as a function of the model microscopic parameters.

In Figure 2 the BEC superconducting Tc/TF in 2D is shown as function of λ and for
different values of v ≡ N (0)U and for �D/TF = 0.35. For v ≡ 0, by increasing λ the
magnitude of Tc/TF increases monotonically and attains a maximum at unusually large
λs. However, inclusion of a uniform Coulomb repulsive field converts the Tc/TF -vs-λ
curve from monotonically increasing to dome shaped. Now BEC becomes possible only
for the restricted interval of λ values. Increasing v narrows the interval of λ within which
BEC occurs. Relating the coupling parameter λ with the concentration of charge carriers
x providing a qualitative description of the experimental phase diagram (e.g. in Ref. [2])
that includes a pseudogap as well as a dome-shaped Tc-vs-doping curve which critically
depends on the repulsive Coulomb interaction between fermions confined into CPs. Thus,
it becomes possible to describe an onset depairing temperature T ∗ as well as a BEC Tc,
both of which occur by bosonization, in terms of the deviation of EF − μ. In fact, nB is
proportional [34] to the difference EF − μ and plays the role of an order parameter in a
BF model description. The position of μ with respect to EF defines the phase in which the
attractively interacting fermions appear: it consists of single fermions for all EF < μ and
when EF = μ this condition defines a pseudogap or depairing critical T ∗ below which
pairs first begin to appear so that below T ∗ one has the relation EF > μ. Specifically, for
all T � T ∗ the attractively interacting fermion gas becomes a binary mixture of interacting
bosons (both with wavenumbers K = 0 and K > 0) and unpaired fermions. Decreasing
T from T ∗ down to Tc leads to the critical μ at which EF − μ, and thus nB , first become
appreciably large for BEC to be ascertained. Sharp differences in behaviour between T ∗ and
Tc as functions of hole concentrations x such as shown in Figures 1 and 2, is perhaps one
reason for ascribing in the literature different origins to pseudogap and superconductivity
phenomena in HTSCs. However, as shown herewith, both T ∗ and Tc may be described
within the same approach based on bosonic correlations excited above the Fermi sea.
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2908 T.A. Mamedov and M. de Llano

5. Conclusions

A scenario is proposed to describe the evolution of attractively interacting single electrons
into a binary BF mixture consisting of unpaired electrons and incoherent bosonic CPs. This
is possible owing to two-electron resonances, i.e. continually converting pairs of interacting
electrons into correlated states of two fermions and vice versa. Such resonances foreseen
in the literature are separated from the top of the single-fermion continuum by a positive
energy gap and thus are short-lived states.

However, because of the contribution from continual formations/disintegrations, the
magnitude of the gap separating resonances from the single-electron spectrum now becomes
temperature- and coupling-dependent and decreases on lowering T . It vanishes at the onset
temperature T ∗ of boson formation, whereby the energies of two-particle and single-particle
excitations coincide. Below this temperature positive energy resonances become an actual
state of paired electrons continually converting into single independent electrons and vice
versa, thus leading to further energy lowering. We have derived an explicit expression
for the renormalized boson energies in a BF mixture with a spatially uniform Coulomb
interaction of strength U ≥ 0 between the electrons within CPs. That expression is then
applied to determine the characteristic temperatures T ∗ and Tc wherein the role of a uniform
Coulomb interaction in forming the BF mixture properties was discussed. Introducing a
uniform Coulomb interaction in an anisotropic BF binary gas mixture model allows one to
predict, even in phonon-mediated electron dynamics, the presence in the energy–momentum
dispersion relation of HTSCs of a line of nodal points along which the generalized gap (27)
vanishes, and hence, gives rise to Fermi arcs as reported from ARPES experiments.

Acknowledgements
We thank D.M. Eagles for a thorough reading of the manuscript and for numerous comments, as well
as E. Mazur for e-correspondence. TAM thanks the Institute of Physics of Azerbaijan for granting
him academic leave at Baskent University in Ankara, Turkey. MdeLl thanks UNAM-DGAPA-PAPIIT
(Mexico) for its support via grant IN102011.

