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Abstract The modern state of the Pauli exclusion principle studies is discussed. The
Pauli exclusion principle can be considered from two viewpoints. On the one hand, it
asserts that particles with half-integer spin (fermions) are described by antisymmetric
wave functions, and particles with integer spin (bosons) are described by symmet-
ric wave functions. This is a so-called spin-statistics connection. The reasons why
the spin-statistics connection exists are still unknown, see discussion in text. On the
other hand, according to the Pauli exclusion principle, the permutation symmetry of
the total wave functions can be only of two types: symmetric or antisymmetric, all
other types of permutation symmetry are forbidden; although the solutions of the
Schrödinger equation may belong to any representation of the permutation group,
including the multi-dimensional ones. It is demonstrated that the proofs of the Pauli
exclusion principle in some textbooks on quantum mechanics are incorrect and, in
general, the indistinguishability principle is insensitive to the permutation symme-
try of the wave function and cannot be used as a criterion for the verification of the
Pauli exclusion principle. Heuristic arguments are given in favor that the existence
in nature only the one-dimensional permutation representations (symmetric and an-
tisymmetric) are not accidental. As follows from the analysis of possible scenarios,
the permission of multi-dimensional representations of the permutation group leads
to contradictions with the concept of particle identity and their independence. Thus,
the prohibition of the degenerate permutation states by the Pauli exclusion principle
follows from the general physical assumptions underlying quantum theory.
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1 Introduction

Wolfgang Pauli formulated his principle before the creation of the contemporary
quantum mechanics (1925–1927). He arrived at formulation of this principle trying
to explain the regularities in the classification of atomic spectral terms in a strong
magnetic field. In paper submitted for publication in January 1925, Pauli formulated
his principle as follows [1]:

“In an atom there cannot be two or more equivalent electrons for which the
values of all four quantum numbers coincide. If an electron exists in an atom for
which all of these numbers have definite values, then this state is ‘occupied’.”

At that time, the fourth quantum number was not described by any model. Trying
to describe the doublet structure in the spectra of alkaline atoms Pauli called the prop-
erty associated with it as the “characteristic two-valuedness of the quantum properties
of the electron which cannot be described classically” [2].

This non-classical two-valued nature of electron is now called spin. In anticipat-
ing the quantum nature of the magnetic moment of electron before the creation of
quantum mechanics, Pauli exhibited a striking intuition. It is interesting to note that
this intuition together with Pauli’s inherent rigor of thought did not allow him at once
to admit the hypothesis of the spin explaining the doublet splitting in the spectra of
alkali atoms, which had been proposed by Kronig (who did not published it) and inde-
pendently by Uhlenbeck and Goudsmit [3]. Pauli’s objections resulted from the fact
that their spin hypothesis was based on the classical concept of rotation of the elec-
tron about its own axis. Upon meeting with Bohr who had fallen under the influence
of the explanation of the doublet splitting into the favor on the rotating-electron hy-
pothesis, Pauli expressed the regret that a new “heresy” had arisen in atomic physics,
as van der Waerden wrote in his recollections [4].

It is now clear that Pauli was right in not agreeing with the classical interpretation
of the fourth degree of freedom. The spin cannot in principle be described by classical
physics. The first studies devoted to applying the newborn quantum mechanics to
many-particle systems were performed by Heisenberg [5] and Dirac [6]. In these
studies, the Pauli principle, formulated as the prohibition for two electrons to occupy
the same quantum state, was derived as consequence of the antisymmetry of the wave
function of the system of electrons. Dirac [6] came to the conclusion that the light
quanta must be described by the symmetric wave functions. He specially noted that
a system of electrons cannot be described by the symmetric wave functions since the
latter allow any number of electrons to occupy a quantum state.

