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Abstract In this work, we use nonequilibrium molecu-
lar dynamics to simulate a contraction–expansion flow of
various systems, namely melts with molecules of various
conformations (linear, branched, and star), linear molecules
in solution, and a reference Lennard–Jones fluid. The equa-
tions for Poiseuille flow are solved using a multiple time
scale algorithm extended to nonequilibrium situations. Sim-
ulations are performed at constant temperature using the
Nose–Hoover dynamics. The main objective of this analysis
is to investigate the molecular origin of pressure drop along
planar contraction–expansion geometry, varying the length
of the contraction, and the effect that different molecular
conformations have on the resulting pressure drop along the
geometry. Pressure drop is closely related to mass distribu-
tion (in neutral and gradient directions) and branching index
of molecules. Also, it is shown that remarkable increases of
pressure drops are also possible in planar geometries, pro-
vided large extensional viscosities combined with moderate
values of the first normal stress difference in shear are con-
sidered, in addition to considerable reductions of the flow
area at the contraction region.
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Nomenclature (variables are given in dimensionless
or reduced units)

Rheological properties

η Viscosity
σ Stress tensor
τ Viscous stress tensor
N1 First normal stress function
η0 Limiting viscosity at zero shear rate
ηs Viscosity of solvent
[η] Intrinsic viscosity
λ Relaxation time
c* Critical concentration
φ Concentration per site
σ11, σ22 Normal stress components in the x1 and x2

directions

Dynamic properties

Q Volume flow rate
P0, P1 Pressure evaluated at the beginning and

end of the measurement region
�P Total pressure drop
�PEntry Excess pressure drop originated by the

reduction in flow area
�P0, �P1 Pressure drop under developed flow condi-

tion prior and past the contraction
�PAdim Relationship between the pressure drop

experienced by the solution and L-J fluid•
ε = �v1/�x1 Strain rate
〈v〉0 Mean velocity of fluid at the beginning of

the measurement region
EV Rate of dissipation
UNHi Energy removed by thermostat per particle
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Geometric properties

x1 Direction of flow
x2 Direction of velocity gradient
x3 Neutral direction
L1, L2, L3 Length of the simulation region in x1, x2, and

x3 directions
Lc1, Lc2 Length of contraction in x1 and x2 directions
̂β Contraction ratio
Af Flow area
Npz Number of planes perpendicular to the x2

direction

Molecular dynamics variables

ρ Reduced density
T Reduced temperature
N Total number of sites
M Number of chains
S Number of solvent particles
σ Diameter (size) of particle
ε Potential well depth
kv Spring constant for the FENE potential
R0 Maximum extension of the bond for FENE

potential
mi Particle mass
U(rN) Total energy of the configuration
U(rij ) Pair interaction energy
ULJ (rij ) Pair interaction energy in the Lennard–Jones

potential
UFENE(rij ) Pair interaction energy in the FENE

potential
U(rc) Energy evaluated at the cutting radius
rij Scalar distance between particles i and j
rN Position vector of the configuration
ri Position vector of particle i
vi Velocity vector of particle i
Fi Force vector of particle i
FT i Force associated to the thermostat for

particle i
Fe External force field
Vζ Thermostat velocity coordinate
ξ Thermostat position coordinate
QS Thermostat mass
LS Thermostat degrees of freedom
β Reciprocal of reduced temperature

Conformational parameters

le Backbone effective length of a chain
BI Branching index
BC Number of branches per chain
El Molecular weight

〈

R2
g

〉

Mean square radius of gyration
〈

I 2
1

〉

,
〈

I 2
2

〉

,
〈

I 2
3

〉

Eigenvalues of mass distribution tensor in
the x1, x2, and x3 directions

Introduction

The contraction–expansion flow through planar or axisym-
metric geometries has been a benchmark problem which
allows testing available constitutive equations and new
computational tools applied to different length scales. Else-
where, we have studied the flow of linear molecules
(Castillo-Tejas et al. 2009) and a Boger fluids (González-
González et al. 2009) through contraction–expansion
geometries with 4:1:4 and 2:1:2 ratios, respectively, using
nonequilibrium molecular dynamics simulations. In the
present work, two groups of fluids through a 2:1:2
contraction–expansion geometry are analyzed. Each group,
with different rheological characteristics, was selected for
studying (1) the effect of molecular structure on the pres-
sure drop along the geometry and (2) the origin of the excess
pressure drop. In the following, we present a discussion on
the results in the framework setup in previous works related
to the two issues mentioned above.

To analyze the effect of the structure of molecules on the
extensional flow measured in terms of pressure drop, the
contraction–expansion flow of polymer melts formed by
molecules with various structures and branching indexes is
simulated. It is already recognized that molecular structure
as well as molecular shape are some of the important factors
that dictate the rheological behavior of macromolecular sys-
tems (Jabbarzadeh et al. 2003; Woods-Adams et al. 2000).
Under simple shear flow, branched molecules present large
viscosity and less accentuated shear-thinning and normal
stress differences (Daivis et al. 1992; Xu et al. 1995, 1997;
Sendijarevic and McHugh 2000; Le Tu et al. 2009a, b).
Zero shear-rate viscosity η0 is sensitive to the branch
length, and this effect decreases with increasing shear rates.
At low shear rates, linear molecules adopt a more elongated
ellipsoidal shape along the flow direction than that of the
branched molecules, with larger concentration of segments
directed along the gradient and neutral directions. This con-
formation induces larger degree of molecular interactions
in the linear molecules than that of the branched molecules
and a larger viscosity and relaxation times. The effect of
branching is more accentuated at high shear rates, where
the ellipsoid exhibits higher segment concentration directed
along the gradient and neutral directions. The stability
induced by the branches leads to a larger flow resistance
than that of the linear molecules, inducing lower shear
thinning, lower elasticity, and larger second normal stress
coefficients Castillo-Tejas et al. (2005).
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At extensional flow conditions, the extensional viscosity
of branched polymers is sensitive to the presence of branch-
ing in the chain as well as to the relaxation time (Gotsis
and Zeevenhoven 2004; Ogura and Takahashi 2003; Wagner
2004; Gabriel and Munstedt 2003). Apparently, branched
structures present extension thickening with different mag-
nitudes to those exhibited by linear molecules with increas-
ing strain rate. This effect sometimes presents advantages in
polymer processing (Moller et al. 2009). Neelov and Adolf
(2003, 2004) used the Brownian dynamics to simulate the
extensional flow of linear and branched structures. They
found that the maximum chain extension, measured in terms
of radius of gyration, is lower in the branched structures, and
that lower degree of branching leads to higher extensional
viscosity.

In addition to studying the effect of molecular structure
on the pressure drop, this paper investigates the molecular
origin of the excess pressure drop. Nigen and Walters (2002)
measured the pressure drop through contraction geometries
(2 ≤ ̂β ≤ 32), in planar and axisymmetric configura-
tions, with short and long exit dies. Contraction gap/channel
width ratios of 20 or larger were used to produce a two-
dimensional flow through a slit. Experiments were carried
out for two Newtonian liquids and two Boger fluids. Results
show no difference between the Newtonian and Boger flu-
ids (with similar viscosity) for planar contractions. In the
axisymmetric contraction, however, larger pressure drops
were obtained for Boger fluids. They concluded that the
excess pressure drop observed in axisymmetric geometries
is associated to an increase in the size of the vortices and
extensional viscosity. From molecular dynamics simula-
tions, we show that the excess pressure drop can also be
predicted in planar configurations when a suitable flow-area
reduction is considered.

