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We show how a recent generalized Bose–Einstein condensation (GBEC) formalism predicts a sharp rise in
Tc with charge-carrier density as observed in variably-doped cuprates, in contrast with the exponential
rise predicted by BCS theory.
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1. Introduction

Boson–fermion (BF) models of superconductivity were appar-
ently introduced as early as 1985 [1]. Soon, a Bose–Einstein con-
densation (BEC) BF field theory by Friedberg and Lee appeared
[2]. Both these efforts, however, were binary BF models as they ne-
glected the possibility of two-hole Cooper-pair (CP) bosons. Inclu-
sion of 2 h-CPs lead to a generalized BEC (GBEC) formalism [3]
describing a ternary BF model. This contained the 2e-/2 h-CP ener-
gies E±(K) phenomenologically, where K is the CP center-of-mass
momentum (CMM) wavenumber. A BEC (or macroscopic occupa-
tion of a given state that appears below a certain fixed T = Tc)
was found [3] numerically a posteriori in the GBEC theory.
2. GBEC formalism

Two new phenomenological dynamical energy parameters
Ef � 1

4 ½Eþð0Þ þ E�ð0Þ� and de � 1
2 ½Eþð0Þ � E�ð0Þ�P 0 can then be de-

fined, where E±(0) are the (empirically unknown) zero-CMM ener-
gies of the 2e- and 2 h-CPs, respectively.

One can refer to Ef as a ‘‘pseudoFermi’’ energy. It serves as a con-
venient energy scale and is not to be confused with the usual Fermi
energy EF ¼ 1

2 mv2
F � kBTF where TF is the Fermi temperature. If n is

the total number-density of charge-carrier electrons of effective
mass m, the Fermi energy EF = (⁄2/2m)(3p2n)2/3 in 3D, while Ef is
similarly related to another density nf which serves to scale the or-
dinary density n. The two quantities Ef and EF, and consequently
also n and nf, coincide only when perfect 2e/2 h-CP symmetry holds
as in the BCS instance.
With the GBEC Hamiltonian explicitly diagonalized, one can
straightforwardly construct the thermodynamic potential
X � � PLd, with Ld the system ‘‘volume’’ and P its pressure, defined
as XðT; Ld; l; N0; M0Þ ¼ �kBT ln�½Tr expf�bðH � lbNÞg� where
‘‘Tr’’ stands for ‘‘trace’’, and N0 and M0 are the number of zero-
CMM 2e- and 2 h-CPs, respectively. After some algebra an explicit
expression for X follows.
3. Helmholtz free energy

The Helmholtz free energy is then, by definition,

FðT; Ld;l;N0;M0Þ � XðT; Ld;l;N0;M0Þ þ lN:

Minimizing it with respect to N0 and M0, and simultaneously fixing
the total number N of electrons by introducing the electron chemi-
cal potential lvia the usual way, specifies an equilibrium state of the
system at fixed volume Ld and temperature T. The necessary condi-
tions for an equilibrium thermodynamic state are @F/@N0 = 0, @F/
@M0 = 0, and @X/@l = �N, where N evidently includes both paired
and unpaired fermions. Second partial derivatives of F have also
been examined [4]. After some algebra these conditions lead to
the three coupled transcendental found in Ref.[3]. These can be
rewritten somewhat more transparently as: (a) two ‘‘gap-like
equations’’

½2Ef þ de� 2lðTÞ� ¼ 1
2

f 2
Z Efþde

Ef

d�Nð�Þ

�
tanh 1

2 b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�� lðTÞ�2 þ f 2n0ðTÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�� lðTÞ�2 þ f 2n0ðTÞ

q ð1Þ

and
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Fig. 1. Parameter octant defined by the two condensate densities n0(T) P 0 and
m0(T) P 0 as well as the (also nonnegative) inverse 1/k P 0 of the interelectronic
BCS dimensionless coupling k P 0, and applicable in principle at all temperatures T.
The GBEC describes a ternary gas and applies in the entire octant. The BCS–Bose
crossover theory applies only on the shaded plane defined by n0(T) �m0(T) provided
the additional restriction nB+(T) = mB+(T) is imposed whereby the total number of 2p
(two-electron) non condensate CPs equals that of 2 h (two-hole) CPs. BCS theory is
valid along the forefront of the shaded plane where k� 1 of the shaded BCS–Bose
crossover plane. For quadratically-dispersive bosons the usual BEC theory ensues at
the origin of the octant where m0(T) = 0 for all T and n0(Tc) = 0, giving there the
implicit expression Tc ’ 3:31�h2nBðTcÞ2=3