Thus, with the creation of quantum mechanics, the prohibition on the occupation
numbers of electron system states was supplemented by the prohibition of all types
of permutation symmetry of electron wave functions except for antisymmetric one.
Later on, an analysis of experimental data has permitted to formulate the Pauli exclu-
sion principle for all known elementary particles. Namely:

The only possible states of a system of identical particles possessing spin s are
those for which the total wave function transforms upon interchange of any two
particles as

PijΨ (1, . . . , i, . . . j, . . . ,N) = (−1)2sΨ (1, . . . , i, . . . j, . . . ,N), (1)
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that is, it is symmetric for integer values of s (the Bose-Einstein statistics) and
antisymmetric for half-integer s (the Fermi-Dirac statistics).

The Pauli exclusion principle also holds for the permutation symmetry of
composite-particle wave functions, e.g. for nuclei. The latter consist of nucleons:
protons and neutrons which are fermions because have s = 1/2. Depending on the
value of the total nuclear spin, one can speak of boson nuclei and fermion nuclei.
The nuclei with even number of nucleons have an integer value of the total spin
and belong to the boson particles. The nuclei with odd number of nucleons have a
half-integer value of the total spin and belong to the fermion particles.

The well-known example is the 16O2 molecule. The nucleus 16O consists of even
number of nucleons and has the total nuclear spin I = 0, hence it is a boson composite
particle; so the total wave function of the 16O2 molecule must be symmetric under
the permutations of nuclei. At the Born-Oppenheimer approximation the molecular
wave function can be represented as a product of the electronic, Ψel and nuclear, Φn,
wave functions. At the equilibrium distances the nuclear wave function, in its turn,
can be represented as a product of the vibrational, Φvib, and rotational, Φrot , wave
functions. Thus,

Ψ
(16Oa − 16Ob

) = Ψel(ab)Φvib(ab)Φrot (ab). (2)

We did not write the nuclear spin function, because the nucleus 16O has zero spin.
The vibrational wave function, Φvib(ab), depends only on the magnitude of the in-
teratomic distance and remains unaltered under the interchange of the nuclei. The
ground state electronic wave, Ψel(ab), is antisymmetric under the interchange of the
nuclei. Hence, for fulfilling the boson symmetry of the total wave function (2) the ro-
tational wave function, Φrot (ab), must be also antisymmetric under the interchange
of the nuclei. The symmetry of the rotational wave function in the state with the
rotational angular moment K is determined by the factor (−1)K . Therefore, in the
ground electronic state the even values of K are forbidden and only odd values of K

are allowed. Just this consequence from the Pauli exclusion principle was revealed in
the earlier spectroscopic measurements in 1927 [7] and now is well established. The
test of possible violation of the Pauli exclusion principle for the 16O2 molecule [8]
gave the probability of such violation ≤ 8 × 10−7.

The group-theoretical procedure for finding allowed by the Pauli exclusion princi-
ple quantum states for an arbitrary system composed of many particle subsystems was
elaborated in Refs. [9, 10], see also Ref. [11], Chap. 6. It can be atoms in molecules,
complexes of impurity centers in crystals and so forth. Depending upon the value of
its total spin, the subsystems behave under permutations as fermion or boson com-
posite particles.

For elementary particles, the permutation symmetry of wave function is directly
connected with its statistics. It is worth-while to note that the situation becomes com-
plicated in the case of composite particles. Although, the wave function of composite
particles can be characterized only by the boson or fermion permutation symmetry,
its second quantization operators do not obey the pure boson or fermion commutation
relations [12–14], see also recent publications [15, 16]. When the internal structure of
the composite particle is taken into account, the deviations from the purely bosonic
or fermionic properties are usually appeared. For two fermions it was revealed long
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ago in the BCS theory of superconductivity based on the conception of the Cooper
pairs, see Ref. [17]. The direct calculation shows that the commutation relation of op-
erators of creation, b+

k , and annihilation, bk, of Cooper’s pair, where k is the electron
impulse, are bosonic for k �= k′. But for k = k′ their commutation relations differ
from the boson commutations relations and the occupation numbers are exactly that
the Pauli exclusion principle demands for fermions.