The absence of this phenomenon in planar geometry is
due to the low elastic response of the fluid related to lower
deformation rates in this geometry. This result and the rela-
tion between vortex enhancement and pressure drop have
been highlighted by Walters and Webster (2003). To this
respect, it was found that the strain rate experienced by the
fluid depends on the type of geometry, since in axisymmet-

ric geometries,
•
ε ≈ ̂β, while in planar,

•
ε ≈ ̂β (Rothstein

and McKinley 2001, 2002; Haward et al. 2010c). Rothstein
and McKinley (1999, 2001) analyzed the flow of a Boger
fluid through the contraction–expansion cylindrical geom-
etry, for contraction ratios within 2 ≤ ̂β ≤ 8 and various
curvatures for the constriction corners. Larger values of epd
with respect to the Newtonian fluid case were found. They
established that the hysteresis cycles and the dissipated
energy are closely related to the pressure drop, provided
that the uniform transient uniaxial extensional flow can
simulate the center-line stresses and molecular conforma-
tions existing in the contraction flow. Genieser et al. (2003)

found that upon increasing the contraction ratio in pla-
nar geometries, the deformation rate accumulated through
the contraction increases. Additional numerical simula-
tion contributions are numerous (see, for example, Szabo
et al. 1997; Wapperom and Keunings 2001; Aboubacar
et al. 2002; Alves et al. 2003; Binding et al. 2006; Aguayo
et al. 2008) as well as the constitutive equations used to
reproduce the kinematics and dynamics of the contraction–
expansion flow. In most of these works, for Boger fluids,
a decrease in pressure drop with respect to the Newtonian
reference liquid is predicted. Recently (Walters et al. 2009;
Tamaddon-Jahromi et al. 2011), it was found that the fail-
ure of the Oldroyd-B model to predict the correct trend in
epd is related to a strong dependence of the first normal
stress difference N1 on shear rate (quadratic for all shear
rates). For axisymmetric configurations, a valuable and
clear analysis show that the prediction of excess pressure
drop depends on a balance between extensional viscos-
ity (ηE) and the first normal stress difference (N1). These
results are also consistent with those of previous works
assessing the importance of extensional stresses in contrac-
tion flows (Binding and Walters 1988; Binding 1988, 1991;
Lubansky et al. 2007).

In the past decade, the number of studies on the micro-
flow of complex fluids has increased considerably, where
the scale of work is of order of micrometers. Recently,
Haward et al. (2010a, b, 2012a, b) reproduced the exten-
sional flow of the dilute and semi-diluted solutions through
a cross-slot micro-device for the study on stagnation points
from pressure drop measurements and birefringence. Rodd
et al. (2005, 2007) analyzed the flow field and excess pres-
sure drop in the flow of the polyethylene oxide through
a micro-contraction 16:1. They established that the small
length scales and high deformation rates in the contrac-
tion throat lead to a significant extensional flow effect.
The authors identify four flow regimes where the transition
from one regime to another is detected by pressure drop
measurements. Similar conclusions were obtained in other
studies (Haward et al. 2010c; Li et al. 2011a, b; Lanzaro
and Yuan 2011). It is important to mention that Rodd et al.
(2005) shows that solutions of polyethylene oxide (PEO)
exhibit a higher pressure drop than the pure solvent. How-
ever, the rheological response of these fluids indicates that
the shear viscosity of PEO at 0.05 and 0.3 % is two and
eight times greater than that of pure water, respectively. We
believe that these differences in the viscosities are respon-
sible for the higher pressure drop in the polymer solutions,
although we are open to accept experimental evidence of
edp in the planar case if these experiments show convinc-
ingly that the pressure drops measured are realized by using
liquids with the same Newtonian viscosity. Similar observa-
tions can be obtained in other studies (Castillo-Tejas et al.
2009; Campo-Deaño et al. 2011).
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The theoretical developments on the flow through
contraction–expansion geometries include those based on
continuum mechanics and, recently, on molecular dynam-
ics. They differ in the particular spatial and temporal
ranges. Molecular dynamics can reproduce the complex
fluid behavior, such as abrupt changes in geometry, although
the simulation scale is not directly comparable to macro-
scopic predictions from continuum models; nevertheless,
it helps in the interpretation of rheological complex flows
due to its connections with molecular structure and confor-
mation under flow. In view of the previous suitability of
the finite extensible nonlinear elastic (FENE)-CR model to
simulate pressure drops in Boger fluids Tamaddon-Jahromi
et al. (2010), here we use a model based on monomer
springs with a FENE potential. Comparisons are made with
a reference Lennard–Jones fluid. In contrast to our previ-
ous studies, in this work, the zero shear-rate viscosity is the
same for the non-Newtonian fluids studied in order to have
a common basis of comparison.

The manuscript is organized as follows. The “Theory
and simulation method” section presents the theory and
simulation method, including the equations of motion. The
“Geometry and simulation method” and “Calculation of
molecular properties” sections deal with the construction
of the simulation region and calculation of the rheologi-
cal properties. The “Simple shear flow” section includes
the rheological response of fluids under simple shear flow.
The “Results and discussion” section analyzes the effect
of molecular structure on the extensional rheology and
excess pressure drop in planar geometries. Finally, the main
conclusions are presented in the “Conclusions” section.

Theory and simulation method

System of units

In real units, the length and time scales corresponding to
molecular dynamics are in the order of 10−9 m and 10−12 s,
respectively. Simulations within these numerical values can
lead to overflow or underflow as a result of floating-
point operations. To avoid this, all physical quantities are
expressed in a set of dimensionless units (or reduced units),
and once the properties have been measured in dimension-
less units, they can easily be scaled to the suitable physical
units for each problem of interest.

For molecular dynamics studies using chosen potentials
based on the Lennard–Jones potential, parameters ε and σ

are the most appropriate units of length and energy, to which
a value of one is assigned. These, together with the bead
mass (m = 1.0), represent the basic units of this simulation
work, where all physical quantities are expressed in dimen-
sionless (or reduced) units. Table 1 shows the relationship

between mi , ε, and σ used to express in dimensionless
units the important variables used in the work. Only as a
reference, Table 1 includes the conversion factors between
dimensionless and real units considering a site of CH2

groups. Note that, in this work, the chain molecules are
represented according to the model of Kremer and Grest
(1990), so σ , ε, and monomer mass (m) should be larger
than those of a CH2 site.

Systems under study

Five fluids are considered in this work (see Fig. 1) includ-
ing linear, star, and branched structures with a density
of 1.0σ−3, 1.025σ−3, and 1.03σ−3, respectively. Similar
densities have already been used in molecular dynamics
simulations of polymer solutions and melts (Castillo-Tejas
et al. 2005; Busic et al. 2003), and, in this work, we take
care that the systems are in the liquid state by calculating
the radial distribution function (not shown). Each polymer
melt is constituted by 500 chains, each one with 25 linked
sites but with different molecular structure. Star polymers
have a backbone effective length le of 17 linked sites, one
branch with eight linked sites and with a branching index
(BI) of 1.47. The branched polymer includes a backbone
chain of 13 linked sites, along which six are equally spaced
branches, each one bearing two segments (see Table 2), and
a branching index of 11.54. It is important to mention that
the branching index is defined (Jabbarzadeh et al. 2003)
as BI = BC ∗ El

/

le where BC is the number of branches
per chain, El is the molecular weight, and le is the maxi-
mum end to end distance of the chain (see Table 2). Note
that the chain length is smaller than the entanglement length
(Ne = 35) but long enough that chains exhibit Gaussian
statistics (Kremer and Grest 1990).

