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The generalized Bose-Einstein condensation (GBEC) formalism of superconductivity hinges on three sep-
arate new ingredients: (a) treatment of Cooper pairs as real bosons, (b) inclusion of two-hole pairs on an
equal footing with two-electron ones, and (c) inclusion in the resulting ternary ideal boson-fermion gas
of boson-fermion vertex interactions that drive formation/disin-tegration processes. Besides subsuming
both BCS and BEC theories as well as the well-known crossover picture as special cases, GBEC leads to
several-order-of-magnitude enhancement in the critical superconducting temperature T,.

The crossover picture is applicable also to ultracold atomic clouds, both bosonic and fermionic. But
low-density expansions involving the interatomic scattering length a diverge term-by-term around the

so-called unitary zone about the Feshbach resonance. However, expanding a in powers of the attractive
part of the interatomic potential renders smooth, divergence-free low-density expansions.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Since its theoretical prediction by Einstein in 1925 based on the
work in 1924 by Bose on photons, and after many decades lan-
guishing as a mere academic exercise in textbooks, Bose-Einstein
condensation (BEC) was finally observed in laser-cooled, magneti-
cally-trapped ultra-cold bosonic atomic clouds of §7Rb [1]. Within
weeks other observations were reported, with JLi [2], 23Na [3], IH
[4], 83Rb [5], 3He [6], 41K [7], 133Li [8], 32Cr [9], and in two-electron
systems such as alkaline-earth and ytterbium atoms 174Yb [10-12].
Also, BEC was most recently found in §§Sr [13].

BEC has been detected as well in fermionic atomic gases of 9K
[14] and §Li [15] as a result, presumably, of some of the fermions
Cooper-pairing [16] into bosons.

Sometime ago Leggett [17] derived the two basic equations
associated with the so-called BCS-BEC crossover [18-20] picture
at T = 0 for any many-fermion system of particles of mass m whose
pair interactions are described by the S-wave scattering length a
between pairs of fermionic atoms a. Specifically, he obtained a
number equation
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where the tildes signify in units of Er = hzki/Zm, with u and 4
being the zero-T fermionic chemical potential and gap, as well as
a gap equation
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An alternate derivation of these two equations has been reported in
Ref. [21].

Both equations are coupled transcendental equations which
must be solved self-consistently for u and 4, with 4 depending
(explicitly) on a and p on 4 and so that pu depends implicitly on
a. These two equations are valid for any coupling, weak or strong.
For weak coupling p ~ Er as assumed by BCS in their epoch-making
1957 paper [22] on superconductivity described by a single equa-
tion, the celebrated gap equation. However, for very strong cou-
pling p~B,/2 with B, being the two-body (positive) binding
energy of a pair in vacuo provided the two-body potential supports
one and only one bound state as, e.g., the BCS model interaction
can be shown [23] to effectively do so.

In 2D Miyake [24] solved the two crossover equations exactly at
T =0 for an attractive delta interaction potential between pairs of
fermions. He obtains 4 = \/2E¢B; and pt = Er — 1 B, which evidently
reduces in weak coupling to Er and in strong to —B,/2. Indeed, a 2D
[25] as well as a 3D delta-potential well supports an infinite num-
ber of bound-state levels; this alone would suffice to collapse the
many-fermion ground state to infinite binding and density.
Although not mentioned explicitly, this author must have implied
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use of a regularized delta, namely, one constructed [26] so as to
possess one and only one bound state. Besides avoiding possible
collapse, a 3D regularized delta potential allows conveniently
describing [27] the entire range from weak- to strong-coupling
smoothly in terms of the dimensionless coupling parameter 1/kra
from —oo (a=07) through 0 to +oo (a = 0") and with only one zero.

For many-fermion superconducting states the role of hole Coo-
per pairs, accounted for or not along with the usual electron Coo-
per pairs, has been explored [28-33] within a generalized BEC
(GBEC) scenario with striking implications. In particular, it was
shown [32] to subsume the BCS-BEC crossover equations for u(T)
and A(T) at finite temperatures T > 0. The GBEC formalism has
thus far only employed the BCS model interaction between indi-
vidual charges. This interaction is familiar; it is characterized by
two parameters: the maximum energy hwp of a phonon exchanged
between the charges and the net attractive interaction strength V
due to repulsive Coulomb and attractive electron-phonon interac-
tions. The latter is usually expressed in the well-known BCS dimen-
sionless coupling parameter /1 = VN(Er) where N(Er) is the density
of electron states at the Fermi surface.

