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We conduct experiments with flexible swimmers to address the impact of fluid vis-
coelasticity on their locomotion. The swimmers are composed of a magnetic head
actuated in rotation by a frequency-controlled magnetic field and a flexible tail whose
deformation leads to forward propulsion. We consider both viscous Newtonian and
glucose-based Boger fluids with similar viscosities. We find that the elasticity of
the fluid systematically enhances the locomotion speed of the swimmer and that
this enhancement increases with Deborah number. Using particle image velocime-
try to visualize the flow field, we find a significant difference in the amount of
shear between the rear and leading parts of the swimmer head. We conjecture
that viscoelastic normal stresses lead to a net elastic forces in the swimming di-
rection and thus a faster swimming speed. C© 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4795166]

A field originally started by Sir G. I. Taylor,1 the fluid dynamics of swimming microorganisms
was very active in the 1970s.2–6 Renewed interest was recently prompted by new series of questions
arising on nonlinear and nonlocal swimming behavior, including cell-cell hydrodynamic interactions,
collective locomotion, instabilities of active suspensions, and synthetic swimming systems.7 One of
such questions, and the focus of this paper, concerns locomotion in complex fluids.

Many situations of biological importance involve locomotion in, and transport of, polymeric
fluids with large relaxation times in viscous dominated regimes. Well-studied examples include
mucus transport by lung cilia8 and locomotion of mammalian spermatozoa in cervical mucus.9

Except for a handful of investigations10–12 all past experimental and theoretical work in the field
focused solely on Newtonian fluids.

Recently, a series of studies has addressed locomotion in complex fluids,13–21 with somewhat
contradictory results. Analytical studies in the small-deformation limit showed that in an Oldroyd
viscoelastic fluid, locomotion under a given gait (two- or three-dimensional waving) always leads to
a decrease of the swimming speed with the Deborah number, De, to ratio of the fluid relaxation time
scale to the typical time scale of the swimming motion.13, 14, 16, 17 In contrast, numerical simulations
for a two-dimensional swimmer in an Oldroyd fluid showed that, for large-amplitude motion, an
increase in swimming speed could be obtained, which the authors attributed to high-strain regions
behind the swimmer.18

Similar to the modeling approaches, experimental investigations have lead to two different
results. Shen and Arratia studied the locomotion of C. elegans nematodes in shear-thinning poly-
meric fluids and found, in agreement with the small-deformation analysis, that viscoelasticity hin-
ders locomotion.19 Liu et al.20 considered the force-free translation of externally-rotated thin rigid
helices as a model for the dynamic of bacterial flagella in complex fluids. They found that, for
large-amplitude motion in a constant-viscosity Boger fluid,22 the velocity leading to the force-free
condition (equivalent to a swimming speed) could be increased by the presence of fluid elasticity.
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FIG. 1. Sketch of the magnetic swimmer with flexible tail. See text for notation.

In this paper we address the effect of fluid elasticity on flexible swimmers. We measure the
swimming speed of magnetic bodies equipped with flexible tails actuated externally by a time-
periodic magnetic field. The combination of filament flexibility, periodic actuation, and drag forces
from the fluid break the time-reversibility for the filament shape and leads to forward propulsion.23

In a Boger fluid with constant viscosity we show that fluid elasticity always enhances the locomotion
speed of the swimmers. In addition, the ratio between the non-Newtonian velocity and that measured
in a Newtonian flow systematically increases with the Deborah number.

A sketch of the swimmer is shown in Fig. 1. The permanent magnet is a rare Earth rod magnet
(Magcraft, model NSN0658) with lengths and diameters of 3.18 mm possessing a remanent magnetic
flux of Bm = 1.265 ± 0.015 T. Since the density of the magnet is larger than that of the test fluids
(ρm = 7450 kg/m3), it is encapsulated in a piece of plastic tubing in which an air bubble is captured
to make it neutrally buoyant; the end of the tubing is sealed with silicone rubber. The diameter and
length of the head are Dh = 5.2 mm and Lh = 14.2 mm. The tail, glued to the head, is a piece of optic
fiber of length L = 25 mm and radius a = 62.5 μm, with a Young’s modulus similar to that of glass,
E ≈ 80 GPa. Figure 2 and the supplementary video24 shows a typical experiment (swimmer in a Boger
fluid). Two additional swimmers are also built. One had a rigid tail, made from of hypodermic tubing,
(L = 25 mm, a = 125 μm, E = 200 GPa) and is used to demonstrate that without tail flexibility
no swimming can occur.5, 24 The second swimmer has a flat rubber tail (L = 20.5 mm, thickness t
= 0.8 mm, width w = 3.4 mm, E = 0.01 GPa) and is used for measurements of the fluid velocity
around the swimmer using a standard two-dimensional particle image velocimetry system (PIV,
Dantec Dynamics).