Fluids 4 and 5 correspond to solution of linear molecules
and a simple fluid constituted by spherical particles, respec-
tively. The solution has a density of 1.05σ−3 including 75
linear molecules, each one with 20 linked sites, immersed in
13,500 spherical particles (the solvent). Finally, the simple
fluid is made of 15,000 spherical particles with a density of
1.096σ−3 (see Table 3).

Molecular model

In molecular dynamics formulations, the motion of particles
in the system is described by classical mechanics includ-
ing particle–particle interactions. The detailed interaction
among particles is given by the summation of the overall
pair–pair contributions according to

U
(

rN
) =

∑

i

∑

j>i

U
(

rij
)

, (1)
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Table 1 Some quantities
expressed in Lennard–Jones
reduced units and conversion
factor between the reduced and
real quantity, considering a
CH2 group as a reference site

Physical quantity L-J unit As a reference SI unit for CH2

Length σ 3.93 × 10−10m

Mass M 14 kg/kmol

Energy ε 6.489 × 10−22J

Number density 1.0 / σ 3 16.47 nm−3

Temperature ε / kB 47 K

Time (mσ 2 / ε)1/2 2.35 × 10−12s

Volume flow rate (εσ 4 / m)1/2 2.58 × 10−17m3/s

Stress ε / σ 3 10.69 MPa

Viscosity (mε)1/2 / σ 2 2.51 × 10−5kg/m s

Rate of dissipation (ε3 / σ 2m)1/2 2.75 × 10−10J/s

Shear rate (ε / mσ 2)1/2 4.25 × 1011s−1

where U(rij ) accounts for the potential energy among pairs,
and rij is the scalar distance between particles i and j. The
force acting on a particle is obtained from the gradient of
the potential function:

Fi = −∂U
(

rN
)

∂ri
. (2)

In order to reproduce the interactions between particles,
two intermolecular potential are used: (1) the Lennard–
Jones truncated and shifted potential and (2) FENE potential
(Warner 1972). The Lennard–Jones potential is given by

ULJ(rij ) =
⎧

⎨

⎩

4ε

[

(

σ
rij

)12 −
(

σ
rij

)6
]

− U(rc), rij < rc

0, rij ≥ rc

(3)

Fig. 1 Schematic representation of the systems under study

where σ is the diameter of the site, ε is the potential energy
parameter, and U(rc) is the energy evaluated at the cut-
ting radius (rc). For all simulations in this work, the cutting
radius was equal to 21/6σ . It is important to mention that
in this work, the force is not shifted. On the other hand, the
FENE potential is given by

UFENE(rij ) =
⎧

⎨

⎩

− kvR
2
0

2 ln

[

1 −
(

rij
R0

)2
]

, rij < R0

∞, rij ≥ R0

(4)

where kv is the spring constant equal to 100ε/σ 2, and R0 is
the maximum extension of the bond equal to 1.5σ (Castillo-
Tejas et al. 2005). Equations 3 and 4 represent the functional
form of the intermolecular potential.

Based on Fig. 1, the molecules of the systems 1, 2, 3, and
4 are represented according to the monomer-spring model
of Kremer and Grest (1990). This model considers that the
molecular chain is represented by a spring, and the mass
is concentrated in a monomer or site. A molecule is then
envisaged as a collection of sites connected through non-
harmonic springs. The attractive FENE potential (Eq. 4)
and the repulsive part of Lennard–Jones potential (Eq. 3)
reproduce conveniently the behavior of polymer solutions
in confined geometries by molecular dynamics simulations.
Nonadjacent sites of the molecules and spherical molecules
interact with each other through the Lennard–Jones poten-
tial which contains attractive and repulsive interactions
between components (Eq. 3).

Equations of motion

The contraction–expansion geometry consists in Poiseuille
flow through a planar rectangular channel with a reduction
in flow area (see Fig. 2). In molecular dynamics, the flow
motion is simulated by an imposed external force Fe (Todd
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Table 2 Zero shear-rate viscosity (η0), relaxation time (λ), and information of the molecular structure of the polymer melts

Systems Molecules le SB BC El BI ρ η0 λ

(1) Linear 500 25 – – 25 – 1.000 28.9 147

(2) Star 500 17 8 1 25 1.47 1.025 30.1 149

(3) Branched 500 13 2 6 25 11.54 1.030 27.1 134

et al. 1995; Evans and Morriss 1990), where the particle
motion is described by the following equations:

dri

dt
= vi (5)

dvi

dt
= Fi

mi

+ Fe

mi

i − Vζ vi (6)

dξ

dt
= Vξ (7)

dVξ

dt
= 1

QS

[

∑

i

miv2
i − LS

β

]

(8)

where vi represents the velocity of particle i with respect
to the laboratory frame of reference (i.e., the sum of the
peculiar and streaming components). The peculiar velocity
is the rate of change of the position of the particle under
equilibrium conditions, i.e., in the absence of external
perturbations. According to the geometry under study, the
x1-component of the velocity vector is affected by the
imposed external force Fe; therefore, only the x2- and
x3-component of the velocity vector develop a peculiar
velocity. It is noteworthy that Fe is only applied to the input
of the simulation region.

The flow motion generates viscous heat which needs to
be removed from the system, so the Nose–Hoover (Nose
1984) thermostat is used to maintain the temperature con-
stant. According to Eqs. 7 and 8, the dynamics variables of
the thermostat ξ and Vξ are the coordinates of position and
velocity, respectively, and QS is its associated mass. Finally,
LS is the degree of freedom, and β is the reciprocal of the
reduced temperature.

Geometry and simulation method

N is the total number of sites of size σ with a temperature
of 3.0ε/kB and reduced density (ratio of the total number

of sites and simulation volume). Particles are confined in
a simulation region shown in Fig. 2. Dimensions are given
in units of σ . The computational region is a 2:1:2 ratio, the
contraction–expansion geometry with origin located in the
middle point of the domain. The length of the simulation
region is estimated according to the following considera-
tions: (1) the dimension of contraction region (Lc1, Lc2, and
L3) is greater than those of regions used in the simulation of
the Poiseuille flow (Castillo-Tejas et al. 2005; Zhang et al.
2007), where these studies reported the behavior of bulk
properties like density and radius of gyration for polymer
melts; (2) L1 should be sufficiently large for fully devel-
oped flow in the x1-direction (13 Lc1). Table 4 shows the
dimensions in reduced units of the simulation region con-
sidering a Lc1 / Lc2 ratio equal to 1. In the cases of linear
molecules (system 1) and the polymer solution (system 4),
values of Lc1 / Lc2 greater than one were used. The incre-
ment in the Lc1 / Lc2 ratio keeps Lc1 constant, allowing the
same length in the flow direction but with smaller length
along x2. These geometrical factors permit reductions in the
flow area along the contraction region, in fact simulating
various orifice sizes.