A different two-body interaction applies, of course, in ultracold
fermionic gases such as the aforementioned 5K and §Li, e.g., a Len-
nard-Jones interatomic potential for which the S-wave scattering
length a applies. Expansions of a in powers of the strength of the
attractive part of a number of such potentials have been deter-
mined numerically [34]. We argue how this is an ideal way of
treating the unitarity region around a Feshbach resonance where
a diverges. This divergence is entirely averted in low-density
expressions that depend not on a but rather on the attractive part
of the interatomic interaction. This is equivalent to expanding not
about the ideal (boson or fermion) gas but about the corresponding
purely repulsive gas in order to generate the well-known low-den-
sity expansions but now as a power series in the attractive part of
the interatomic potential.

2. Generalized BEC and superconductors

Boson-fermion (BF) models of superconductivity (SC) as a
Bose-Einstein condensation (BEC) go back to the mid-1950s [35-
38], pre-dating even the BCS-Bogoliubov theory [39,40]. Although
BCS theory only envisions the presence of “Cooper correlations”
of single-electron states, BF models [35-38,41-50] posit the exis-
tence of actual bosonic Cooper pairs (CPs). With a single exception
[28], however, all BF models neglect the effect of hole CPs included
on an equal footing with electron CPs to give the “complete” BF
model at the heart of the generalized Bose-Einstein condensation
(GBEC) formalism. This formalism is described by the Hamiltonian
H=Ho + Hin.

First, one has an ideal ternary gas mixture described by

Ho =Y €, ay 5 G s, + Y _E(K)bibk — Y E_(K)cgex 3)
K

kq.51 K

where K=Kk; +Kk, is the CP total or center-of-mass-momentum
(CMM) wavevector of two-electron- and two-hole-CPs, while
€, = h*k%/2m are the single-electron and E.(K) the 2e-/2h-CP phe-
nomenological, energies. Here altl_s] (ax,5,) are creation (annihila-
tion) operators for electrons and similarly by (bx) and ¢ (ck) for
2e- and 2h-CP bosons, respectively. As originally implied in the
work of Cooper [16], the b and ¢ CP operators depend only on K
as the CP eigenvalue appears in a summation over the relative
wavevector k =1 (k; — k;). Hence, CPs are distinct from BCS pairs
described by operators depending on both K and k as displayed in
Ref. [22], Egs. (2.9-2.13), for the particular case of K =0 and shown
there not to satisfy the ordinary Bose commutation relations. How-
ever, CPs are objects easily seen to obey Bose-Einstein statistics as,

in the thermodynamic limit, an indefinitely large number of distinct
k values correspond to a given K value defining energy eigenvalues
E.(K) or E_(K). This is sufficient to ensure a BEC (or, a macroscopic
occupation of a given state that appears below a certain fixed
T =T.). This was found [28] numerically a posteriori in the GBEC the-
ory. Also, the BCS gap equation is recovered exactly for equal num-
bers of both kinds of pairs, both in the K =0 state and in all K## 0
states taken collectively, and in weak coupling, regardless [29] of
CP overlaps. The precise familiar BEC T, formula emerges [28]
when: (i) 2h-CPs are ignored (whereupon the Friedberg-T.D. Lee
model [46-49] equations are recovered) and (ii) one switches off
the BF interaction but under strong interelectron coupling whereby
no unpaired electrons survive in the remaining binary mixture
which now becomes a pure ideal boson gas.

Secondly, one switches on a boson-fermion (BF) interaction
among the three species of the originally ideal ternary gas repre-
sented by (3). This interaction is given by the Hamiltonian H;,; con-
sisting of four distinct BF interaction single vertices, each with two-
fermion/one-boson creation or annihilation operators. Each vertex
is reminiscent of the Frohlich electron-phonon interaction with
CPs replacing phonons. Here Hj,, depicts how unpaired electrons
(or holes) combine to form the 2e- (and 2h-CPs), and viceversa, as-
sumed in a d-dimensional system of size L, namely

_y-d2 +
Hip =1L E fi (k) [a;%l(_jaf K, le 0 gk, Ok +%1(.1b1<] (4)
kK
~d/2
+L E (k) [aa%maj X +%1<.1C§ +a_, %K‘lak@_mq(]. (5)
kK

Defining a simpler H;,, by neglecting nonzero K terms on the rhs
renders an exactly diagonalizable expression via a Bogoliubov
transformation. (These terms were later restored via two-time
Green functions, albeit without 2hCPs, and eventually lead [51,52]
to a pseudogap.) The energy form factors f.(k) in (5) are taken as
in Refs. [28,30] where the associated quantities E; and ¢ are new
phenomenological dynamical energy parameters (in addition to
the positive BF vertex coupling parameter f introduced in Refs.
[28,30] ) that replace the previous such E.(0), through the relations
Ef =1[E.(0)+E_(0)] and é¢ = I[E.(0)—E_(0)] = 0 where E.(0)
are the (empirically unknown) zero-CMM energies of the 2e- and
2h-CPs, respectively. Putting Er= Er and d¢ = hwp leads [28-33] ex-
actly to the BCS gap equation.

