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Abstract The dynamics of formation and evolution of vortex rings with low Reynolds numbers created in
a piston-cylinder arrangement are studied. The ratio of the piston displacement Lm to the nozzle diameter
D0 determines the vortex size and evolution. Experiments with different conditions are presented: translation
velocity of the piston and stroke ratio Lm/D0 for 150 < Re < 260. Measurements of the 2D velocity field
were obtained with a PIV technique. The vortex circulation was computed considering a vortex identification
scheme (Q criterion). The results show that there is a critical value of Lm/D0 above which the circulation
inside the vortex cannot increase and remains constant. For the Reynolds numbers studied, we found that the
limit stroke ratio is 4 ≤ Lm/D0 ≤ 6. As Re decreases, the vortices become “thicker”; therefore, they are able
to accumulate more vorticity and increase their circulation.

1 Introduction

In the last thirty years there has been an increased interest in the study of vortex rings. Many of the early
works appear in the reviews of Shariff and Leonard [1] and Lim and Nickels [2]. There are many examples
of the importance of vortex rings in nature. Many biological flows are characterized by vortex production and
vortex shedding. In animal locomotion, the production of coherent structures such as vortex rings is common;
these structures have been studied in squid jet propulsion by Anderson and Grosenbaugh [3] as well as Bartol
et al. [4,5]. Dabiri et al. [6] studied a species of jellyfish that creates single vortex rings. This kind of vortex
can also be seen in internal flows, such as the discharge of blood into the left ventricle of heart (Gharib et al.
[7]). Querzoli et al. [8] studied experimentally the motion of vortex rings generated by gradually varied flows
which reproduce the characteristics of these biological conditions.

For the case of laminar vortex rings, in particular for those generated by a piston-cylinder arrangement, there
are many experimental studies, for instance Maxworthy [9], Didden [10], Glezer and Coles [11] and Weigand
and Gharib [12]. The seminal paper of Gharib et al. [13] revived the interest in this subject. They found that the
circulation that a vortex ring could attain was finite: There was a maximum amount of fluid vorticity that could
be contained within a ring. The parameter that determined whether the circulation had reached a maximum was
the “formation time” t∗ = Upt/D0, where Up is the mean piston velocity, t (0 ≤ t ≤ T0) is the discharge time,
and D0 is the inner diameter of the cylinder. In particular, UpT0/D0 is equal to the stroke ratio Lm/D0, where
T0 is the total discharge time and Lm is the total piston displacement. They found that for values smaller than
Lm/D0 ≈ 4, a solitary vortex ring was formed, while for larger values of Lm/D0, a leading vortex followed
by a trailing jet and secondary vortices was observed. The circulation contained within the leading vortex
ring could not be further increased even if Lm/D0 kept on increasing. The critical value of Lm/D0 for which
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the transition between these two states occurs was called the “formation number.” For the vortex-trailing jet
regime, the vortex ring circulation was computed after the vorticity field of the leading vortex ring had been
completely disconnected from that of the trailing jet. For different experimental configurations Gharib et al.
[13] found that the formation number lies in the range of 3.6–4.5.

Some authors have discussed that the value of the formation number may vary because of different factors:
changes in the piston velocity program (acceleration) [14], the cylinder exit velocity profile [15] or, more
recently, the existence of an imposed bulk counterflow [16] and a background co-flow [17]. In particular,
Linden and Turner [18] discussed that the maximum value of Lm/D0 above which a single ring cannot be
formed may be as large as 7.83. By temporally varying the exit cylinder diameter during formation, Dabiri and
Gharib [19] observed that the formation number could be delayed up to 8. Based on the study of a jellyfish
swimming kinematics, Dabiri et al. [6] reported that the limiting vortex formation time was delayed to at least
8. Following Rosenfeld et al. [15], we define the Reynolds number as follows:

Re0 = D0Umax

ν
= D0Up

ν
, (1)

where ν is the kinematic viscosity and Umax is the maximal piston velocity; for an impulsive velocity program,
Umax ≈ Up. The main purpose of the present investigation is to explore the vortex ring formation process for
Re0 of O(100). For such low Reynolds numbers, a physical separation between the leading vortex ring and the
trailing jet does not occur. For this reason, the procedure to compute the vortex circulation previously used for
flows with higher Re0 is not appropriate. Based on Eq. (1), Gharib et al. [13] presented results of flows with
Re0 = 1,905 and Re0 = 3,810. Hence, we propose an alternative method based on the so-called Q criterion
to identify the vortex ring and measure its circulation.

In the present investigation we analyze the formation process of vortex rings for a range of Re0 in between
150 and 260. In accordance with the previous investigations, we found that the vortex rings attain a maximum
circulation for a critical value of the stroke ratio. We discuss our results to justify these findings. To our
knowledge, measurements of the formation process of vortex rings for Re0 of O(100) do no exist in the
literature. We also propose a procedure to improve the location of vortex ring centers by computing the
curvature of Lagrangian trajectories in the flow.