To maintain longitudinal homogeneity, the external force
is usually applied to all particles, as reported in other simu-
lation works (see, for example, Todd et al. 1995; Zhang et al.
2007). However, the contraction flow is not homogeneous,
so Fe is imposed only at the entry region of the simulation
domain. As shown in Fig. 2, the measurement region is lim-
ited to −0.25L1 = x1 = 0.25L1, and the external force Fe

is applied to each particle positioned at the entry point of the
simulation domain m1 = x1 = m2, where m1 = −0.5L1

and m2 = −0.5L1 + L1/13, ensuring a fully developed
flow at the entry region without affecting the measurement
region. The magnitude of the external force Fe varies from
0 to 7.8εσ−1 and depends on the fluid type, confinement
distance, density, and geometry. It is important to mention
that instabilities in algorithm of integration and sometimes
rupture between linked sites in the chain molecules were
originated by higher values of Fe to 7.8εσ−1. For linear

Table 3 Equilibrium data for the Newtonian fluid and diluted solution

Systems Total sites Linear chain Sites per chain φ c* η0 [η] λ ρ

(4) Solution 15,000 75 20 0.10 0.38 6.6 3.13 62.5 1.05

(5) L-J fluid 15,000 – – – – 6.5 – – 1.096
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Fig. 2 Schematic representation of the 2:1:2 planar contraction–
expansion geometry, whose origin (x1 = x2 = x3 = 0) is located in
the center of the contraction with dimensions of Lc1 • Lc2 • Lc3

and branched chains under pressure of Poiseuille flow with
a reduced density of 1, Castillo-Tejas et al. (2005) used
values for Fe between 0.1εσ−1 and 0.35εσ−1. In the flow
of linear chains and a Lennard–Jones (L-J) fluid through
a contraction–expansion 4:1:4 ratio, Castillo-Tejas et al.
(2009) used external forces of 0.5εσ−1 ≤ Fe ≤ 3.5εσ−1

for linear molecules and 0.125εσ−1 ≤ Fe ≤ 1.0εσ−1 for
the L-J fluid with density of 0.84σ−3. For complex flu-
ids through a contraction–expansion, Fe values two decades
larger than those under uniform Poiseuille flow are required.
However, it is important to mention that the peak velocities
obtained in the previous works are similar, independent of
the magnitude of the external force.

The initial configuration of particles is generated con-
sidering the entire simulation domain where particles lying
in this region are equilibrated in the absence of external
perturbations. Once the initial configuration is generated,
the external force is imposed to produce the flow, and the
minimum image and periodic boundary conditions are then
applied to the flow and neutral directions (x1 and x3 coor-
dinates), respectively. If the center of mass of a molecule
(or spherical particles) leaves the simulation domain along
the x1 and x3 directions, the molecule enters the region
through the opposite side. It is important to mention that in
the x2-direction, fluid is confined by using stochastic walls
(Rapaport 2004), such that, if a particle crosses the wall, this
is repelled to the interior of the flow domain, and the effects

of no slip and roughness are simulated by recalculation and
scaling of the particle velocity at the objective temperature.
Finally, the simulation time included two million of time
steps (�t = 0.001σ(m/ε)1/2) for all systems.

Calculation of molecular properties

Radius of gyration
〈

R2
g

〉

Conformations of the linear, branched, and star chains
(and its solutions) for various simulation conditions were

analyzed. The mean-squared radius of gyration
〈

R2
g

〉

was

obtained by summing the three eigenvalues (
〈

I 2
1

〉

,
〈

I 2
2

〉

, and
〈

I 2
3

〉

) representing the three main axes of the ellipsoid (con-
taining the segment distribution in the three directions) of
the mass distribution tensor G (Rapaport 2004).

Stress tensor

In this work, the plane method for nonhomogeneous flow
(Todd et al. 1995) is used to calculate the stress tensor in the
fluid, according to the following expression:

σϕα(ϕ) = 1

A

〈

N
∑

i=1

pαipϕi

mi

δ(ϕ − ϕi)

〉

+ 1

2A

〈

N
∑

i=1

Fαisgn(ϕi = ϕ)

〉

, (9)

where σϕα is the stress tensor component acting along direc-
tion α through a plane normal to the ϕ axis. A is the area of
the plane normal to the ϕ axis, sgn(ϕi − ϕ) is equal to one
if (ϕi − ϕ) > 0 and to −1 if (ϕi − ϕ) < 0. Furthermore,
Fαi is the α-component of the force acting on particle i, and
pαi and pϕi are the α and ϕ components of the momen-
tum of particle i, respectively. The stress tensor σ is related
to the nonequilibrium components of the pressure tensor
such that σ = −P. The total stress σ implies the contribu-
tion of the pressure and that of the viscous stress, such that
σ = −pI + τ . The plane method allows for the calculation
of the stress components σ11 and σ22 in the computational

Table 4 Dimensionless (or reduced) lengths of the simulation region

Systems L1 L2 L3 Lc1 Lc2 Lc1/Lc2

(1) Linear 1.0/1.3 171.7 26.4/20.3 2.9/3.7 13.2 13.2/10.2 1.0/1.3

(2) Star 171.7 26.4 2.8 13.2 13.2 1.0

(3) Branched 171.7 26.4 2.8 13.2 13.2 1.0

(4) Solution 193.0 29.7/22.8/18.5 2.6/3.4/4.1 14.8 14.8/11.4/9.3 1.0/1.3/1.6

(5) L-J Fluid 193.0 29.7 2.5 14.8 14.8 1.0
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domain. In molecular dynamics the total normal stress con-
tains the nonseparable contributions from the viscous stress
τ and pressure pI.

Rate of dissipation

The pressure drop is directly related to the viscous dis-
sipation term -τ : ∇v. It is important to establish the
molecular origin of the rate of viscous dissipation along
the contraction–expansion geometry. The viscous dissipa-
tion induces an increase in temperature and in the velocity
gradients. An important assumption considers that the heat
removed by the thermostat is equivalent to that arising from
the temperature increase by viscous dissipation, in order to
maintain the temperature constant. The expression for the
viscous dissipation is given by an integral over the entire
system volume so Ev = − ∫

V
(τ : ∇v)dV where τ is the

stress tensor and ∇v is the velocity gradient. Considering
that the stress field is the same in the fully developed flow
regions upstream and downstream the contraction, Szabo
et al. (1997) suggested that the rate of dissipation Ev is
related to the pressure drop by

Ev = �PQ. (10)

Now, the force associated to the thermostat FT i (see
Eq. 6) is given by FT i = −miVξvi = −∇UNHi , where
UNHi is the energy removed per particle i. The rate of
change of the energy removed per particle is then given by

∂UNHi

∂t
= miVξv

2
i . (11)

Equation 11 is used to estimate the rate of energy
removed by thermostat in the flow direction. Considering
that the thermostat removes or adds heat, even under equi-
librium, the rate of energy removed under flow is obtained
after subtracting that under equilibrium (Fe = 0). It can be
demonstrated that the amount of energy that the thermostat
removes (given by Eq. 11) to maintain a constant temper-
ature is equivalent, as a first approximation, to the rate of
dissipation (given by Eq. 10).