We refer to Ef as the “pseudoFermi” energy. It serves as a con-
venient energy scale and is not to be confused with the usual Fermi
energy Er = Imuv? = kgTr where Tr is the Fermi temperature. If n is
the total number-density of charge-carrier electrons of effective
mass m, the Fermi energy Er equals wh?n/m in 2D and (h%/2m)
(37 2n)*? in 3D, while E; is similarly related to another density ny
which serves to scale the ordinary electron-number density
n=NJ/L% The two quantities E; and E, and consequently also n
and ny, coincide onlywhen perfect 2e/2h-CP symmetry holds as in
the BCS instance.

The GBEC formalism leads to three coupled transcendental
equations for the three functions determining the phase diagram
of thermodynamic equilibrium associated with three condensed
phases, in addition to the normal phase of the ideal ternary gas
described by (3). The condensed phases are two pure BEC phases,
one for 2e-CPs the other for 2h-CPs, and a mixed phase. The three
functions for which one solves numerically based on the three
coupled transcendental equations are the electron chemical po-
tential u(T) along with the 2e-CP and 2h-CP BE condensate densi-
ties no(T) and mg(T), respectively. Of those three coupled
transcendental equations two are “gap-like” equations and the
third is a “number equation” which guarantees charge conserva-
tion and therefore gauge invariance (in contrast with BCS theory),
namely
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n = 2ng(T) — 2mp(T) + ns(T) (6)

where nq(T) corresponds to the unpaired electrons, while ng(T) and
mp(T) are respectively the number densities of 2e- and 2h-CPs in all-
bosonic states, ground plus excited, i.e., condensed and noncon-
densed. The latter turn out to be

ng(T) = no(T) + N deM(e)(exp 12E; + o — 2+ ¢ — 1) (7)

J 0+

mp(T) = mo(T) + /0 " deM(e)(exp B2 + 6 — 2B + 06 - 1)1 (8)

where the Bose distributions are clear manifestations of the bosonic
nature of both kinds of CPs. One also obtains for the number density
of unpaired electrons at any T

- [ _€Hnnlt
ng(T) = /0 deN(e) {1 153G tanh 3 BE(€)]. 9)
In (40-42) N(€) and M(e) are respectively the electronic and bosonic
density of states, while

E(€) = /(€ — ) + 4*(€) (10)

is the familiar gapped Bogoliubov fermionic dispersion relation.
Perfect 2e/2h symmetry in (6) of the GBEC formalism means 2np(-
T) = 2mp(T) which in turn implies

n=ns(T). (11)
At zero-temperature the number Eq. (9) simplifies to

€

n(T) = /Ox deN(e) [1 —%] (12)

which is easily seen to reduce to (1).

Fig. 1 shows the phase boundaries for the specific set of BCS
model-interaction parameter /. = 1/2 and hwp = 103Ef. As one low-
ers temperature, the first thermodynamically-stable GBEC phase
encountered is the one consisting of two-hole rather than two-
electron CPs. This is quite probably related to the apparently uni-
versal property of superconductors as emphasized most brilliantly

5
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Fig. 1. Phase boundaries of pure GBEC of 2h-CPs (thin curve) and of 2e-CPs (thick
full curve) compared to the standard BEC curve (dashed) and the BCS, for a BCS
model interaction creating the CPs, all for BCS model interaction dimensionless
parameters / = 1/5 and hwp/Er = 103 vs. dimensionless charge-carrier densities n/ng
with ny as defined in text and roughly corresponds to the number density of
unpaired fermions. Exotics data are from Ref. [53]. Here and in text hwp is the
Debye energy associated with the ionic lattice while E is the Fermi energy of the
electron gas. Values indicated by the diamond, square and triangle symbols,
correspond to the limit values of T, obtained for n/nf—oc at which limit there are
no unpaired fermions left.

by Hirsch (Ref. [54] S6) and corroborated with experiments,
namely, that regardless of the sign of individual charge carriers
in the normal state (i.e., above T;), below T, they are always two-
electron CPs. In addition, he interprets these empirical findings in
terms of the “hole theory of superconductivity [55,56]” he has
been espousing over the years.