2 Determination of vortex ring properties

2.1 Vortex identification

Notwithstanding vortices have been studied for a long time, there is not a consensus of a mathematical definition
of a vortex in the fluid mechanics community. Different definitions are based on vorticity limit values, pressure
minima, closed pathlines or streamlines. Jeong and Hussain [20] discuss the problems of using these definitions.
Normally, a vortex is associated with a region of flow with high vorticity; however, there is no universal threshold
over which the vorticity value is to be considered high [21]. In real fluids, the diffusion of vorticity by viscosity
impedes the existence of a sharp boundary between rotational and irrotational flow.

The most widely used schemes to identify vortices are based on the local analysis of the velocity gradient
tensor ∇u [22]. Examples of these Galilean invariant techniques are the Q criterion of Hunt et al. [23], the
λ2 criterion of Jeong and Hussain [20] and the � criterion proposed by Chong et al. [24]. The analysis of
∇u provides a rational basis for vortex identification and the general classification of 3D flow fields [24]. In
particular, Querzoli et al. [8] used the � criterion to obtain the vortex rings area on the measurement plane.
For two-dimensional flows, the Q criterion is known as the Okubo–Weiss criterion proposed by Okubo [25]
and Weiss [26]. The Q criterion uses the velocity gradient decomposition:

∇u = S + Ω, (2)

where S = 1
2 ((∇u) + (∇u)t ) is the symmetric and Ω = 1

2 ((∇u) − (∇u)t ) the antisymmetric component of
∇u. The second invariant Q for an incompressible flow is defined as

Q = 1

2
(|Ω|2 − |S|2), (3)

where |Ω| = tr [ΩΩ t ]1/2 and |S| = tr [SSt ]1/2. Where Q > 0, the local measure of rotation rate is larger than
the strain rate; therefore, the spatial region belongs to a vortex. This function can be evaluated point-by-point,
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Fig. 1 a Experimental setup, b Piston velocity programs for different voltages

and we can classify each point as being inside or outside the vortex ring. With this procedure, the vorticity
within the core of the vortex can be quantified without having to choose a vorticity threshold.

2.2 Vortex ring center

We use a method to find topologically relevant points in the flow to locate the vortex ring center. In a two-
dimensional flow, special points can be found in the regions where the local velocity becomes zero [27]. There
are two types of special points. When located in a region of the flow where the vorticity dominates, such
points are elliptic; in a strain-dominated region, they are hyperbolic (i.e., saddlelike). It has been shown that
the elliptical points correspond to the center of the vortices in the flow [24]. It is possible to find the elliptic and
hyperbolic points by computing the curvature of Lagrangian trajectories, that is, the trajectories of individual
moving fluid elements; in this case, we use the 2D velocity field obtained by the PIV technique. Near both
hyperbolic and elliptic points, the direction of fluid particle trajectories changes over very short length scales,
producing large curvature values. The curvature was obtained following the scheme of Braun et al. [28]:

k(t) = |u × ∂t u + u × [u · ∇u]|
|u|3 , (4)

where u is the velocity field and ∂t is the partial time derivative. Once the points of local maximum curvature
are identified, it is possible to classify them as elliptic or hyperbolic using the Q criterion described above. If the
special point has a Q value Q < 0, the local flow is dominated by strain; if Q > 0, where rotation dominates,
the point is the center of a vortex ring. It is important to note that the time resolution of our experiments (15 Hz)
is sufficient to compute the temporal term (as discussed later).

3 Experimental setup

Figure 1a shows the experimental setup. Experiments were performed in a tank using a piston-cylinder arrange-
ment. Vortex rings were generated by the displacement L of a piston inside the cylinder of diameter D0. The
tank and cylinder are made of plexiglass. The tank dimensions were as follows: 70×30×30 cm. The cylinder
is 40 cm long and is set horizontally at the center of the tank. The inner diameter is D0 = 25.7 mm. A sharp-
edged cylindrical nozzle was coupled at the end of the cylinder. The tip angle of the nozzle is α = 20◦, and
the exit diameter is also 25.7 mm. The nozzle exit was placed 25 cm (7.8D0) from the back wall (BW), 15 cm
(5.8D0) from lateral walls (LW) and 45 cm (17.5D0) from the front wall (FW). The x-axis coincides with the
centerline of the nozzle, and the nozzle-exit plane is located in the plane x = 0.

The driving mechanism consists of the following. The piston was coupled with a stem which was pushed
through by a screw, coupled to a DC motor. The mean piston velocity Up was proportional to the supplied
voltage. The DC power supply was controlled by a computer using LabView®. Therefore, it was possible to
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control and fix the piston velocity and the piston displacement. If the desired displacement was Lm = nD0
where n = 1, 2, . . . , 10, the piston moved a distance xm so |xm − Lm | /Lm ≤ 0.02. Different velocities and
displacements of piston were used. The maximum mean piston velocity was Up ≈ 20 cm/s, and the maximum
displacement was Lm = 10. In Fig. 1b we present three different piston velocity programs normalized with
the mean velocity. In these tests, we measured the piston velocity by calculating its displacement between
consecutive frames obtained with a digital camera at different frame rates (fps). We can observe that the piston
velocity program was impulsive and the mean piston velocity was reached at approximately 0.25 s; the error
of these measurements is 5 %.