Simple shear flow

Simulations were performed in a range of dimensionless
shear rates of 0.001 to 1.0 according to the conditions shown
in Tables 2 and 3. Simple shear flow was simulated using
the method SLLOD (Evans and Morriss 1990), where the
temperature was kept constant by coupling the equations
of motion to the Nose–Hoover thermostat. The variation of
dimensionless shear viscosity (η) and dimensionless first

normal stress difference (N1) as a function of shear rate (
•
γ )

are shown in Figs. 3 and 4, respectively, for all fluids. It
is important to mention that reduced values of shear rate

Fig. 3 Reduced shear viscosity η versus shear rate
•
γ for polymer

melts, diluted solution and L-J fluid

are similar to those used in other studies (see, for exam-
ple, Xu et al. 1995); however, reduced shear rates reached in
the simulation are usually two or three orders of magnitude
higher than those commonly found in polymer processing
(see Moore et al. 2000). Figure 3 shows the results for
polymer melts composed of the linear, star, and branched
molecules. The first Newtonian region is located in the

range of 0.0002 ≤ •
γ ≤ 0.005. For reduced shear rates

larger than 0.005, shear-thinning viscosity is apparent; the
slope of −0.39 is consistent with data reported for polymer
melts (Bird et al. 1987). The interplay between molecu-
lar interactions and molecular structure largely determines
the rheological behavior of chain molecules. For example,
branched molecules have a slightly lower η0 than those of
linear and star molecules (see Table 2), but in the shear-
thinning region, the viscosity of linear molecules is lower
than that of branched molecules. It is important to mention
that the density of these systems was selected to exhibit a

Fig. 4 Reduced first normal stress difference N1 versus shear rate
•
γ

for polymer melts and diluted solution
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similar zero shear-rate viscosity η0 but ensuring that they
are in the liquid state. In Fig. 4, N1 (dimensionless first
normal stress difference) grows with reduced shear rate ini-
tially with quadratic dependence on shear rate but the slope
lower as the shear rate increases. This variation of N1 with
reduced shear rate is suitable to obtain an increasing epd,
as mentioned by Walters et al. (2009). Table 2 also lists
the relaxation times of these fluids which were calculated
according to λ = 6Elη0

/

π2ρT where El is the number of
segments per chain.

The solution of linear molecules with concentration
per site (φ) equal to 0.10 was considered for pressure
drop simulations. The concentration per site φ is the
ratio of the solute number of sites and the total num-
ber of sites (solute and solvent). This concentration is the
same to that used elsewhere (González-González et al.
2009) and was selected to ensure a dilute regime accord-
ing to the value of the critical concentration (c*). In

reduced units, c* is given by c∗ = 3El

/

4πR3
g where Rg

is the radius of gyration obtained from the equilibrium
molecular dynamics. Although molecular size and shape
obtained from the radius of gyration and its eigenvalues
depend on the selected model, the ratio of the eigenval-
ues

[

I 2
1 /I 2

3 : J 2
2 /I 2

3 : I 2
3 /I 2

3

]

is known to be independent
of this choice. For polymeric solutions, this ratio is [14.8 :
3.06 : 1.0], predicted by the “self-avoiding random-walk”
model (Mazur et al. 1973). The solution has an eigen-
value ratio of [15.0 : 3.3 : 1.0]. For the polymer solution,
Fig. 3 exhibits a Newtonian region extending to reduced
shear rates around 0.02 with a slight shear-thinning region
with slope of −0.06. In Fig. 4, the solution of linear
molecules exhibits a quadratic dependence on shear rate at
low shear rates, thereafter a weak dependence on shear rate
is predicted. The shear viscosity is almost constant for the
reference fluid modeled by the Lennard–Jones potential.

Results and discussion

The first part of this section analyzes the flow of the lin-
ear, star, and branched polymers to identify the effect of
molecular structure on the pressure drop. The second part
deals with the flow of the solution of linear molecules and
the L-J fluid, with different Lc1 / Lc2 ratios to characterize
the behavior of excess pressure drop (epd). It is important
to mention that the flow through the contraction–expansion
geometry (see Fig. 2) corresponds to a planar flow. This
condition is guaranteed by the application of the periodic
boundary conditions and minimum image concept in vor-
ticity direction which lead to considering an infinite length
along this direction. Additionally, it is verified that the v3-
component of the velocity vector be zero (peculiar velocity),
with no dependency with the x3-coordinate.

It is noteworthy that properties estimation is performed
after the system has reached equilibrium (Haile 1997),
ensuring that the profile of the property of interest does not
change with time. Results were obtained for a number of
time-averaged fluid properties where the properties exam-
ined here are stress, radius of gyration, velocity profiles, and
rate of energy removed by thermostat in the test region. To
determine an average property, we divide the test region into
a sufficient number of slices (for velocity, radius of gyration,
and rate of energy removed by thermostat profiles) or planes
(for stress profiles). Then, we calculate the time-averaged
property for each slice or plane. For example, we add the x-
component of the particle velocities in each slice, and then
we average over the number of particles in that slice at each
time step. Finally, the velocity profile is obtained by com-
puting the time average velocity for each slice during the
simulation. Similar considerations are made for the stress
profiles.

Total pressure drop (�P)

The plane method is used here to estimate dimensionless
normal component of the stress tensor σ 22. To calculate σ 22,
a number of planes Npz normal to the x2-direction are placed
along the central symmetry line (x2 = 0). Each plane has a
length along the flow and neutral directions of 0.5L1 / Npz

and L3, respectively. The calculation of the σ 22 component
includes the contribution of the pressure and viscous stress
σ 22 = p + τ 22, the latter originated by the velocity gradi-
ents. The pressure profiles were obtained as a function of
dimensionless axial coordinate (x1) and reference flow rate
(Q) obtained by the product of the average velocity of the
fluid before the contraction (< v > 0) and the flow area
(Af = L2L3).

Figure 5 shows the pressure profiles for the five fluids,
with a Lc1 / Lc2 ratio of 1, and the pressure profiles of
the linear polymer and polymer solution with ratios larger
than 1. It is noteworthy that each point in the pressure
profile represents the calculation of σ 22 on a plane x1x3,
such that the pressure profile consists of 30 and 50 points
for polymers melts and solutions, respectively. Pressure is
the only property with estimation error which it is not
shown in the figure for clarity. However, the standard devi-
ation of the average pressure per plane, estimated by the
Flyvbjerg and Petersen method (Flyvbjerg and Petersen
1989), was less than 0.5 %. At the beginning of the measure-
ment region, for Lc1 / Lc2 = 1, the linear, star, and branched
polymers have dimensionless pressure values of 16.30,
19.60, and 23.78, respectively, and just before the contrac-
tion, the polymers experience a linear decrease in pressure,
with a slope depending on molecular structure. Within the
interval −41.4 = x1 = −11.8, the slope of the pressure
lines is 0.05 for the linear polymer and 0.13 for the branched
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Fig. 5 Variation of reduced normal stress σ 22 (or pressure), evaluated
at the center line of confinement, as a function of the axial coordinate
x1 for fluids under study

molecules, showing that the molecules with branch index
other than one develop larger pressure drops. Outside the
contraction, reduced pressure values are similar in the three
cases (around 4). As the ratio Lc1 / Lc2 increases to 1.3,
in the linear molecules, the pressure profile changes dras-
tically. It has a value of 28.45 at the beginning of the
measuring region, and upon approaching the contraction,
the pressure loss has a slope of 0.31, a six times larger than
in the case with Lc1 / Lc2 = 1. The pressure profile for
the linear polymer with Lc1 / Lc2 = 1.3 exhibits a slight
increase in x1 = −14.8, which is consistent with results
obtained by Aguayo et al. (2008) using continuum models
for Boger fluids. Apparently, this increase in the pressure
profile exhibited by the linear molecules before the contrac-
tion depends on molecular structure and geometry. Again,
the largest pressure drop occurs at the entry region, while
at the expansion region, pressure continues to decrease lin-
early for Lc1 / Lc2 = 1.3. In the inset of Fig. 5, pressure pro-
files for the solution and L-J for Lc1 / Lc2 = 1 have similar
slopes, although a larger drop is observed in the solution for
Lc1 / Lc2 = 1.3. Before the contraction, values of the slopes
are 0.19 and 0.16, and at the expansion, these are 0.04 and
0.03 for solution and L-J, respectively. Upon increasing Lc1