The external magnetic field, BHC(t), which changes direction in time, is generated by a Helmholtz
coil pair,25 with a radius of R = 140 mm and approximately 230 wire turns in each coil. For a
maximum current of 4 A, a magnetic field of about BHC|max = 6 mT is achieved. The coil pair is
energized using a power supply that applies a DC voltage changing sign periodically, conferring
the change in direction to the magnetic field, with a frequency of up to 10 Hz. The swimmers are
placed inside a cylindrical container (diameter, Dc = 50.8 mm). This container is located inside the

FIG. 2. Image sequence of a swimming cycle at frequency ω = 1 Hz in the Boger fluid (B2); time step between each image,
�t = 66.6 ms.
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FIG. 3. Position of the head along (◦) and across (�) the swimming direction as well as head angle (�); filled symbols (blue)
show results for the Boger (B2) fluid while empty symbols (red) are for the Newtonian (N2) fluid.

Helmholtz coil which provides the driving magnetic actuation to rotate the magnetic head leading to
deformation of the tail and locomotion. The motion of the swimmers was filmed with a digital camera,
as illustrated in Fig. 3 over one period of oscillation. The obtained images were processed digitally
to obtain the position, speed, and inclination angle of the head in time, as illustrated in Fig 3.

Close attention was paid to the preparation of the test fluids, water solutions of industrial grade
glucose. Two types of fluids are prepared, Newtonian (N1 and N2) and viscoelastic Boger (B1
and B2). To confer elasticity to the glucose solutions, a small amount of polyacrylamide (Separan
AP30, Dow Chemicals) is added and solutions with nearly constant viscosity and finite relaxation
times are obtained.22 In Table I we show the properties of the all fluids used; note that fluids N1
and B1 are more viscous than N2 and B2. The density, ρ, is measured using a pycnometer (Simax,
50 ml). The rheological properties are characterized using a rheometer with a cone-plate geome-
try (TA Instruments, AT 1000N). Both steady and oscillatory tests are conducted to measure the
shear viscosity, μ, and the storage and loss moduli, G′(ω) and G′′(ω), respectively. Once the Boger
fluids are characterized, the Newtonian fluids are prepared by varying the amount of water to match
the value of the shear viscosity of the viscoelastic fluids. For both fluids, the maximum Reynolds
number obtained experimentally, Re = UDhρ/μ, where U is the mean swimming speed, is less than
10−3. The power index for the viscoelastic fluids, n, is very close to one, hence their shear viscosity
is nearly independent of shear rate. The viscoelastic effects quantified by our study are therefore
attributable only to the elasticity of the fluids and not to their shear-dependance. The mean relax-

TABLE I. Properties of the fluids studied: composition, density, viscosity, power index, and mean relaxation time.

Fluid G/W/PaaM (%) ρ (kg/m3) μ (Pa s) n λ (s)

Newtonian (N1) 89/11/0 1390 3.5 1.0 0.0
Boger (B1) 84.96/15/0.04 1340 3.7 0.98 1.23
Newtonian (N2) 89/11/0 1400 2.8 1.0 0.0
Boger (B2) 84.96/15/0.04 1350 2.7 0.98 1.03
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FIG. 4. Mean forward swimming speed, U (mm/s), as a function of the oscillating frequency, ω (Hz). Filled and empty
symbols correspond to Boger and Newtonian fluids, respectively. � (black): fluids N2 and B2, flexible swimmer; � (blue):
fluids N1 and B1, flexible swimmer; ◦ (red): fluids N1 and B1, rigid tail swimmer. The error bars depict the standard deviation
of the measurements for the N2 and B2 fluids which were repeated four times.