In order to keep the Reynolds number small, three different aqueous solutions of polyethylene glycol
(PEG) were used. The PEG used in the present investigation has a molecular weight of 20,000 g/gmol and
is fabricated by Clariant®. The smallest Reynolds number, Re0 = 150, is a 6 % weight PEG solution with
viscosity μ = 8 mPa s and density ρ = 1.07 g/cm3 at 23 ◦C, while the mean piston velocity for this case
was Up = 4.8 cm/s. For Re0 = 200 we used the same liquid and increased the mean piston velocity to
Up = 7.70 cm/s. For Re0 = 260 we increased the PEG concentration as well as the piston velocity to have
μ = 12.7 mPa s and Up = 16 cm/s. To measure the viscosity we used a Brookfield® DV-III viscometer; the
density was measured using a pycnometer and an analytical balance.

Two-dimensional velocity fields were obtained using the particle image velocimetry technique (PIV), using
a Dantec Dynamics system. A Nd:YAG laser system generates a 50 mJ energy 532 nm laser beam which was
converted to a laser sheet using optics. The laser sheet illuminated a vertical slide at the center of the cylinder. A
CCD camera was positioned to record images illuminated by the laser sheet. The resolution of the camera was
1,008 × 1,016 pixels, and the typical measurement area was 141 × 142 mm2. Neutrally buoyant silver-coated
glass spheres with an average diameter 10 ± 5μm were used as particle tracers. The velocity field consisted
of 62 × 62 vectors using an interrogation area of 32 × 32 pixels and an overlap of 50 %. The spatial resolution
was 2.24 × 2.24 mm2 for most of the experiments, and the sampling rate was 15Hz. A detailed description of
the PIV technique can be found in [29] and [30].

3.1 Measurements uncertainties

Several authors have analyzed the uncertainty in the measurements of velocity gradients obtained by PIV and
other optical techniques because the calculation of these quantities depends on the spatial derivatives of the
measured velocity [31–33]. Following the procedure proposed by Kline and McClintock [32], the uncertainty
in the measurement of the velocity gradient tensor ∇u can be calculated as:

δ∇u
〈∇u〉 =

[(
δU

〈U 〉
)2

+
(

δλ

〈λ〉
)2

]1/2

, (5)

where δU , δλ, 〈U 〉 and 〈λ〉 are the uncertainty and mean value of the velocity and length, respectively. 〈∇u〉 is
the measured value of the velocity gradient tensor. Considering relative uncertainties of 4 % in both velocity
and length, a maximum value of δ∇u/〈∇u〉 ≈ 5.6 % is expected. Lourenco and Krothapalli [33] suggested
that the truncation error is also important in the computation of velocity gradients. This error can be obtained
by the expression [31]:

Ti j = −1

6

∂3ui

∂x3
j

(δxi )
2, (6)

where the repeated indices do not imply summation. Using Eq. (6) it is possible to obtain the maximum
truncation error in a vector field map. In our case, we have measured that (Ti j )max/(〈U 〉/〈λmax〉) ≈ 0.017,
where λmax is the mesh distance (spatial resolution) and 〈U 〉 is the modulus of the velocity vector for which Ti j
is maximum. Following the arguments proposed by Ozcan et al. [31], we estimate that the uncertainty of the
measurement is roughly twice the truncation error; hence, δ∇u/〈∇u〉 ≈ 3.4 % considering only the truncation
error. Hence, the total error in the measurement of the velocity gradient is below 6 %.
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4 Results

Figure 2 shows the velocity, vorticity and the Q criterion fields (top, middle and bottom rows, respectively)
of two flow cases, both at Re0 = 260. The first one (Fig. 2 a, b, c) corresponds to the production of a single
and isolated vortex ring. This configuration occurs for a relatively small stroke ratio; in this case Lm/D0 = 3.
The second case (Fig. 2 d, e, f) corresponds to a flow for which a leading vortex ring followed by a trailing
jet was observed. This regime results for larger Lm/D0 (in this case Lm/D0 = 8). Both vortices are located
at a position of x ≈ 5D0. Different experimental condition (exit diameters, exit plane geometries and non-
impulsive piston velocities) carried out by Gharib et al. [13] showed that the transition between the two regimes
occurs when Lm/D0 ≈ 4.