/ Lc2 for the solution, the slope increases from 0.16 to 0.38.
Reduced total pressure drop (�P = P0 − P1) was cal-

culated at the beginning (P0) and end (P1) of the test region
(planes located at x1 = ∓0.25L1). Figure 6 exhibits the
total pressure drops for all fluids when Lc1 / Lc2 = 1.0,
showing larger pressure drops in the melts. The maximum
values reached for the external force Fe were 7.0εσ−1 and
6.4εσ−1 in the melts and solution, respectively, although the
flow rates are smaller, as expected. In Fig. 6, attention is
given to the branched molecules with similar dimensionless
zero shear-rate viscosity (η0) but with different branch-
ing index (BI = 11.54). These molecules exhibit larger

Fig. 6 Reduced pressure drop �P as a function of the volume flow
rate Q for polymer melts, diluted solution and L-J fluid

pressure drops which increase linearly with flow rate Q.
In the interval 7 = Q = 50, �P varies from 2.03 to
11.9 in the linear molecules, from 2.69 to 14.8 in the star
molecules, and from 2.01 to 16.7 in the branched molecules.
In contraction–expansion geometries, the pressure drop is
related to the resistance to strain rate, i.e., the extensional
viscosity (Binding 1991), and the important geometrical
parameter is the ratio Lc1 / Lc2. In the linear molecules, an
increase in Lc1 / Lc2 from 1.0 to 1.3, �P increases from
11.9 to 21.9 when the flow rate is 50. This result is relevant
in polymer melts, since by changing the ratio Lc1 / Lc2 or
reducing the contraction flow area, similar pressure drops
can be obtained in melts with dissimilar molecular structure.

It is remarkable that these predictions are in qualita-
tive accord with experimental data of Boger fluids through
porous media (Campo-Deaño et al. 2012). Indeed, in the
data for all packed beds, the variation of the pressure drop
at low interstitial velocities is linear, as what happens for
Newtonian fluids. For increasing velocity and above a crit-
ical value, the slope increases due to elastic effects. This is
precisely observed in the pressure drop versus the flow rate
predictions shown in Fig. 6. For low flow rates, an initial
linear region is apparent. Of course, the initial slope of these
curves along this region is proportional to the viscosity. For
increasing flow rate, the nonlinear increase in the pressure
drop reveals an onset for elastic effects, which is presumably
related to molecular structure. In the linear molecules, elas-
tic effects appear at higher flow rates than those of the other
molecules. In this case, the enhancement in pressure drop is
likely to be compensated by the largest shear thinning (see
Fig. 3). As expected, the onset for elastic effects appears at
lower flow rates as the ratio Lc1 / Lc2 changes from 1 to 1.3.

In Fig. 6, the solution and the L-J fluid exhibit simi-
lar pressure drops (from 2.4 to 49) in the range of 14 =
Q = 177. This result is consistent with experimental data
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in planar contractions (Nigen and Walters 2002) with vari-
ous contraction ratios (̂β) and length-to-height ratio (L / a)
analogous to the ratio Lc1 / Lc2. For example, for ̂β = 4 : 1,
L / a is 14.29. In Table 4, the ratios Lc1 / Lc2 considered
for the dilute solution are 1.0, 1.3, and 1.6, which have the
most important effect on the pressure drop. Note that L-
J Fluid exhibits a change in the slope as a non-Newtonian
fluid. Non-Newtonian behavior in simple fluids character-
ized by a Lennard–Jones potential has already been reported
(Delhommelle et al. 2003, 2004). All these results seem
to suggest than the L-J fluid is not particularly suitable to
describe the rheological behavior of a Newtonian solvent.
In Fig. 3, as a first approximation, we consider that the L-
J fluid is nearly Newtonian. In Fig. 6, the solution of linear
molecules in a geometry with a ratio of Lc1 / Lc2 = 1.3
experiences larger pressure drops than those of a L-J fluid
with Lc1 / Lc2 = 1.0. This comparison identifies the effect
of reduction in the flow area on the epd experimentally
observed in axisymmetric geometries (Nigen and Walters
2002; Rothstein and McKinley 1999, 2001). The present
predictions reveal a large effect in area reduction on the
pressure drop in planar geometries as well.

An additional objective of this study is to demonstrate
the equivalence between the rate of dissipation (Ev) and
removal of energy by the thermostat (UNHT ), when fluids
flow through a contraction-expansion geometry. In Fig. 7,
the rate of dissipation and energy removed by the thermo-
stat as a function of flow rate are disclosed for linear and
branched polymers, and for the dilute solution. Calculation
of UNHT involves cells (Nc) where Nc is equal to 23 and 50
for melts and solution, respectively, within the calculation
domain of −0.25L1 = x1 = 0.25L1. For each cell (1. . . Nc),
the particle contribution (∂UNHi

/

∂t) is used with Eq. 11

Fig. 7 Reduced rate of dissipation Ev and rate of removed energy by
thermostat UNHT as a function of the volume flow rate Q for linear
and branched polymers, and for solution of linear molecules

to estimate the rate of energy removal per cell UNH (k).
For example, for cell number one located at beginning of

test region, UNH (1) is given by UNH (1) =
Np
∑

i=1
∂UNHi/∂t ,

where Np is the number of particles in cell number one.

Values shown in Fig. 7 are obtained using
Nc
∑

k=1
UNH(k). Cal-

culation of Ev involves values of the total pressure drop
�P and flow rate Q in Fig. 6. For equal intervals of Q,
the rate of energy removal in the thermostat (UNHT ) is
larger in the branched molecules than that of the linear
molecules and dilute solution, which is consistent with the
pressure drop exhibited forLc1 / Lc2 = 1. Results of Ev

and UNHT show close agreement, since the mean depar-
ture, defined as 100 ∗ |Ev − UNHT |/Ev , is 3.46, 6.67, and
20 % for the linear, branched molecules, and the solu-
tion, respectively. We like to emphasize that this is a first
approximation to the equivalence of Ev and UNHT for
this geometry. The equivalence further ensures the correct
thermostat operation according to energy conservation. In
apparent consistency among predictions shown in Fig. 7, the
pressure drop �P is closely related to the rate of removed
energy (UNHT ). An apparent advantage representing Eq. 11
is that the rate of dissipation can be estimated in every point
of the flow domain, which enables one to grasp the causes
that originate the pressure losses along complex trajecto-
ries. Having demonstrated the equivalence between Ev and
UNHT , UNHT will be named the rate of dissipation in the
rest of the paper.

Extensional rheology of melts

Here, we analyze the pressure drop, deformation, and shape
of the three molecular structures at the same flow rate (Q).
In Fig. 8 Lc1 / Lc2 = 1.0. the derivative �P / �x1 and the rate
of dissipation per cell UNH (k) are shown as functions of the
axial coordinate x1 for the three melts. In Fig. 8a, the pres-
sure gradient �P / �x1 prior the contraction is the largest
in branched molecules. A peak is located at the contraction
entry, and inside the contraction, the gradient diminishes
almost to zero. The first peak depends on molecular struc-
ture, being the largest for branched molecules, followed by
the star molecules. A second peak of �P / �x1 in melts
at the contraction exit is shown. In the inset in Fig. 8a
(Lc1 / Lc2 = 1.0, 1.3), the pressure gradient �P / �x1 in lin-
ear molecules increases from 0.63 to 1.47 at the contraction
entry. Note that �P / �x1 is negative for the linear poly-
mer at x1 = −29.6, implying that the pressure at that point
is larger. In Fig. 8b, the rate of dissipation profiles shows
striking similarities with the pressure profiles, i.e., a first
peak at the entry region followed by an almost zero value
inside the contraction and a second peak at the exit. The
rate of dissipation at the entry of the contraction is 162.0,
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Fig. 8 a Variation of reduced pressure gradient �P / �x, and b
reduced rate of dissipation UNH (k), as a function of the axial coordi-
nate x1 for polymer melts at Q ≈ 50

181.0, and 224.0 for the linear, star, and branched poly-
mers, respectively. The rate of dissipation per cell UNH (k)
is then associated to both the value of the pressure and pres-
sure gradient itself. Note that UNH (k) is negative in the
interval −38 ≤ x1 ≤ −21 which may be associated
to additional heat introduced by the thermostat in that
region.