Finally, we note that the 2eCP GBEC phase boundary more than
triply enhances T, with respect to an ordinary pure 2eCP BEC in
which all the electrons are assumed paired in bosons and giving
the familiar T./Tr = 1[2/31'(3/2)((3/2)]*”* ~ 0.218 where I" and ¢
are gamma and zeta functions.

3. Ultracold atomic clouds
3.1. Bosons

The ground-state equation-of-state for a many-boson gas of
identical bosons of mass m, number density n = N/V, and with pair
interactions giving rise to an S-wave scattering length a, the
ground-state energy per particle is known to be given by the
low-density expansion [57-59]

E 2mh’

= 2 341/2 3 3 s
Nt m na[l + C;(na*)'? + Cy(na®) In(na®) + C3(na’)

+0(na®)** In(na®)] (13)

128
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Each term contains the dimensionless smallness parameter na® but
it diverges in the unitarity region, i.e., around the Feshbach reso-
nance. Obviously, the entire low-density series will then diverge
in this region as well.

For the simple two-body hard-core-square-well (HCSW)
potential

G, =8 (gn - \/§) C5 = unknown.

+oo (r<o)
vir)={ —vy (c<r<R) (14)
0 (r<R

where r is the interparticle separation, the scattering length is ex-
actly analytical

g_1+a<1 _t"’%ﬁ) (15)
R —
ETC E%(R—c)z. (16)

Calling the smallness parameter (nc)'/2=x some computer
algebra gives for the energy per boson the double series

% =€(x,2) = ;ﬁi(x))f (17)

where the coefficients €(x) would be known for x < 1. Since from
(16) 4 is proportional to the attractive part of the two-boson inter-
action in vacuo then €(x, /. = 0) is of precisely the same form as (13)
with a replaced by c. This energy represents the energy-per-boson
not of an ideal boson gas (which of course vanishes) but of a boson
gas of hard spheres of diameter c, with attraction treatable pertur-
batively to any order. The double series is divergence-free even in
the unitarity region.

3.2. Fermions

For fermions, the expansion for the ground-state energy per
particle is given exactly through the low-density expansion [58]
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E 31k 1.1 . A0
N== o {1 +C1kFa+C2(kpa)2+{§C35°+C4 1(1(3 )+C5}(I<Fa)3
1 (0
+C6(I<Fa)4ln\kpa|+{§C7%+Cg (:1(3 )+Cg}(kpa)4+0{(kFa)4}}

(18)

where kg is the Fermi wavenumber while ry is the effective range of
the two-fermion interaction having scattering length a and the
coefficients Cy, ..., Cg are known [58]. It too diverges in the unita-
rity region since each term in the dimensionless smallness-param-
eter kra. diverges there. Here, the fermion number density is

n=N/V =k} /6m? (19)

with vthe number of intrinsic degrees of freedom [60] if any, such as
spin and isospin.

For the HCSW potential (14) the exact result (15) expands in
powers of 4, e.g., with a computer-algebra program such as MAC-
SYMA or REDUCE [61], as

1, 2 17 5 62

P T N L _os
Icpa_x[l 1(3A+154 +315/1 +2835A

1382

+155925"

+%;ﬁ+m>], (20)

For other interfermion potentials such as the Lennard-Jones
interatomic potential V(r) = 4¢[(o/r)'? — (¢/r)°] with €and ¢ conve-
nient energy and length parameters one can separate it as a repul-
sive-core plus attractive part and redefine the latter as the
parameter /. Coefficients such as those in (20) have been deter-
mined numerically [34] for a variety of two-body interatomic
potentials in current used.

4. Conclusions

A ternary boson-fermion superconducting gas model leads to a
generalized Bose-Einstein condensation formalism which, assum-
ing quadratically-dispersive two-electron- or two-hole Cooper
pairs already leads to a phase diagram with three condensed
phases (two pure 2e-CP and 2h-CP BECs plus a mixed phase) at
temperatures cooler than the ubiquitous normal phase of an ideal
ternary gas of both types of CPs plus unpaired electrons. Enhanced
T.s of several orders of magnitude emerge in comparison with the
BCS result which is the highest T, associated with the mixed phase.

For ultracold quantum gases low-density expansions of point
particles, whether boson or fermion, involving the S-wave scatter-
ing length a associated with the free-pair interaction diverge term-
by-term around the Feshbach resonance whenever the strength of
the interaction attraction is large enough to bind the pair. This
divergence can be averted altogether by redefining the expansion
to be associated instead with purely-repulsive extended particles,
e.g., the hard cores of a hard-core-square-well potential, or the soft
cores associated with interatomic potentials such as the Lennard-
Jones potential.
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