The vorticity field of Fig. 2b shows that most of the vorticity in the flow is concentrated in the vortex ring
area. This means that the vorticity generated in the boundary layer inside the cylinder was introduced into
the vortex ring. On the other hand, the vorticity field for the case Lm/D0 = 8 shows a trailing shear layer
connected with the leading vortex ring. The process of separation between the vortex ring and trailing jet can
occur at different distances depending on the stroke ratio [15]; however, for our experiments (Re0 < 260), the
leading vortex ring never “disconnects” from its trailing jet. Dabiri [34] pointed out that the physical separation
is not to be confused with the vortex ring “pinch-off” which is the process whereby a forming vortex ring is
no longer able to entrain additional vorticity; the separation may occur later or not at all. Most authors have
limited the size of the vortex ring by choosing an arbitrary minimum vorticity contour value or a percentage
of the maximum vorticity at the vortex core. In our case, such criteria become subjective since the separation
between the vorticity fields of both the vortex ring and the trailing jet is not evidently observable.

Figures 2c and 2f show the Q fields for the previous cases. For the single vortex ring case we observe that
the region of high rotation rate (Q > 0) coincides with the core of the vortex ring. The plot shows that this
area is smaller than the corresponding vorticity field. The Q criterion map for the case Lm/D0 = 8 shows a
remarkable separation between the vortex ring and the trailing jet. In fact, it is possible to locate secondary
vortices behind the leading one. We can also observe strain-dominant regions of the flow (negative Q values,
indicated by the dashed lines in the figure) which are located mainly in front of the leading vortex ring. Based
on these observations, we will consider the area of the vortex ring to be that for which Q > 0.01 s−2 for all
cases. This Q value represents the uncertainty within which this quantity can be measured.

Figure 3 shows the location of points of maximum curvature (circles), and maximum (or minimum) vorticity
(squares) for Re0 = 150. The stroke ratio is Lm/D0 = 4, and the position of the vortex center (considering
maximum curvature) is x ≈ 8D0. Contours of constant curvature (a) and constant vorticity (b) are shown
in solid black lines. The minimum and maximum contour values of curvature are 150 m−1 and 3,000 m−1

(vortex center), respectively. The minimum vorticity value is 0.5 s−1, and the maximum absolute vorticity
value is 1.8 s−1. To calculate vorticity and curvature scalar maps (and also peak values), we first constructed
a subgrid of �x/3 and �y/3 (�0.75 mm) nodes, and then the velocity field was interpolated to fit the subgrid
using triangle-based linear interpolation. The temporal term u × ∂t u from Eq. (4) was obtained using a central
difference computation, that is, we considered the previous and following vector maps. However, it was also
possible to compute the curvature without this temporal term obtaining differences (in the peak curvature)
lower than 0.8 % in the axial direction. If x is the distance desired to locate the vortex ring (say x = 8D0), we
found a maximum error of |x − xk |/x ≤ 3 % (where xk is the vortex position measured with peak curvature)
but typically less than 1 %. Vector fields from Fig. 3 are resampled for clarity. It is important to note that in
most of our experiments the maximum vorticity coincides with the maximum Q value, that is, the region of
the flow with high rotation rate. However, the point of maximum vorticity does not necessarily coincide with
the point of maximum curvature. In general, the point of maximum vorticity tends to move toward the axis of
symmetry where velocity gradients are higher; this difference is more noticeable as Re0 decreases. We observe
that in fact the maximum point of curvature better locates the geometric centers of the vortex ring than the
maximum vorticity point, that is, the maximum curvature is located closer to the azimuthal axis (rotation axis)
of the vortex ring. It is important to note that the vortex presented in Fig. 3 is located at a distance in which the
vortex circulation has already achieved its maximum value; ergo, the vortex ring has completed its formation.
Some previous publications [35] indicate that it is possible to have vortical structures with extremum value
of vorticity outside the rotation axis. The so-called hollow vortices are characterized by a slowly rotating
center (weak vorticity), surrounded by a high-speed circumferential jet (strong vorticity). These vortices have
been observed in nature, specifically in geophysical flows like the Antarctic Stratospheric vortex (ozone hole)
and the Great Red Spot(GRS) on Jupiter [36]. We also observe that vortex rings tend to broaden as Re0
decreases.
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Fig. 2 Velocity, vorticity and Q criterion fields for Re0 = 260. Lm/D0 = 3 (left) and Lm/D0 = 8 (right). Vortex position at
x ≈ 5D0. Vorticity in s−1 and Q values in s−2

Figure 4 shows the vortex ring trajectory considering the points of maximum curvature and maximum
vorticity for stroke ratio Lm/D0 = 8 and two different Reynolds numbers. In this graph, the position of the
vortex ring center on the upper half plane (y > 0) is plotted. The points of maximum curvature (kmax) are
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Fig. 3 Comparison between points of a maximum curvature (filled circle) and b maximum (or minimum) vorticity (filled square).
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Fig. 4 Trajectory of vortex ring center considering maximum curvature and maximum vorticity for Lm/D0 = 8

located at a distance y/D0 ≈ 1 for both Reynolds numbers, while the points of maximum vorticity are close
to y/D0 = 0.5. As mentioned before, the maximum vorticity locates closer to the axis of symmetry. For a
given Lm/D0, Weigand and Gharib [12] found that the trajectories of the vortex rings centers are spatially
independent of the Reynolds number, in agreement with our results presented in Fig. 4. For all the results
presented in this paper, the vortex ring position is obtained from the point of maximum curvature.