To elucidate the contribution of the extensional stress σ 11

associated to strain rate, in Fig. 9,
.
ε = �v1

/

�x1 is plot-
ted along the central symmetry line. Before the contraction,
similar values of strain rate are shown, while inside the con-
traction, a maximum is attained, with values of 0.05, 0.08,
and 0.09 for the linear, star, and branched molecules, respec-
tively. Past the contraction, the gradient attains a minimum
value within 10.0 ≤ x1 ≤ 20.0 depending on the molecular

structure. Thereafter,
•
ε increases up to zero at x1 30.0 for

all structures. The extensional viscosity, in turn, should first
decrease at the contraction entrance, but inside it, a drastic
increase occurs, since the stress overshoots and the gradient
goes through a minimum. It is important to note that peaks

Fig. 9 a Variation of reduced strain rate ε̇ = �ν1/�x1, and b reduced
stress difference σ11 − σ22, as a function of the axial coordinate x1 for
polymer melts at Q ≈ 50

in the rate of dissipation UNH (k) shown in Fig. 8b coincide

with the peaks in σ 11 − σ 22 and gradient
•
ε = �v1

/

�x1

shown in Fig. 9.
The extensional flow generated at the contraction entry

and exit zones produce a deformation–relaxation process of
the molecular conformation. In Fig. 9b, the stress differ-
ence σ 11 − σ 22 is plotted with axial distance x1 following
a trajectory along the central symmetry line. Within the
interval −41.44 ≤ x1 ≤ −20.0 the branched molecules
exhibit the largest stress difference σ 11 − σ 22 = 4.81.
At x1 = −20.0, σ 11 − σ 22 goes through a minimum at
the contraction entry zone (x1 = −6.6). Collisions among
the molecules result in a net force in the gradient direc-
tion. Inside the contraction (−6.6 ≤ x1 ≤ 6.6), σ 11 − σ 22

increases to a maximum of 13.6, 14.0, and 15.4 for the
linear, star, and branched molecules, respectively.

An analysis on the conformational changes of the sys-
tems is now carried out to associate the molecular structure
to the rheological response. The shape of the molecule is
associated to the principal axes (eigenvalues of the mass
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distribution tensor,
(〈

I 2
1

〉

,
〈

I 2
2

〉

, and
〈

I 2
3

〉)

which circumscribe
the distribution of the segments in the directions x1, x2, and
x3 (the square of the radius of gyration is the sum of the
squares of the three eigenvalues). Generally, the segments of
a molecule are distributed primarily along the major axis of
the ellipsoid

(〈

I 2
1

〉)

, with reduced presence along the other
axes. For Lc1 / Lc2 = 1, Fig. 10 shows the variation of the
eigenvalue

〈

I 2
3

〉

as a function of x1 for the linear, star, and
branched molecules. The branched molecule possesses low
segmental distribution along the neutral direction, which is
related to high extensional viscosity (see Fig. 6).

It is generally accepted that the flow of polymers through
contraction–expansion experience uniaxial elongation at the
contraction and a biaxial expansion at the exit, that is, an
elongation–relaxation process. This is corroborated by the
variation of

〈

I 2
3

〉

shown in Fig. 10. For example, for the star
molecule,

〈

I 2
3

〉

goes through a minimum prior to the con-
traction (see curve labeled 1) and grows at the exit (see
5), showing the deformation–relaxation process. Between
points (1) and (5), two biaxial expansions (from 1 to 2, and
from 3 to 4) and two uniaxial elongations (from 2 to 3 and
from 4 to 5) are implied. These conformation changes are
associated to the observed peaks in pressure drop and rate
of dissipation shown in Fig. 8.

The shear stress is closely related to the rate of dissipa-
tion through the contraction (Castillo-Tejas et al. 2009) and,
hence, to the pressure drop. The variation of the shear stress
σ 21(x2) prior to the contraction (−41.4 ≤ x1 ≤ −6.6) goes
from zero along the symmetry line and grows as the walls
are approached, with a maximum located at the reentrant
corner, whose magnitude depends on the molecular struc-
ture (0.96, 1.19, and 2.13 for the linear, star, and branched
molecules, respectively). This behavior of the shear stress
(not shown) influences the total pressure drop for Lc1 /
Lc2 = 1.

Fig. 10 Reduced mass distribution tensor eigenvalue
〈

I 2
3

〉

as a function
of the axial coordinate x1 for polymer melts at Q ≈ 50

In some works (Doyle et al. 1998; Rothstein and
McKinley 2002), a close relationship between the hystere-
sis cycles of stress conformation and rate of dissipation is
suggested. In Fig. 11, a stress–conformation hysteresis cycle
is predicted for the three polymers at the reference flow
rate. The cycle is expressed in terms of the stress difference

σ 11 − σ 22 and the mean-squared radius of gyration
〈

R2
g

〉

.

For Lc1 / Lc2 = 1, the enclosed area is larger in the linear
molecules than in the branched ones, revealing that the hys-
teresis area is not directly related to the rate of dissipation
or pressure drop. However, upon increasing Lc1 / Lc2 to 1.3
for the linear molecules, the area increases and so as the rate
of dissipation.

Extensional rheology in dilute solution

The excess pressure drop observed in axisymmetric geome-
tries is related to the dimensions of the contraction itself
(contraction ratio), and here, we can manipulate the ratio
Lc1 / Lc2 in planar geometries to obtain a similar effect.
As shown in Fig. 6, �P(Q) is similar for the Newtonian
and dilute solutions for Lc1 / Lc2 = 1 and augments
upon increasing Lc1 / Lc2. Excess pressure drops along
contraction–expansion geometries are usually presented in
terms of the ratio of the excess pressure drop (�PEntry)
originated by the reduction in flow area to the pressure drop
under steady flow conditions. Thus,

�PEntry = �P − �P0 − �P1 (12)

where �P is the total pressure drop (see Fig. 6), and �P0

and �P1 are the pressure drops under steady flow condi-
tions prior and past the contraction, respectively. (�PEntry)
represents the additional pressure drop that the fluid experi-
ences through the contraction. To obtain the pressure drops

Fig. 11 Reduced stress difference σ 11 − σ 22 as a function of reduced

radius of gyration
〈

R2
g

〉

for polymer melts at Q ≈ 50
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(�P0, �P1), steady flow conditions are here defined as
those corresponding to the test region where the molecu-
lar conformation is not modified by the contraction. With
regard to the behavior of

〈

I 2
3

〉

(see Fig. 14), steady flow is
predicted along the test region for x1 = j20j . Hence, the
nondimensional pressure drop is defined as follows:

�PAdim = �PEntry(Q)
/

�PEntry−LJ(Q) (13)

where �PEntry(Q) is the pressure drop experienced by
solution at a given flow rate, and �PEntry−LJ (Q) is that
experienced by L-J Fluid at the same flow conditions. In
Fig. 12, �PAdim (the excess pressure drop with respect to
the reference fluid) is plotted with the flow rate. An initial
decrease of �PAdim gives values lower than the reference
fluid, but for larger flow rates, positive increases are pre-
dicted. Likewise, positive increases upon the reference value
are reached as the contraction ratio Lc1 / Lc2 increases.
These results illustrate the right trend that �PAdim should
have as the flow area decreases and reveals that changes
in the geometrical ratio of the contraction may lead to
large effects on the extensional viscosity and, hence, on the
pressure drop.