To the best of our knowledge, the first studies of the effective repulsion between
composite particles consisting of identical fermions were performed by Zeldovich
[18] who showed that the Pauli repulsion arises when the overlap of wave functions
became appreciable. This leads to the well known in atomic and molecular physics
exchange interaction stipulated by the requirement of antisymmetry of many-electron
wave functions. Hence, the exchange interaction is a consequence of the Pauli exclu-
sion principle. At present different computational schemes are elaborated, in which
the Pauli repulsion operator [19, 20], the so-called Pauli blockade method [21, 22],
and some other approaches are used.

In Refs. [16, 23] the Pauli exclusion principle is connected with such interest-
ing and mysterious quantum phenomenon as entanglement [24], which at present
is broadly implemented in quantum information theory [25]. The term “entangle-
ment” was introduced by Schrödinger [26] when he analyzed the so-called Einstein-
Podolsky-Rosen paradox [27], see also Refs. [28–30].

All experimental data known to date agree with the Pauli exclusion principle. A de-
tailed discussion of the theory and experiments on the search for possible small vio-
lations of the Pauli exclusion principle can be found in Proceedings [31] and reviews
[32–34]. At present the systematic experimental study of the validity of the Pauli ex-
clusion principle for electrons is carrying out by the VIP collaboration [35]. In their
experiment they perform a search of X-rays from the Pauli-forbidden atomic transi-
tion from the 2p shell to the closed 1s2 shell of Cu atoms. The obtained probability
that the Pauli exclusion principle is violated, according to their measurements [36,
37] is

1

2
β2 < 6 × 10−29. (3)

In the experiments performed in the Los Alamos laboratory by Elliott et al. [38]
Pb instead of Cu was used.. They reported a much stronger limit on the violation of
the Pauli exclusion principle for electrons. Namely:

1

2
β2 < 2.6 × 10−39. (4)

It must be mentioned that this limit was obtained by a modified method of the
processing of the experimental data. As noted in Ref. [38], in the conductor there
are two kinds of electrons: the current electrons that have no previous contacts with
the target and the electrons within the target, which are “less new”. The authors [38]
took into account all free electrons. The application of this approach to the VIP data
also changes their limit on ten orders. On the other hand, it seems that the processing
method used in Ref. [38] cannot be rigorously based. In any case, as follows from
experimental data, the probability of the non-Pauli states, e.g. (ns)3, is practically
zero.



Found Phys (2013) 43:1233–1251 1237

It is worth-while to make one additional comment in connection with the exper-
imental studies. Usually experimenters consider the violation of the Pauli exclusion
principle as a small admixture of the symmetric wave functions to the antisymmet-
ric state. They start from the Ignatiev-Kuzmin [39] and Greenberg-Mohapatra theo-
ries [32, 40]. These theories are based on the second quantization field formalism,
in which only the symmetric and antisymmetric states are defined. In general, this
limitation on the symmetry of the states is not valid, because the solutions of the
Schrödinger equation may belong to any representation of the permutation group. If
the Pauli exclusion principle is violated, the electron system can be in the state with
an arbitrary permutation symmetry and not only in the symmetric state, see Sects. 2
and 3.

Thus the Pauli exclusion principle is based on the analysis of experimental data.
Pauli himself was never satisfied by this. In his Nobel Prize lecture Pauli said [41]:

“Already in my initial paper, I especially emphasized the fact that I could not
find a logical substantiation for the exclusion principle nor derive it from more
general assumptions. I always had a feeling, which remains until this day, that
this is the fault of some flaw in the theory.”

Let us stress that this was said in 1946, after the Pauli famous theorem [42] of the
relation between spin and statistics. In this theorem, Pauli did not give a direct proof.
He showed that due to some physical contradictions, the second quantization opera-
tors for particles with integral spins cannot obey the fermion commutation relations;
while for particles with half-integral spins, their second quantization operators cannot
obey the boson commutation relations. From this Pauli concluded that particles with
integral spin have to obey the Bose-Einstein statistics, while those with half-integral
spin have to obey the Fermi-Dirac statistics.