Figure 5 shows the evolution of the non-dimensional vortex ring diameter Dv/D0 for different stroke
ratios and Re0 = 260. Dv is the distance between centers of the upper and lower half plane located from the
points of maximum curvature; xm is the mean x position of the centers. The results indicate that the vortex
ring diameter increases in the axial direction, which has been reported in several previous works. Didden [10]
found that for Lm/D0 ≤ 2 the vortex diameter increases with the stroke ratio, which is consistent with our
experimental results. We found, however, that when Lm/D0 ≥ 4 (and Re0 = 260), the vortex diameter initially
increases and then remains constant with a value close to 2D0. This indicates that the vortex ring reaches a
limit size even though the stroke ratio keeps on increasing. Gharib et al. [13] pointed out this constraint in
their flow visualizations. As the leading vortex ring loses its strength, it decelerates in the x direction and
the diameter may increase even more. For low stroke ratios, Didden [10] reported a sudden decrease in the
ring diameter after the end of each stroke. We observe the same phenomenon in Fig. 5 for Lm/D0 = 1 and
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Fig. 6 Horizontal velocity profile at y = 0 for different stroke ratios. Vortex ring center at x = 5D0. Re0 = 260

Lm/D0 = 2. It is important to note that the vortex ring diameters presented in Fig. 5 could be slightly different
from those reported in the previous works; for instance, Didden [10] presented D/D0 = 1.1–1.4 for rings
with Lm/D0 = 2. This difference results from the way through which the vortex ring center is located, in
our case the maximum curvature points. Didden measured the vortex ring diameter using dye visualization
images (movie films). If we consider the maximum vorticity points as the vortex centers, the vortex diameters
for Re0 = 260 and Lm/D0 = 2 would be Dv/D0 = 0.9–1.2.

The horizontal liquid velocity profiles (ux ) at y = 0 (axial line) are presented in Fig. 6 for different
stroke ratios. For all cases the piston velocity is Up = 16 cm/s, and the vortex ring is located at x = 5D0,
corresponding to a Reynolds number of Re0 = 260. The plot indicates that the ux velocity is maximum at the x
location of the vortex ring center (considering the maximum point of curvature). We also observe the presence
of the trailing jet behind the vortex ring, which appears in our experiments approximately when Lm/D0 ≥ 4.
This is consistent with Gharib’s experiments; however, as was mentioned before, at this Reynolds number the
shear layer does not separate from the vortex ring, that is, the vorticity fields of both the vortex and the shear
layer remain connected by iso-vorticity lines. It is important to note that the horizontal velocity profile for
Lm/D0 < 4 becomes symmetric as Re0 approaches O(1000). In our case, the solitary vortex ring broadens
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Fig. 7 Propagation velocity of vortex rings for different stroke ratios Re0 = 260

to seemingly form a trailing jet (see, e.g., Lm/D0 = 2 in Fig. 6). During the piston movement, there is an
acceleration of ux velocity at the axial line because of the initial growth of the boundary layer on the cylinder
wall; therefore, ux/Up > 1 for large stroke ratios as shown in Fig. 6.

Figure 7 shows the non-dimensional propagation velocity Uv of vortex rings for different stroke ratios
for Re0 = 260. The vortex ring velocity is obtained by a numerical differentiation of the vortex ring posi-
tion based on the location of maximum curvature. Didden [10] and Weigand and Gharib [12] indicated that
vortex ring velocity decays with time. For small stroke ratios (Lm/D0 = 2) the decay of the propagation
velocity is important. When the stroke ratio is relatively large Lm/D0 ≥ 6, the vortex ring velocity initially is
approximately 0.5Up and then it increases slightly as the vortex ring moves away from the nozzle to reach a
maximum of 0.7Up approximately; however, a vortex ring velocity decay is expected for larger distances from
the nozzle. The velocity for Lm/D0 = 4 remains constant close to 0.55Up before decaying at x ≈ 4D0. In their
analytical model Mohseni and Gharib [37] predicted a propagation velocity Uv = 0.5Up, which is close to this
particular stroke ratio. Querzoli et al. [8] reported the vortex propagation velocity for different piston velocity
programs (gradually varying flows). The Reynolds numbers are in the range 7.4 × 103 ≤ Re ≤ 1.5 × 104.
After an initial increase, the vortex travel velocity reaches a constant non-dimensional value in the range
0.6 ≤ Uv/u∗(ta) ≤ 0.8 depending on the velocity program. The velocity u∗(ta) is related to the integrated
velocity U0(t) at the orifice exit over the time ta , when the piston acceleration phase ends. The results presented
by [8] agree with the velocity values of Fig. 7 for relatively large stroke ratios despite the Reynolds number
differences. For Lm/D0 ≤ 4 the vortex propagation velocity rapidly decreases because of viscous effects.