References

[1] T. Timusk and B. Statt, Rep. Prog. Phys. 62 (1999) p.61.
[2] E. Abrahams, Int. J. Mod. Phys. B 24 (2010) p.4150.
[3] A. Kanigel, U. Chatterjee, M. Randeria, M.R. Norman, G. Koren, K. Kadowaki and J.C.

Campuzano, Phys. Rev. Lett. 101 (2008) p.137002.
[4] H.B. Yang, J.D. Rameau, P.D. Johnson, T. Villa, A. Tsvelik and G.D. Gu, Nature 456 (2008) p.77.
[5] M. Randeria, Nat. Phys. 6 (2010) p.561.
[6] I.M. Vishik, W.S. Lee, R.-H. He, M. Hashimoto, Z. Hussain, T.P. Devereaux and Z.-X. Shen,

New J. Phys. 12 (2010) p.105008.
[7] J. Ranninger and S. Robaszkiewicz, Physica B 135 (1985) p.468.
[8] S. Robaszkiewicz, R. Micnas and J. Ranninger, Phys. Rev. B 36 (1987) p.180.
[9] J. Ranninger, R. Micnas and S. Robaszkiewicz, Ann. Phys. Fr. 13 (1988) p.455.

[10] R. Friedberg and T.D. Lee, Phys. Rev. B 40 (1989) p.6745.
[11] R. Micnas, J. Ranninger and S. Robaszkiewicz, Rev. Mod. Phys. 62 (1990) p.113.
[12] R. Friedberg, T.D. Lee and H.-C. Ren, Phys. Lett. A 152 (1991) pp.417 and 423.
[13] R. Friedberg, T.D. Lee and H.-C. Ren, Phys. Rev. B 45 (1992) p.10732 and refs. therein.
[14] J. Ranninger and J.M. Robin, Physica C 253 (1995) p.279.

D
ow

nl
oa

de
d 

by
 [

U
N

A
M

 C
iu

da
d 

U
ni

ve
rs

ita
ri

a]
 a

t 1
5:

01
 0

4 
A

pr
il 

20
14

 



Philosophical Magazine 2909

[15] C.P. Enz, Phys. Rev. B 54 (1996) p.3589.
[16] A.H. Castro Neto, Phys. Rev. B 64 (2001) p.104509.
[17] A. Romano, Phys. Rev. B 64 (2001) p.125101.
[18] R. Micnas and B. Tobiaszewska, J. Phys. Cond. Matt. 14 (2002) p.9631.
[19] T. Domanski, Phys. Rev. B 66 (2002) p.134512.
[20] T. Domanski and J. Ranninger, Phys. Rev. B 76 (2004) p.184503.
[21] R. Micnas, S. Robaszkiewicz and A. Bussmann-Holder, Phys. Rev. B 66 (2002) p.104516 ; R.

Micnas, S. Robaszkiewicz and A. Bussmann-Holder, J. Supercond. 17 (2004) p.27; R. Micnas,
S. Robaszkiewicz and A. Bussmann-Holder, Struct. Bonding 114 (2005) p.13.

[22] J. Krzysczak, T. Domanski, K.I. Wysokinski, R. Micnas and S. Robaszkiewicz, J. Phys. Cond.
Matt. 22 (2010) p.255702.

[23] R. Micnas, Phys. Rev. B76 (2007) p.184507.
[24] T.A. Mamedov and M. de Llano, J. Phys. Soc. Jpn. 80 (2011) p.074718.
[25] V.V. Tolmachev, Phys. Lett. A 266 (2000) p.400.
[26] M. de Llano and V.V. Tolmachev, Physica A 317 (2003) p.546.
[27] M. Grether, M. de Llano and V.V. Tolmachev, Int. J. Quant. Chem. 112 (2012) p.3018.
[28] E. Altman and A. Auerbach, Phys. Rev. B 65 (2002) p.104508.
[29] K.A. Müller, Phil. Mag. Lett. 82 (2002) p.279 ; R. Khasanov, A. Shengelaya, J. Karpinski, A.

Bussmann-Holder, H. Keller and K.A. Müller, J. Supercond. Nov. Magn. 21 (2008) p.81 and
refs. therein.