=2mkB . This has the same form as the
standard explicit BEC Tc-formula for mass 2m bosons and where the boson number
density nB is, of course, independent of Tc.
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Fig. 2. Phase boundaries of pure GBEC of 2 h-CPs (thin curve) and of 2e-CPs (thick full cur
a BCS model interaction creating the CPs, all for k = 1/5 and ⁄x D/EF = 10�3 vs. dimensionl
[5]. Insets are zoom-ins except for table reporting values at n/nf = 1.5 of the 2e-GBEC ph

M. Grether et al. / Physica C 493 (2013) 28–30 29
½2lðTÞ � 2Ef þ de� ¼ 1
2

f 2
Z Ef

Ef�de
d�Nð�Þ

�
tanh 1

2 b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�� lðTÞ�2 þ f 2m0ðTÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�� lðTÞ�2 þ f 2m0ðTÞ

q ð2Þ

with b� 1/kBT, as well as b) a single ‘‘number equation’’ 2nB(T)� 2mB(-
T) + nf(T) = n that ensures charge conservation in the ternary mixture.

Here n� N/Ld is the total number density of electrons, nf(T) is the
number density of unpaired electrons, while nB(T) and mB(T) are
respectively those of 2e- and 2 h-CPs in all bosonic states, ground
plus excited, i.e., condensed n0(T) plus noncondensed nB+(T). They
turn out to be nB(T)� n0(T) + nB+(T) and mB(T)�m0(T) + mB+(T) where

nB�ðTÞ �
Z 1

0þ
deMðeÞðexp b½�2Ef þ de� 2lþ e� � 1Þ�1

clearly evidencing the bosonic nature of both kinds of CPs. Here
Nð�Þ � m3=2

ffiffiffi
�
p

=21=2p2�h3 while MðeÞ � 2m3=2
ffiffiffi
e
p
=p2�h3 for d = 3.

One picks de = ⁄xD, and if f in (1) and (2) is taken as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hxDV

p
, where

V is the BCS model attractive-interaction strength, one recovers
both the BCS gap equation precisely for all T and all interaction
parameters as well as the T = 0 BCS condensation energy for all
such. The number density of unpaired electrons at any T is

nf ðTÞ �
Z 1

0
d�Nð�Þ 1� f½�� l�=Eð�Þg tanh

1
2

bEð�Þ
� �

ð3Þ

with Eð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�� lÞ2 þ D2ð�Þ

q
. The octant defined by Fig. 1 illus-

trates the applicability at any temperature T and any electron
f

-6

ve) compared to the standard BEC curve (dashed) and the BCS (lower full curve), for
ess charge-carrier densities n/nf with nf as defined in text. Exotics data are from Ref
ase boundary for k = 0.2,2 and 20.
.
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concentration n of the BCS–Bose crossover picture and the BCS theory
implying its dimensionless coupling k� N(EF)V where V is the net
attractive interelectronic interaction causing the formation of CPs. The
applicability of the GBEC formalism spans the entire octant with verti-
cal and horizontal axes defined by m0(T,n) and n0(T,n), respectively.

4. Sharp vs. BCS exponential rise of Tc

Numerical elimination of l(T,n) has shown that, in addition to a
normal phase defined by n0(T,n) = m0(T,n) = 0 at high T, at lower
temperatures three condensed phases appear: two pure phases of
2e-CP- and 2 h-CP-BE-condensed states and one mixed phase with
arbitrary proportions of both kinds of BE-condensed CPs. Fig. 2
shows the phase boundaries for the specific set of BCS interaction
parameters k = 1/2 and ⁄xD = 10�3EF. These results would seem to
suggest a possible explanation, to be explored in the near future,
for the intriguing experimental fact emphasized by Hirsch (Ref.
[6] §6) that regardless of whether charge carriers above Tc are holes
or electrons, they are always electrons below Tc.

5. Conclusions

The GBEC formalism predicts the observed linearrise of Tc with
charge-carrier density (i.e., doping) in contrast with the exponential
rise of BCS theory. The hopefully practical outcome of the BCS–BEC
unification via the GBEC formalism is enhancement in Tc by up to
four orders-of-magnitude in 3D. These enhancements fall within
empirical ranges for 2D and 3D ‘‘exotic’’ SCs, whereas BCS Tc values
remain much lower—being within the empirical ranges for conven-
tional, elemental SCs using standard interaction-parameter values.
Lastly, room temperature superconductivity is possible for a mate-
rial with a Fermi temperature TF 6 103K, with the same interaction
parameters used in BCS theory for conventional SCs.
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