Figure 8 shows the non-dimensional vortex ring circulation as function of the distance x/D0 from the
nozzle-exit plane. The Reynolds number is Re0 = 150. In the present investigation, we used the Q criterion
to obtain closed areas to integrate the vorticity and compute the vortex ring circulation, similar as [8]. The
circulation is obtained using the formula:

Γ =
∫

AQ

ωzdA, (7)

where ωz is the vorticity

ωz = ∂u

∂y
− ∂v

∂x
, (8)

and AQ is the region of flow where Q > 0 (for our calculations we consider Q ≥ 0.01s−2). Note that
considering this method to measure the circulation, only the vorticity in the core of the vortex is considered.
Thus, the circulation values presented here may be lower than those reported by others [13–15]. The points
plotted correspond to the average of five different runs of the piston. The error bars represent the standard
deviation of the data. It can be observed from Fig. 8 that the vortex circulation grows as the vortex moves
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Fig. 8 Non-dimensional vortex ring circulation at different distances from the nozzle. Re0 = 150

away from the nozzle until it reaches a maximum value after which it decreases. This basically means that
the vortex ring is initially fed of vorticity until it attains a saturation condition in which the vortex is not able
to accumulate more vorticity in its core. Beyond a certain distance the vortex circulation decreases because
of vorticity dissipation. In general, the larger the stroke ratio, the larger is the vortex circulation for a given
distance from the nozzle. For this particular Re0 number and when Lm/D0 > 4, the maximum circulation
values are reached at a distance between 3D0 ≤ x ≤ 5D0 which is markedly close to the exit. Moreover, for
low stroke ratios, that is, Lm/D0 = 2, the vortex circulation begins to decrease beyond x ≈ D0. In contrast, for
Re0 of O(1000) Gharib et al. [13] presented constant ring circulation values at a distance close to x ≈ 10D0.
The faster decay of circulation is due to the increased dissipation of flows with Re0 ∼ O(100).

Querzoli et al. [8] reported experimental results (7.4 × 103 ≤ Re ≤ 1.5 × 104) of the non-dimensional
vortex circulation for different piston velocity programs. The vortex circulation was obtained by integrating
the vorticity over the vortex area (identified by the ∇ criterion [24]) and made dimensionless using the scale
u∗(t)D0. After an initial increase, Querzoli et al. [8] observed that the vortex circulation reached a constant
value (plateau) ranging from 1.5 to 3 depending on the velocity program. In our case, the limiting vortex
circulation value is close to 2 (see Fig. 10). They also derived simple predictions of the vortex circulation
behavior based on the slug model (Shariff and Leonard [1]) to compare their results. The limiting constant
values for most velocity programs (1.5–2.5) predicted by [8] are in close agreement with our experimental
results. This means that the scale D0Up is good enough for an impulse velocity program regardless of the
Reynolds number value. Moreover, in agreement with their predictions, the vortex velocity behavior is very
similar as the vortex circulation. In our case, the Reynolds number of the vortices rings is relatively low; thus,
the vortex circulation does not remain constant for a long time; instead, it decreases faster because of viscous
dissipation.

Figure 9 shows the vortex ring circulation as a function of the stroke ratio Lm/D0 for Re0 = 150. The
curves correspond to different vortex ring positions. For clarity we present only some of the total distances
obtained. We can observe that the maximum vortex ring circulation for each stroke ratio is reached at different
distances from the nozzle; the same trend has been reported by Rosenfeld et al. [15]. Evidently, the larger the
stroke ratio, the farther the distance in which the vortex ring achieves its saturation. Besides the stroke ratio,
the Reynolds number may play a role in the distance or time at which the maximum vortex ring circulation is
achieved. For the Reynolds numbers studied in this investigation, the maximum values of vortex circulation are
achieved at a distance between 4D0 ≤ x ≤ 7D0. From Fig. 9 we observe that the maximum vortex circulation,
for Re0 = 150, is obtained when Lm/D0 ≈ 4. The maximum non-dimensional circulation value is close to
Γ/D0Up ≈ 2.