ation times are calculated considering the scheme proposed in Ref. 20. The experimental values of
G′(ω) and G′′(ω) are fitted to a generalized Maxwell model,26 G ′(ω) = ∑N

i=1(giλ
2
i ω

2)/(1 + λ2
i ω

2)
and G ′′(ω) = ωμ + ∑N

i=1(giλiω)/(1 + λ2
i ω

2), with N = 4 leading to an excellent fit. The val-
ues of the fitting parameters (gi and λi) are then used to estimate the mean relaxation time as
λ = (

∑N
i=1 giλ

2
i )/(

∑N
i=1 giλi ). Note that the value of the solvent viscosity was 3.4 and 2.6 Pa s for

the fluids B1 and B2, respectively.
In Fig. 3 we show a typical measurement of the swimmer kinematics in our study: position of

the head along (◦) and across (�) the swimming direction as well as head angle (�). Filled symbols
(blue) correspond to the Boger (B2) fluid while empty symbols (red) are for the Newtonian (N2)
fluid. As the swimmer moves its head sideways, a net forward motion is produced. Even though
the exact same swimmer was used in the two fluids under the same magnetic driving, the motion in
the viscoelastic case appears to be larger, both for sideways and forward displacements. The angle
amplitude of the head appears to also be larger in the Boger fluid.

In Fig. 4 the measured mean forward velocity, U (mm/s), is shown as a function of the oscillating
frequency, ω (1/s), for the flexible and rigid tails. The results with the flexible flat tail are similar to
the ones with a flexible cylindrical tail and are omitted for clarity. In all fluids, bodies with a rigid
tail cannot swim. With flexible tails, as the oscillation frequency increases from zero, the forward
velocity increases, reaches a maximum, and decreases slowly. This is similar to past measurements
for Newtonian fluids.27 In all cases, the swimming speed is seen to be larger for the viscoelastic
fluids than that reached in the Newtonian fluid. Our results are therefore in qualitative agreement
with the numerical results of Ref. 18 and the experiments of Ref. 20 showing enhanced swimming
velocity in viscoelastic fluids.

To help rationalize our results we plot our measurements in dimensionless terms. The relative
importance of the bending forces in the tail and viscous drag forces are quantified by the so-called
sperm number7

Sp = L
(ωε⊥

E I

)1/4
, (1)

where ω is the oscillation frequency, ε⊥ is a viscous resistance coefficient for fluid motion perpen-
dicular to the tail, E is the material’s Young’s modulus, and I is the second moment of inertia of
the tail cross-sectional area (I = πa4/4 for a circular cross section). With the approximate value
ε⊥ ≈ 4πμ/ln (L/a), the sperm number can be written as

Sp = 2
(μω

E

)1/4 L∗

(ln L∗)1/4
, (2)
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FIG. 5. Normalized swimming speed, U/ωL, as a function of sperm number, Sp. All symbols as in Fig. 5.

where L* = L/a is the dimensionless tail length. The quantity in the first parenthesis on the right-hand
side of Eq. (2), μω/E, is a pseudo-Weissenberg number that compares the viscous stress in the fluid
with the elastic stress in the tail. In Fig. 5 we plot the dimensionless swimming velocity, U/(ωL),
as a function of Sp. Maximum swimming occurs at a sperm number of order one. For viscoelastic
fluids, the swimming velocities are larger than in the Newtonian case but the dependence with Sp
appears to be similar.

To quantify the differences in locomotion between the two types of fluids, we show in Fig. 6 the
ratio of the non-Newtonian (UNN) to the Newtonian (UN) swimming speeds, UNN/UN, as a function
of Deborah number, De = λω. Despite the uncertainties due to variations in our measurements, the
trend is clear (the line is a linear fit to the data for all fluids). Swimming is always faster in a non-
Newtonian fluid and the velocity ratio between the two fluids systematically increases with Deborah
number. The other two investigations which showed an increase of swimming in complex fluids18, 20

have found that there is a critical Deborah number at which the velocity increase is maximum.
In contrast here, and for the range of parameters tested, we observe a continuous increase of the
swimming velocity for De numbers as large as 5.