Figure 13 presents the strain rate
•
ε = �v1

/

�x1 calcu-

lated along the symmetry line x2 = 0 as a function of the
axial coordinate x1. For x1 ≤ −30, the fluid velocity is con-
stant, increasing up to a maximum at the contraction entry
zone. For Lc1 / Lc2 = 1, the L-J fluid and the dilute solu-
tion exhibit same strain rate. Past the maximum, �v1 / �x1

goes through two minima at x1 ≈ 0 and x1 ≈ 20, associ-
ated to a diminishing velocity. Notice that upon increasing
the ratio Lc1 / Lc2 to 1.3 and 1.6 in the dilute solution
originates larger strain rates at the entrance and exit of the
contraction, and hence, larger pressure drops. As mentioned,

Fig. 12 Reduced pressure drop �PAdim as a function of volume flow
rate Q for the L-J fluid and the solution of linear molecules with
different ratios Lc1 / Lc2

Fig. 13 a Variation of reduced strain rate ε̇ = �ν1/�x1 obtained
from velocities profiles at x2 = 0, and b reduced stress difference
σ11 − σ 22 as a function of the axial coordinate x1 at Q ≈ 100 for
diluted solution and L-J fluid

Fig. 13a shows a maximum and a minimum in
•
ε located at

the entrance of the contraction at x1 ≈ 20. Both peaks are
consistent with the strain rate obtained in the works of Li et
al. (2011a, b). However, in this work, we predict additional

important variations in
•
ε located between the mentioned

maximum and minimum. This may be associated with the
resolution inherent in the molecular dynamics technique.

In Fig. 13b, the variation of σ 11−σ 22 is plotted as a func-
tion of the axial coordinate x1 for the dilute solution and the
L-J fluid, and for various Lc1 / Lc2 ratios. Results shown
in Fig. 12 reveal that the epd for the dilute solution (upon
increasing the ratio Lc1 / Lc2) is associated to larger strain
rate and rate of dissipation. Results for a planar geometry
are consistent with the criteria pointed out by Walters et al.
(2009) and Tamaddon-Jahromi et al. (2011) for axisymmet-
ric geometries. These criteria relate the epd with a balance
of extensional viscosity ηE and N1. A weaker than quadratic
dependence of N1 with the shear rate and high extensional
viscosity promote larger epd values.
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In Fig. 14a, the axial dependence of the segment distri-
bution along the neutral direction

〈

I 2
3

〉

is illustrated. Upon
increasing the strain rate by augmenting the ratio Lc1 /
Lc2,

〈

I 2
3

〉

and
〈

I 2
2

〉

diminish in the solution. For example,
at the maximum of �v1 / �x1, the molecules in the solu-
tion present

〈

I 2
3

〉

values of 0.56, 0.53, and 0.50 for Lc1 /
Lc2 ratios of 1.0, 1.3, and 1.6, respectively. An interest-
ing observation is the fact that, in contrast to the molecules
of the melt, the molecules in solution exhibit a single
deformation–relaxation process. Major deformations occur
at the entrance of the contraction, as

〈

I 2
3

〉

and
〈

I 2
2

〉

(not
shown) go through a minimum and

〈

I 2
1

〉

increases up to a
maximum (not shown), in fact following a uniaxial defor-
mation. Relaxation defined here as a biaxial expansion
manifests through an increase in segment distribution along
the axes x2 and x3, coinciding with a decrease along x1.
Finally, Fig. 14b corroborates the effect of the ratio Lc1 /
Lc2 upon the molecular conformation in terms of the hys-
teresis cycles. Again, upon increasing the ratio Lc1 / Lc2, the
subtended area increases.

Fig. 14 a Reduced mass distribution tensor eigenvalue
〈

I 2
3

〉

as a
function of the axial coordinate x1, and b reduced stress difference

σ 11 − σ 22 as a function of radius of gyration
〈

R2
g

〉

, for diluted solution

at different Lc1 / Lc2

Conclusions

In this work, the flow of molecules of various conformations
through a planar 2:1:2 contraction–expansion geometry was
analyzed in detail, applying periodic boundary conditions
with minimum image along the neutral and flow directions.
Two fluids were considered: shear thinning and constant
viscosity liquids. The shear-thinning fluids comprised three
melts with similar zero shear-rate viscosity η0. The constant
viscosity fluids included a dilute solution and a reference
L-J fluid, both with similar η0.

Polymer melts

For a ratio of Lc1 / Lc2 = 1.0, the pressure profile P(x1)
and the total pressure drop �P depend on the branching
index, such that, upon increasing the index, the pressure
drop augments. The branched molecules (BI = 11.54)
exhibit the largest pressure gradient �P / �x1 along the
flow direction. However, by modifying the ratio Lc1 /
Lc2, �P may be larger in molecules with lower branching
index.

The rate of dissipation Ev and the energy removed by the
thermostat UNHT allow establishing their equality, as a first
approximation, indicating that the thermostat is consistent
with energy conservation. On the basis of this equivalence,

the rate of dissipation UNH (k), strain rate
•
ε = �v1

/

�x1,

and the stress difference σ 11 − σ 22 are closely related to
the pressure gradient �P / �x1. The molecular confor-
mation analysis indicates that, in the high pressure drop
region, melts experience multiple deformation–relaxation
processes. The branched molecules produce larger pressure
gradients, as the distribution of segments along the gradient
and neutral directions changes substantially. The geomet-
rical ratio Lc1 / Lc2 is an important parameter with high
influence upon the resulting pressure drop, as revealed by
the work required to deform the molecules measured in
terms of the hysteresis cycles.

Solution and L-J fluid

Results in planar geometries indicate that upon increasing
Lc1 / Lc2, the solution of molecules exhibits larger pressure
drops than that of the reference L-J fluid with Lc1 / Lc2 = 1,
both fluids of similar viscosity. Results presented here
signal a major effect of the geometric parameters. Chang-
ing the ratio Lc1 / Lc2 in planar contraction–expansions
(reducing the flow area of the contraction) leads to simi-
lar strain rates observed in axisymmetric geometries. For
Lc1 / Lc2 = 1, the L-J fluid and the dilute solution present
the same pressure drop assigned to similar deformations
and rate of dissipation. Upon increasing Lc1 / Lc2, the dilute
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solution presents epd caused by larger strain rate. The stress
difference σ 11−σ 22 with weaker than quadratic dependence
on the shear rate is associated to the epd observed in the
solution.

Under flow conditions, the product λ
•
ε is related to the

drag force that experiences a chain segment, for example,

in the dumbbell model for λ
•
ε < 0.5, the force between

bonds dominates, and the molecule possesses a coil confor-
mation (Larson 1999). At the fully developed region prior

to the contraction, the product λ
•
ε has a mean value of

4.28, indicating the importance of the drag forces and, there-
fore, of the strain rate. The above discussion allows the
possibility that in axisymmetric geometries, the net force
on the molecules drags them toward the central confining
line, in larger proportions than in the case of planar geome-
tries. This in turn develops larger extensional stresses and
pressure drops.
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