If we consider the maximum circulation value for each stroke ratio regardless of the distance at which
this value is reached, we obtain the plot shown in Fig. 10. In this graph we present three different Reynolds
numbers and the experimental results from Gharib et al. [13] (shown in their Fig. 6). Considering the piston
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mean velocity and the cylinder diameter, the Reynolds number of the data presented from Gharib et al. is
Re0 = 1,905. For the lower Reynolds number Re0 = 150, we observe that the maximum circulation value is
reached when the stroke ratio Lm/D0 ≈ 4; for Re = 200 and Re = 260 the stroke ratio is Lm/D0 ≈ 6. We can
observe that these limit stroke ratio values are close to those reported by Gharib et al. [13] for Re0 = 1,905.
For each Lm/D0, Gharib et al. computed the maximum vortex ring circulation by integrating the vorticity
within and iso-vorticity contour of 1 s−1. For these results, they did not specify the exact distance where the
vortex ring circulation was measured; however, for Lm/D0 > 4 they measured the vortex ring circulation at
a distance beyond which “. . . a clear separation between vorticity contours of the vortex from those of the
trailing jet existed.” For all the Reynolds numbers studied, the maximum non-dimensional circulation value is
approximately Γ/D0Up = 2. This suggests that at this value the leading vortex ring has reached a saturation
condition beyond which it is not possible to attain more vorticity, in agreement with the previous publications.
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For the case Re0 = 150 and Lm/D0 < 4, we observe that the vortex circulation is significantly larger than the
other Re0. We will discuss this further in the next section.

5 Discussion

We would like to compare our experimental results to those obtained by the previous analytical studies. Mohseni
and Gharib [37] and Linden and Turner [18] proposed models based on matching the properties of the ejected
fluid to the corresponding properties of a family of finite-core vortices studied by Fraenkel [38] and Norbury
[39]. The effect of viscosity was considered negligible. The properties of the ejected fluid plug were based
on the slug flow approximation (Shariff and Leonard [1]). The circulation Γp, the impulse Ip and the kinetic
energy Ep of the plug fluid are defined as follows:

Γp = 1

2
Up Lm, (9)

Ip = 1

4
πUp D2

0 Lm, (10)

Ep = 1

8
πcU 2

p D2
0 Lm, (11)

where c is the fraction of the nominal kinetic energy of the plug of fluid actually injected into the ring.
The vortex rings studied by Norbury [39] have vorticity ωφ (in cylindrical coordinates) proportional to the

distance r from the axis of symmetry. He classified these rings in terms of a non-dimensional mean core radius
ε defined by the equation:

ε2 = AR

π X2
R

, (12)

where AR is the area of the vortex ring core and X R is the ring radius (see Fig. 1 from Norbury [39]). The values
of ε are in the range 0 < ε ≤ √

2, extending from a vortex ring with small cross section (where ε → 0) to
Hill’s spherical vortex (for which ε = √

2). Equating the above equations to the corresponding scaled relations
in Norbury’s analysis, and considering circulation, impulse and energy conserved, Mohseni and Gharib found
the following equation:

Lm

D0
=

√
π

2

I 1/2
R Γ

3/2
R

ER
. (13)

Similary, Linden and Turner found

W

Up
= WR IR

2ER
, (14)

where W = Uv is the propagation velocity of the ring. The values ΓR , ER , IR and WR are available in tabulated
form for different mean core radii ε in Norbury’s paper [39]. Figure 11 shows the ratio between the velocity
propagation and the ejection velocity as a function of ε. The values are in the range 0.4 < W/Up < 0.7 which
compare very well with the vortex velocities shown in Fig. 7 for Re0 = 260 and Lm/D0 > 4; our velocities
are in the range 0.5 < Uv/Up < 0.7 before the decay. Figure 11 also shows the limit stroke ratio Lm/D0 as a
function of ε. The maximum value of Lm/D0 above which a single ring cannot be formed is Lm/D0 = 7.83.
This limit corresponds to Hill’s spherical vortex. For a parabolic input velocity profile, Linden and Turner [18]
proposed corrections to the constants of the slug flow Eqs. (9)–(11). Using the same procedure, they found
that the maximum plug length is reduced by a factor of 0.43, that is, the (Lm/D0)lim corresponding to Hill’s
vortex would be 3.39.

Figure 11 indicates that it is possible to increase the value of the critical stroke ratio if the vortex size
increases too. Mohseni and Gharib [37] suggested that thicker vortex rings could be generated using a cylinder
with a time-varying exit diameter during formation; therefore, the formation number could be delayed to higher
values. The above was confirmed experimentally by Dabiri and Gharib [19]; they found that the vortex ring
pinch-off could be delayed up to Lm/D0 = 8. Mohseni et al. [14] showed that the pinch-off could be delayed
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(Lm/D0 > 4) if the trailing shear layer accelerates relative to the forming vortex ring so that the shear layer
energy was sufficient to be accepted by the vortex ring making them thicker (closer to Hill’s spherical vortex).