[30] G.M. Zhao, Phil. Mag. 84 (2004) p.3861.
[31] J.R. Kirtley, C.C. Tsuei, A. Ariando, C.J.M. Verwijs, S. Harkema and H. Hilgenkamp, Nat. Phys.

2 (2006) p.190.
[32] L.G. Aslamazov and A.I. Larkin, Phys. Lett. A 26 (1968) p.238.
[33] T.A. Mamedov, J. Low Temp. Phys 131 (2003) p.217.
[34] T.A. Mamedov and M. de Llano, Phys. Rev. B 75 (2007) p.104506.
[35] T.A. Mamedov and M. de Llano, Int. J. Mod. Phys. B 21 (2007) p.2335.
[36] T.A. Mamedov and M. de Llano, J. Phys. Soc. Jpn. 79 (2010) p.044706.
[37] P.W. Anderson, Phys Rev B. 78 (2008) p.174505; J.K. Jain and P.W. Anderson, Proc. Natl. Acad.

Sci. USA. 106 (2009) p.9131; P.W. Anderson and P.A. Casey, J. Phys.: Condens. Matter 22
(2010) p.164201; P.A. Casey and P.W. Anderson, Phys. Rev. Lett. 106 (2011) p.097002.

[38] D.N. Zubarev, Sov. Phys. Usp. 3 (1960) p.320.
[39] N.N. Bogoliubov, in Statistical Physics and Quantum Field Theory, N.N. Bogoliubov, ed., Nauka,

Moscow, 1972 [in Russian].
[40] M. Casas, A. Rigo, M. de Llano, O. Rojo and M.A. Solis, Phys. Lett. A 245 (1998) p.55.
[41] S.V. Traven, Phys. Rev. Lett. 73 (1994) p.3451; Phys. Rev. B 51 (1995) p.3242.
[42] T. Alm and P. Schuck, Phys. Rev. B 54 (1996) p.2471.
[43] M. Fortes, M.A. Solís, M. de Llano and V.V. Tolmachev, Physica C 364 (2001) p.95.
[44] V.C. Aguilera-Navarro, M. Fortes and M. de Llano, Solid State Commun. 129 (2004) p.577.
[45] M. de Llano and J.F. Annett, Int. J. Mod. Phys. B 21 (2007) p.3657.
[46] R.K. Pathria, Statistical Mechanics, Pergamon, Oxford, 1972, pp.177, 211, 501.
[47] Selected works by N.N. Bogoliubov, v. 2, p. 359, Naukova Dumka, Kiev, 1970 [in Russian].

Appendix
One determines

[
bQ, H]

− on the rhs of (8) by first splitting it as a sum of terms I0 ≡ [
bQ,Ho]−,

IB F ≡ [
bQ, HB F

]
− and IU ≡ [

bQ, HU
]
− ≡ 0 and then finding I0 and IB F separately. Since[

bQ, bk
]
− = 0 while

[
bQ, b+

k

]
− = δQ,K and

[
bQ, b+

k bk

]
− = bkδQ,K one gets, in any dimension

d ,

I0 ≡ EQbQ and IB F ≡ 1

Ld/2

∑
q

fqaq+Q/2↑a−q+Q/2↓.
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Combining I0 and IB F into (8) yields

(ω − EQ)
〈〈

bQ | b+
Q

〉〉
ω

= 1 + 1

Ld/2

∑
q

fq
〈〈

aq+Q/2↑a−q+Q/2↓ | b+
Q

〉〉
ω

. (1)

An expression for higher order Green functions like
〈〈

aq+Q/2↑a−q+Q/2↓ | b+
Q

〉〉
ω

on the rhs of

(1) can be established if in (7) one takes aq+Q/2↑a−q+Q/2↓ for A and B is still b+
Q . Thus

ω
〈〈

aq+Q/2↑a−q+Q/2↓ | b+
Q

〉〉
ω

=
〈〈[

aq+Q/2↑a−q+Q/2↓, H]
− | b+

Q

〉〉
ω

(2)

We first find the commutator
[
aq+Q/2↑a−q+Q/2↓, H]

− = J0 + JB F + JU where

J0 ≡ [
aq+Q/2↑a−q+Q/2↓, H0

]
− (3)