Thus, according to the Pauli theorem, the connection between the value of spin
and the permutation symmetry of many-particle wave function, Eq. (1), follows if
we assume that particles can obey only two types of commutation relations: boson
or fermion relations. At that time it was believed that it is really so. However in
1953, Green [43] (and independently Volkov [44]) showed that the more general,
paraboson and parafermion trilinear commutation relations, satisfying all physical
requirements and containing the boson and fermion commutation relations as partic-
ular cases, can be introduced. A corresponding parastatistics is classified by its rank
p. For the parafermi statistics p is the maximum occupation number. For p = 1 the
parafermi statistics becomes identical to the Fermi-Dirac statistics. For the parabose
statistics there are no restrictions in the occupation numbers; for p = 1 the para-
bose statistics is reduced to the Bose-Einstein statistics (for more details see book by
Ohnuki and Kamefuchi [45]).

Since, there are no prohibitions on the existence of elementary particles obeying
the parastatistics commutation relations; the proof of the spin-statistical theorem [42]
loses its base. After 1940, numerous proofs of the spin-statistics theorem were pub-
lished. All these proofs contain some explicit (or implicit) assumptions, see book by
Duck and Sudarshan [46], review on it by Wightman [47], and Proceedings [31]. As
emphasized by Berry and Robbins [48], the relation between spin and statistics “cries
out for understanding”.
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Up to date the elementary particles obeying the parastatistics are not detected.
Although, as discussed in Refs. [49–51], the ordinary fermions, which differ by
some internal quantum numbers but are similar dynamically, can be described by
the parafermi statistics. In this case, fermions with different internal quantum num-
bers are considered as non-identical distinguishable particles. So, quarks with 3 col-
ors obey the parafermi statistics of rank p = 3; nucleons in nuclei (isotope spin 1

2 )
obey the parafermi statistics of rank p = 2. It is important to stress that the parafermi
statistics of rank p describes systems with p different types of fermions and each
type obeys the Fermi-Dirac statistics. The total wave function for parafermions al-
ways can be constructed as an antisymmetric function in full accordance with the
Pauli exclusion principle.

In 1976, the author [52] revealed that the parafermi statistics is realized for quasi-
particles in a crystal lattice, e.g. for the Frenkel excitons or magnons, but due to a
periodical crystal field, the Green trilinear commutation relations are modified by the
quasi-impulse conservation law. Later on, it was shown that the introduced by Ka-
plan modified parafermi statistics [52] is valid for different types of quasiparticles in
a periodical lattice: polaritons [53], defectons [54], the Wannier-Mott excitons [55],
delocalized holes in crystals [56], and delocalized coupled hole pairs [57], see also
Refs. [58, 59].

The study of properties of the quasiparticles in a periodical lattice revealed [52, 56]
that even in the absence of dynamical interactions, the quasiparticle system is char-
acterized by some kinematic interaction depending on the deviation of their statistics
from the Bose (Fermi) statistics. This kinematic interaction mixes all states of the
quasiparticle band. One cannot define an independent quasiparticle in a definite state.
The ideal gas of such quasiparticles does not exist fundamentally. There are also no
direct connection between the commutation relations for quasiparticle operators and
the permutation symmetry of many-quasiparticle wave functions.

Henceforth, we will discuss only systems of identical particles (no quasiparticles)
and focus on the symmetry restrictions of the Pauli exclusion principle. According
to it, only two types of permutation symmetry of many-particle wave functions are
allowed: symmetric and antisymmetric. Both belong to the one-dimensional repre-
sentations of the permutation group; all other types of the permutation symmetry are
forbidden. However, the Schrödinger equation is invariant under any permutation of
identical particles. The Hamiltonian of an identical particle system commutes with
the permutation operators,

[P,H ]− = 0. (5)

From this follows that the solutions of the Schrödinger equation may belong to
any representation of the permutation group, including multi-dimensional represen-
tations. The question might be asked: whether this limitation on the solutions of the
Schrödinger equation follows from the fundamental principles of quantum mechanics
or it is an independent principle?