In Fig. 10 we observe that for Re0 = 150 the limit stroke ratio at which the vortex circulation reaches a
maximum is close to Lm/D0 ≈ 4. For this Reynolds number we also observe that for 2 ≤ Lm/D0 ≤ 4 the
vortex circulation appears to be larger than the other cases. This fact may indicate that it is also possible to
generate thicker vortices as Re0 decreases. To verify this possibility, we measured the vortex ring radius based
on the definition of ε (Eq. (12)). We define the non-dimensional radius as:

R2
Q = AQ

π R2
v

, (15)

where Rv = Dv/2 is the distance between the maximum point of curvature and the axis of symmetry (y = 0).
As mentioned before, we consider the vortex ring area as AQ : the region of flow where Q > 0, which is also
the region within which we calculated the vortex ring circulation. Figure 12 shows the non-dimensional radius
RQ as a function of Lm/D0 for three low Reynolds numbers and one with high Re0 (for comparison). The
non-dimensional radius is computed when the maximum vortex ring circulation is achieved. For low stroke
ratios, RQ ≈ 0.5. We can observe that for low Reynolds numbers RQ increases until it reaches a value close
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to RQ = 0.6. In order to make a comparison, we included in this graph the values of RQ for vortex rings with
Re0 = 1230 (using water). In this case, we observe that the non-dimensional radius is close to RQ = 0.47
which are lower values than those for Re0 ∼ O(100). Based on these observations, we can conclude that the
size of the vortex rings (measured as RQ) increases as Re0 decreases. For this range of Re0, the vortices are
capable of growing “thicker.” More circulation can be fed in their cores, reaching a size close to that of a Hill’s
vortex. The Norbury radius ε obtained analytically by Mohseni and Gharib [37] for the pinch-off process (and
inviscid flow) is ε ≈ 0.35. This value is indeed smaller than those reported here for Re0 ∼ O(100). Note,
however, that our method to obtain an experimental non-dimensional radius (RQ) is different and perhaps,
direct comparisons are not appropriate.

For the case of Gharib et al. [13], the formation number is equal to the formation time for which total
circulation reaches a value equal to the leading vortex (see, e.g., their Fig. 12). The computation of this number
requires a pinch-off process (according to Gharib et al. a physical separation of the vortex). We have found
that the main difference for small Re0 is that such separation does not occur, at least considering the procedure
proposed by Gharib et al. . Hence, to study the maximum amount of circulation that a vortex in a low Re0 flow
could attain, we had to adopt a different criterion. We considered the maximum circulation value for each stroke
ratio regardless of the distance at which this value is reached. It is important to note that the computation of the
maximum circulation shown in Fig. 10 is not necessarily an indicator of the “pinch-off” process. Furthermore,
the critical stroke ratio presented here does not represent the “formation number” defined by Gharib et al. . For
low Reynolds numbers, vorticity dissipation is important. As the vortex ring is forming, it gains circulation
from the initial jet; however, this circulation may also be dissipated at the axis of symmetry. In other words,
vortex rings may grow up until the point when the circulation is canceled. In fact, we think that for large
Lm/D0 the maximum circulation is reached before the piston has finished its motion.

Our results from Fig. 10 are comparable with Fig. 6 from Gharib et al. [13] and Fig. 9 from Rosenfeld et al.
[15] where circulation is plotted as a function of the maximum stroke ratio Lm/D0. Rosenfeld et al. presented
the non-dimensional circulation of vortex rings at a formation time of t∗ ≈ 10 when physical separation
is visible. Their numerical calculations reported that the maximum vortex ring circulation is reached when
4 ≤ Lm/D0 ≤ 6. Despite the difference in the maximum circulation value for low Reynolds number and a
different criterion, we obtained critical stroke values in close agreement with those reported by Gharib et al.
[13] and Rosenfeld et al. [15].

6 Concluding remarks

The main objective of this study was to conduct experiments to analyze the formation of vortex rings at
Reynolds numbers of O(100). To our knowledge, measurements in this range of Re0 do not exist in the
specialized literature. To find the conditions at which vortices are formed, we had to consider an identification
scheme which was different from what had been used for flows at higher Re0. We proposed the use of the
so-called Q criterion to identify and measure the vortex strength. We used a calculation of the curvature of
Lagrangian trajectories to locate the vortex centers. These techniques were used to analyze the formation for
vortices in a range of Re0 from 150 to 260. The same qualitative trend reported by previous investigations was
found; the critical stroke ratios for the Reynolds numbers studied are in the range (4 ≤ Lm/D0 ≤ 6).

By measuring the non-dimensional radius RQ of the vortex rings, we showed that the vortices with low
Re0 are “thick.” According to our observations, such thick vortices can attain more vorticity and have more
circulation.

We observed that the vortex ring circulation (for our Reynolds numbers) changes continuously during
the formation and propagation of the vortex rings. As the circulation does not remain constant, the impulse,
energy and, consequently, the propagation velocity change as well. The measurements of vortex ring diameter
and velocity propagation indicate that there is a stroke ratio limit above which the vortex size and velocity
cannot increase. The vortex identification scheme used in this paper allows us to obtain measurements of the
circulation in the core of the vortex rings with small uncertainty, since the same cutoff criterion can be used at
any instant of the vortex ring formation, any distance from the exit and any Reynolds number. The experimental
results are in agreement with the theoretical models and numerical studies reported in the literature. Our results
confirm the existence of a critical stroke ratio for Re0 of O(100).
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