JB F ≡ [
aq+Q/2↑a−q+Q/2↓, HB F

]
− (4)

JU ≡ [
aq+Q/2↑a−q+Q/2↓, HU

]
− . (5)

Straightforward manipulations then give

J0 ≡ (
ξ−q+Q/2 + ξq+Q/2

)
aq+Q/2↑a−q+Q/2↓ (6)

JB F ≡ 1

Ld/2

∑
k

bk

{
f ∗
q−Q/2+K/2aq+Q/2↑a+

q−Q/2+k↑ − f ∗
q+Q/2−K/2a+

−q−Q/2+k↓a−q+Q/2↓
}

(7)

JU ≡ U

Ld

∑
p

(
a+

q−Q/2+p↑aq+Q/2↑ − a−q+Q/2↓a+
−q−Q/2+p↓

)⎛⎝∑
k′

a−k′+p/2↓ak′+p/2↑

⎞
⎠ .

(8)
Let us separate in the summation (7) terms with K = Q from those with K �= Q, namely

JB F ≡ f ∗
q

Ld/2
bQ

(
1 − n̂q+Q/2↑ − n̂−q+Q/2↓

)
(K=Q) coherent term

+ (9)

1

Ld/2

∑
q,K �=Q

bk

(
f ∗
q−Q/2+K/2aq+Q/2↑a+

q−Q/2+K↑ − f ∗
q+Q/2−K/2a+

−q−Q/2+K↓a−q+Q/2↓
)

.

(K �=Q) incoherent terms

In similar manner, a look at JU prompts one to separate in the summation (8) over p terms with
p = Q from those with p �= Q; in the p �= Q contribution one separates terms with k = q−Q/2+p/2
and k = q + Q/2 − p/2. This gives

JU = U

Ld

[
(N̂e − n̂q+Q/2↑ − n̂−q+Q/2↓)aq+Q/2↑a−q+Q/2↓

coherent terms

+
(

1 − n+
q+Q/2↑ − n−q+Q/2↓

)
coherent terms

∑
k

ak+p/2↑a−k+p/2↓

+
∑
p �=Q

(
a+

q−Q/2+p↑aq+Q/2↑ − a−q+Q/2↓a+
−q−Q/2+p↓

)
incoherent terms

′∑
k

a−k+p/2↓ak+p/2↑

⎤
⎦ . (10)
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Here n̂kσ ≡ a+
kσ

akσ is the usual Fermi number operator and the total number operator of unpaired
electrons with both ↑ and ↓ spins is denoted as

∑
kσ

n̂kσ ≡ N̂e; the prime “′” above the summation sign

in (10) means that terms with k = q − Q/2 + p/2 and k = q + Q/2 − p/2 considered separately are
brought outside the summation over k. Further calculations are based on the replacement of number
operators n̂qσ and N̂e in (9) and (10) by their average values nqσ and Ne as well as on the assumption
that contributions from so-called “incoherent” terms in JB F and JU in (2) are negligible compared
with contributions of so-called “coherent” terms, allowing one to neglect them entirely. Indeed, in (9)
we write 〈〈

bk F̂ | b+
Q

〉〉
ω

≡
〈〈

bk

(
F̂ −

〈
F̂
〉)

| b+
Q

〉〉
ω

+
〈
F̂
〉 〈〈

bk | b+
Q

〉〉
ω

(11)

and assume that because of the factor F̂ −
〈
F̂
〉

contributions from the first term in (11) approximately
vanish by the averaging included in the Green function definitions. This approximation enables
writing for coherent term in (9)

〈〈
bk F̂ | b+

Q

〉〉
ω

�
〈
F̂
〉 〈〈

bk | b+
Q

〉〉
ω

with F̂ constructed from fermion

operators. Applied to the “incoherent” terms in JB F , the relation (11) brings in contributions such
as c

〈〈
bk | b+

Q

〉〉
ω

with the prefactor c �
〈
aqa+

k

〉
with q �= k . As regards the higher order Green

functions on the rhs of (2) stemming from the “incoherent” terms in JU (10), they may be cast as linear
combinations of lower order ones [39]. Such a decomposition leads to terms with prefactors such as〈
aqa+

k

〉
and

〈
aqak

〉
where again q �= k as above. Ordinary averages [39]