In the next sections we will discuss the possible answers on this question devel-
oping some ideas of our previous publications [60–62]. In Sect. 2 we discuss why
proofs of the Pauli exclusion principle in some textbooks on quantum mechanics are
incorrect and demonstrate that the indistinguishability principle cannot be used as a
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criterion for the verification of the Pauli exclusion principle, because it is insensi-
tive to the permutation symmetry of wave function. In Sect. 3 the study of different
scenarios following from the allowance of degenerate permutation representations
reveals that the latter leads to some contradictions with the concept of particle iden-
tity and their independency from each other. The summary and concluding remarks
are given in Sect. 4 and in Appendix the necessary mathematical apparatus of the
permutation group is represented.

2 Indistinguishability of Identical Particles and the Symmetry Postulate

There are two view-points on the problem of independency of the Pauli exclusion
principle from other fundamental quantum-mechanical postulates. Some physicists,
including the founders of quantum mechanics Pauli [63] and Dirac [64] (see also Shiff
[65] and Messiah [66]), have assumed that there are no laws in Nature that forbid the
existence of particles described by wave functions with more complicated permuta-
tion symmetry than those of bosons and fermions, and that the existing limitations
are only due to the specific properties of the known elementary particles.

Messiah [66, 67] has even introduced the term symmetrization postulate to empha-
size the primary nature of the constraint on the allowed types of the wave function
permutation symmetry. It should be mentioned that before Messiah, the indepen-
dence of the Pauli exclusion principle from other fundamental principles of quantum
mechanics was stressed by Pauli in his speech [63] when he entered the Princeton
Institute for Advance Studies.

In fact, the existence of permutation degeneracy should not introduce additional
uncertainty into characteristic of the state. From the Wigner-Eckart theorem general-
ized for the permutation group, see Eq. (4.60) in book [11], follows that the matrix
element of an operator L, which is symmetric in all the particles, can be presented as

〈
Ψ [λ]

r

∣∣L̂
∣∣Ψ [λ]

r

〉 = δrr

〈
Γ [λ]∥∥L̂

∥∥Γ [λ]〉, (6)

where index r labels the basic functions of the representation Γ [λ] of the permuta-
tion group and [λ] is the Young diagram, see Appendix. The double vertical line in
the right-hand side of this formula means that the matrix element is independent on
the basic function index. Thus, the expectation value of operator L is the same for
all functions belonging to the degenerate state described by an arbitrary irreducible
representation Γ [λ] of the permutation group.

According to another view-point, the symmetry postulate is not an independent
principle and can be derived from the fundamental principles of quantum mechanics,
in particular, from the principle of indistinguishability of identical particles. This idea
is represented not only in articles, see critical comments in Refs. [67, 68], but also
in textbooks [69–71], including the famous textbook by Landau and Lifshitz [70].
The incorrectness of proof [69] was mentioned by Girardeau [68]; the proofs [69–71]
were critically analyzed in my paper [72]; nevertheless, incorrect proofs of the Pauli
principle are still appear in current literature, see, for instance, the review [73]. So, it
is worth-while to discuss this matter once more.

The typical argumentation (it is the same in all Refs. [69–71, 73]) is the following.
From the requirement that the states of a system obtained by permutations of identical
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particles must all be physically equivalent, one concludes that the transposition of
any two identical particles should multiply the wave function only on an insignificant
phase factor,

P12Ψ (x1, x2) = Ψ (x2, x1) = eiαΨ (x1, x2), (7)

where α is a real constant and x is the set of spatial and spin variables. One more
application of the permutation operator P12 gives

Ψ (x1, x2) = ei2αΨ (x1, x2), (8)

or

e2iα = 1 and eiα = ±1. (9)

Since all particles are assumed to be identical, the wave function should change in
exactly the same way under transposition of any pair of particles, i.e. it should be
either totally symmetric or totally antisymmetric.