Why does this swimmer move systematically faster in a viscoelastic media? To help rationalize
our results, we conducted a visualization study of the velocity fields around the swimmer.24 We
employed two-dimensional PIV to characterize the velocity field around the swimmer with a flat
tail. In Fig. 7(a) we show the typical velocity and vorticity fields around the swimmer at a given
instant in the beating period. A large vortical structure develops around the swimmer; during each
cycle of oscillation, a vortex forms, dissipates quickly, and a new one forms in the opposite direction.
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FIG. 6. Ratio of non-Newtonian (UNN) to Newtonian (UN) swimming speeds, UNN/UN, as a function of the Deborah number,
De. � (black): fluids N2 and B2; � (blue): fluids N1 and B1. The dashed line is a linear fit to the data for all fluids.
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FIG. 7. PIV results for the flow field around the swimmer with a two-dimensional tail in fluid B2. (a) Vorticity (colors) and
velocity (arrows) fields; (b) cycle-averaged magnitude, |D|, of the rate-of-strain tensor, D. Vorticity and rate-of-strain fields
are normalized by the oscillation frequency, ω. The white regions show the position of the swimmer at different instants
throughout the cycle.

With our measurement of the velocity field, we can compute all four in-plane components of
the velocity gradient tensor. The rate-of-strain tensor, D, can therefore be measured around the
swimmer, D = 1

2 [∇v + (∇v)T ], where v is the velocity in the fluid. We show in Fig. 7(b) the field
of the phase-averaged magnitude of D, defined as |D| = 〈√D : D〉, where 〈 · 〉 denotes averaging
in time. This plot quantifies, therefore, regions where shear deformations are large throughout the
periodic beating of the swimmer tail. Clearly, on average, the rear part of the head of the swimmer
is subject to a larger shear than its front.

As is well known, viscoelastic fluids subject to shear deformations result in additional normal
stresses, due to the stretching of polymeric molecules along flow streamlines.28 Based on our
observation of the difference in the amount of shear between the leading and trailing sides of the
head, we conjecture that it is the presence of these non-Newtonian normal stresses which induce a
nonzero elastic force in the swimming direction, leading to an increase in the swimming speed.

One important aspect that needs to be addressed is the potential difference in tail kinematics
between different fluids. As was pointed out by Teran et al.,18 the details of the waveform do affect
the propulsion speed and swimming enhancement occurs only for specific tail shapes. To address
this effect in our experiments, we tracked the shape of the tail at different instants throughout the
oscillation cycle. We show in Fig. 8 the comparison of the tail shape for the same swimmer under
identical actuation in fluids N2 (solid line) and B2 (dashed). As was already evident from Fig. 3,
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FIG. 8. Superimposed shapes of the flexible tail at different instants throughout the oscillation cycle. The solid (red) and
dashed (blue) lines display the tail shape for the Newtonian (N2) and Boger (B2) fluids, respectively. These measurements
correspond to the data shown in Fig. 3.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

132.248.12.226 On: Fri, 24 Jan 2014 19:25:23



031701-7 Espinosa-Garcia, Lauga, and Zenit Phys. Fluids 25, 031701 (2013)

there are some differences. The deformation of the tail in the Boger fluid does appear larger but the
tail curvatures are very similar in both cases. Although we cannot quantify the role that the change
in tail kinematics plays in the increase of the swimming speed, based on the observations shown in
Fig. 8 we conjecture that the effect is not significant in our experiment and at least not of the
magnitude necessary to obtain the results in Fig. 6. In order to fully resolve this issue however,
experiments would have to be conducted for a swimmer with strictly identical kinematics in all
fluids, which we plan to do in the future, enabling to unravel the effects of change in the kinematics
vs. purely elastic contributions.

In summary, we have conducted in this paper an experimental investigation of flexible swim-
ming in non-Newtonian (Boger) fluids. By comparing the locomotion of swimmers with simi-
lar mechanical properties and under similar external actuation but in different fluids we demon-
strate that swimming is systematically enhanced by fluid elasticity. In contrast with the results of
Refs. 18 and 20 showing swimming enhancement only in a range of Deborah numbers, our measure-
ments show that the ratio between the non-Newtonian and Newtonian swimming speeds of flexible
swimmers always increase with De. We conjecture that this enhancement was due to normal stress
gradients along the swimming direction.
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