〈
aqa+

k

〉
with different q and k

must disappear for the systems with translational symmetry. Similarly, for the systems with a number-
conservation law, averages with the different numbers of a and a+, like

〈
aqak

〉
or

〈
a+

q a+
k

〉
, vanish

(see details in Ref. [39]). Incidentally, this is the reason which simplify the topological structure of
Feynman diagrams, Ref. [39]. That is, substituting

〈
aqa+

k

〉
H ≈

〈
aqa+

k

〉
Ho

where Ho is a Hamiltonian
of interactionless particles for which both conservation laws and therefore “selection rules” hold, Ref.
[39] we may ignore with the terms with prefactors

〈
aqa+

k

〉
and

〈
aqak

〉
with different q and k assuming

these to be small with respect to the “coherent” terms containing the prefactors like
〈
a+

k ak

〉
. Ignoring

all incoherent terms and introducing F(q, Q) ≡ 1 − nq+Q/2↑ − n−q+Q/2↓ one is finally left with

JB F = f ∗
q

Ld/2
F(q, Q)bQ (12)

JU = U

(
naq+Q/2↑a−q+Q/2↓ + F(q, Q)

Ld

∑
k

ak+p/2↑a−k+p/2↓
)

(13)

where n ≡ Ne/Ld is the number density of unpaired electrons. Substituting J0 (6), JB F (12) and JU
(13) into (2) yields[

ω − (
ξ−q+Q/2 + ξq+Q/2 + Un

)] 〈〈
aq+Q/2↑a−q+Q/2↓ | b+

Q

〉〉
ω

= F(q, Q)

⎛
⎝ f ∗

q

Ld/2

〈〈
bQ | b+

Q

〉〉
ω

+ U

Ld

〈〈∑
k

ak+Q/2↑a−k+Q/2↓ | b+
Q

〉〉
ω

⎞
⎠ . (14)

In the following the term Un is dropped in (14). It was done by setting μ → μ − Un/2 in (14),
i.e. by referring the permanent upward shifts of a value Un/2 in the single-fermion energy levels
ξ±q+Q/2 ≡ ε±q+Q/2 − μ which appear due to the inclusion of a uniform Coulomb term in (1) to
the chemical potential μ. As a result one gets〈〈

aq+Q/2↑a−q+Q/2↓ | b+
Q

〉〉
ω

(15)

= F(q, Q)

ω − ζ(q, Q)

1

Ld/2

(
f ∗
q

〈〈
bQ | b+

Q

〉〉
ω

+ U

Ld/2

∑
k

〈〈
ak+Q/2↑a−k+Q/2↓ | b+

Q

〉〉
ω

)
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where ζ(q, Q) ≡ ξ−q+Q/2 +ξq+Q/2. Now, (1) allows one to relate the second contribution in double

brackets on the rhs of (15) via the single-boson Green functions
〈〈

bQ | b+
Q

〉〉
ω

. Indeed, anisotropy

factors φq in the BF coupling fq = f φq [exactly = f in (1) if the system is isotropic] vary to
modulate the q-dependence of the interaction strength [24]. However, the values of φq remain within
an interval near φ̄ = 1 which is an averaged value of all φq over the Fermi surface. Substituting
φ̄ = 1 for φq in (1) renders the last term in double brackets in (15) as

1

Ld/2

∑
q

〈〈
aq+Q/2↑a−q+Q/2↓ | b+

Q

〉〉
ω

= 1

f

[
(ω − EQ)

〈〈
bQ | b+

Q

〉〉
ω

− 1
]
. (16)

Consequently, (15) becomes〈〈
aq+Q/2↑a−q+Q/2↓ | b+

Q

〉〉
ω

= f

Ld/2

F(q, Q)

ω − ζ(q, Q)

{
φ∗

q

〈〈
bQ | b+

Q

〉〉
ω

+ U

f 2

[
(ω − EQ)

〈〈
bQ | b+

Q

〉〉
ω

− 1
]}

. (17)

Inserting this in (1) gives, after some manipulations, the final expression for the single-boson
Green function (10) used in Section 2 to find renormalized boson energies 	Q.
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