This proof contains two essential incorrectness’s at once. The first is simply fol-
lows from the group theory. Namely: Eq. (7) is valid only for the one-dimensional
representations. The application of a group operation to one of basic functions, be-
longing to some multi-dimensional representation, transforms it in a linear combina-
tion of basic functions. Namely,

P12Ψi =
∑

k

Γki(P12)Ψk. (10)

The application of the permutation operator P12 to both sides of Eq. (10) leads to the
identity:

P12{P12Ψi} = Ψi = P12

∑

k

Γki(P12)Ψk =
∑

l

[∑

k

Γlk(P12)Γki(P12)

]
Ψl

=
∑

l

Γli
(
P 2

12 = I
)
Ψl = Ψi. (11)

Using this identity we cannot arrive at any information about the symmetry, in con-
trary with Eq. (8). By requiring that under permutations the wave function must
change by no more than a phase factor, one actually postulates that the representation
of the permutation group, to which the wave function belongs, is one-dimensional. It
follows that the proof in Refs. [69–71, 73] is based on the initial statement, which is
proved then as a final result.

The second incorrectness in the proof above follows from physical considerations.
This proof is directly related to the behavior of the wave function. However, since
the wave function is not an observable, the indistinguishability principle is related
to it only indirectly via the expressions of measurable quantities. Since in quantum
mechanics, the physical quantities are expressed as bilinear forms of wave functions,
the indistinguishability principle requires the invariance of these bilinear forms and
can be formulated as:

〈PΨ |L̂|PΨ 〉 = 〈Ψ |L̂|Ψ 〉, (12)
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where L̂ is an arbitrary operator. Often, one limits oneself to the requirement that
the probability of a given configuration of a system of identical particles must be
invariant under permutations [68, 74],

P
∣∣Ψ (x1, . . . , xN)

∣∣2 = ∣∣Ψ (x1, . . . , xN)
∣∣2

. (13)

For a function to satisfy Eq. (13), it is sufficient that under permutations it would
change as

PΨ (x1, . . . , xN) = eiαp(x1,...,xN )Ψ (x1, . . . , xN), (14)

i.e. unlike the requirement of condition (7), in the general case the phase is a function
of coordinates and the permutation, and Eq. (8) evidently does not hold.

Most other proofs of the symmetry postulate contain unjustified constraints. A crit-
ical survey of such proofs can be found in Refs. [68, 72]. Proofs of the symmetry pos-
tulate without imposing additional constraints have been given by Girardeau [68, 74],
who based it on Eq. (13), and in my paper [72] where it was based on Eq. (12). As
was noted later by the author [60, 61] these proofs, basing on the indistinguishability
principle in the forms (12) and (13), are incorrect, because these equations are cor-
rect only for non-degenerate states. In a degenerate state, the system can be described
with the equal probability by any one of the basic vectors of the degenerate state. As
a result, we can no longer select a pure state (the one that is described by the wave
function) and should regard a degenerate state as a mixed one, where each basis vec-
tor enters with the same probability [75]. Thus, we must sum both sides of Eqs. (12)
and (13) over all wave functions that belong to the degenerate state. For instance, the
probability density, which described via the diagonal element of the density matrix,
in the case of a degenerate state has the form

D
[λ]
t (x1, . . . , xN ;x1, . . . , xN) = 1

fλ

fλ∑

r=1

Ψ
[λ]
rt (x1, . . . , xN)∗Ψ [λ]

rt (x1, . . . , xN),

(15)

where the expression (15) is written for the case of the fλ-dimensional representation
Γ [λ] of the permutation group πN and wave functions Ψ

[λ]
rt are constructed by the

Young operators ω
[λ]
rt , see Eq. (33) in Appendix. The possibility of expressing the

density matrix through only one of the functions implies that the degeneracy with
respect to permutations has been eliminated. However, the latter cannot be achieved
without violating the identity of the particles.

Recently S. Zagoulaev (St. Petersburg University) informed me that in 1937
V. Fock presented a proof of the Pauli exclusion principle in his unpublished lectures
on quantum mechanics [76]. In his proof Fock substituted the correct expression (14)
in equation for an arbitrary operator (12) and applied the variational theorem. As we
discussed above, Eq. (12) is valid only in the case of non-degenerate states. The Fock
proof is failed if one applies it to the expression valid for degenerate states.

It is not difficult to prove that for every representation Γ [λ] of the permutation
group πN , the probability density, Eq. (15), is a group invariant. In the general case
it was proved in Ref. [77]. Below I represent this proof for the permutation group.

Let us apply some permutation P ⊂ πN to the expression (15)
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PD
[λ]
t = 1

fλ

∑

r

[∑

u

Γ [λ]
ur (P )∗Ψ [λ]∗

ut

∑

u′
Γ

[λ]
u′r (P )Ψ

[λ]
u′t

]

= 1

fλ

∑

u,u′

(∑

r

Γ [λ]
ur (P )Γ

[λ]
u′r (P )

)
Ψ

[λ]∗
ut Ψ

[λ]
u′t .

Due to the orthogonality relations for the matrix elements of irreducible representa-
tions, the sum over r is equal to δuu′ , and we arrive at the final result:

PD
[λ]
t = 1

fλ

∑

u

∣∣Ψ [λ]
ut

∣∣2 = D
[λ]
t . (16)

This means that for all irreducible representations Γ [λ], characterizing the quantum
states, the diagonal element of the full density matrix (and all reduced densities ma-
trices as well) transforms according to the totally symmetric one-dimensional repre-
sentation of πN and in this respect one cannot distinguish between degenerate and
nondegenerate states. Thus, the diagonal element of the density matrix is a group
invariant.

From this follows that the probability density obeys the indistinguishability prin-
ciple even in the case of multi-dimensional representations of the permutation group.
Thus, the indistinguishability principle is insensitive to the symmetry of wave func-
tion and cannot be used as a criterion for selecting the correct symmetry.

Although the Pauli exclusion principle cannot be rigorously derived from other
quantum-mechanical postulates, there are some heuristic arguments indicating that
the description of an identical particle system by the multi-dimensional representa-
tions of the permutation group leads to some contradictions with the concept of the
particle identity and their independency. In next section, we discuss these arguments
in detail.

3 Some Contradictions with the Concept of Particle Identity and Their
Independence in the Degenerate Permutations States

Let us consider a quantum system with the arbitrary number of identical elementary
particles without the restrictions imposed by the Pauli exclusion principle. The states
of a system of identical particles with the number of particles not conserved can be
presented as vectors in the Fock space F [78]. The latter is a direct sum of spaces
F(N) corresponding to a fixed number of particles N

F=̇
∞∑

N=0

F(N). (17)

Each of the space F(N) can be presented as a direct product of one-particle spaces f:

F(N) = f ⊗ f ⊗ · · · ⊗ f︸ ︷︷ ︸
N

. (18)

The basic vectors of F(N) are the product of one-particle vectors |vk(k)〉 belonging to
spaces f; k in the parenthesis denotes the set of particle spin and space coordinates,

∣∣ξ (N)
〉 = ∣∣v1(1)

〉∣∣v2(2)
〉 · · · ∣∣vN(N)

〉
. (19)
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For simplicity, let us consider the case where all one-particle vectors in Eq. (19) are
different. There will be no qualitative changes in the results, if some of the vectors
coincide. |vk(k)〉 are spin-orbitals, on which the total wave function is constructed.

One can produce N ! new many-particle vectors by applying to the many-particle
vector (19) N ! permutations of the particle coordinates. These new vectors also be-
long to F(N) and form in it a certain invariant subspace which is reducible. The N !
basic vectors of the latter, P |ξ (N)〉, make up the regular representation of the permu-
tation group πN . As is known in the group theory, the regular representation is de-
composed into irreducible representations, each of which appears a number of times
equal to its dimension. The space ε(N) falls into the direct sum

ε
(N)
ξ =̇

∑

λN

fλN
ε
[λN ]
ξ , (20)

where ε
[λN ]
ξ is an irreducible subspace of dimension fλ drawn over the basic vectors

|[λN ]r〉, and λN is a Young diagram with N boxes. The basic vectors |[λN ]r〉 can
be constructed of non-symmetrized basic vector |ξ (N)〉 by using the Young operators
ω

[λN ]
rt , see Appendix,

∣∣[λN ]rt 〉 = ω
[λN ]
rt

∣∣ξN
〉 =

(
fλ

N !
) 1

2 ∑

P

Γ
[λN ]
rt (P )P

∣∣ξ (N)
〉
, (21)

where Γ
[λN ]
rt (P ) are the matrix elements of representation Γ [λN ] and index t dis-

tinguishes between the bases in accordance with the decomposition of ε
(N)
ξ into fλ

invariant subspaces and describes the symmetry under permutations of the particle
vector indices.

Thus, a space with a fixed number of particles can always be divided into irre-
ducible subspaces ε

[λN ]
ξ , each of which is characterized by a certain permutation

symmetry given by a Young diagram with N boxes. The symmetry postulate demands
that the basis vectors of a system of N identical particles belong to one of the two
subspaces characterized by irreducible one-dimensional representations, either [N ]
or [1N ]. All other subspaces are “empty”. Let us examine the situation that arises
when no symmetry constraints are imposed and consider the system of N identical
particles described by basic vectors belonging to some irreducible subspace ε

[λN ]
ξ .

One of the consequences of the different permutation symmetry of state vectors
for bosons and fermions is the dependence of the energy of the system on the particle
statistics. For the same law of dynamic interaction, the so-called exchange terms enter
the expression for the energy of fermion and boson system with opposite signs. Let us
calculate the energy of the multi-dimensional permutation state |[λ]rt〉. The energy
of the system in a degenerate state is

E = Tr(HD), (22)

where D is the density operator defined, similarly to Eq. (15), as

Dt = 1

fλ

fλ∑

r=1

∣∣[λ]rt 〉〈[λ]rt∣∣. (23)
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The calculation of the trace over the functions with symmetry [λN ] yields

E
[λ]
t = 1

fλ

fλ∑

r=1

〈[λ]rt∣∣H ∣∣[λ]rt 〉. (24)

The matrix element in Eq. (24) has been calculated in Ref. [79] in a general case
of non-orthogonal one-particle vectors. In the case where all vectors in Eq. (19) are
different and orthogonal one gets

E
[λ]
t =

∑

a

〈va|h|va〉 +
∑

a<b

[〈vavb|g|vavb〉 + Γ
[λ]
t t (Pab)〈vavb|g|vbva〉

]
, (25)

where Γ
[λ]
t t (Pab) is the diagonal matrix element of the transposition Pab of vectors

|va〉 and |vb〉 in the right-hand part of Eq. (19); h and g are one- and two-particle
interaction operators, respectively. Only exchange terms in Eq. (25) depend upon
the symmetry of the state. For one-dimensional representations, Γ

[λ]
t t (Pab) does not

depend on the number of particles and the permutation. Pab : Γ [N ](Pab) = 1 and
Γ [1N ](Pab) = −1 for all Pab and N . For multi-dimensional representations, the ma-
trix elements Γ

[λ]
t t (Pab) depend on [ λ ] and Pab; in general, they are different for

different pairs of identical particles.1

It is natural that a different permutation symmetry of the state vector leads to dif-
ferent expressions for the energy. Taking into account that the transitions between
states with different symmetry [ λN ] are strictly forbidden and each state of N par-
ticle system with different [ λN ] has a different analytical formula for its energy, we
must conclude that each type of symmetry [ λN ] corresponds to a certain kind of
particles with statistics determined by this permutation symmetry. On the other hand,
the classification of state with respect to the Young diagrams [ λN ] is connected ex-
clusively with identity of particles. Therefore, it must be some additional inherent
particle characteristics, which establishes for the N particle system to be in a state
with definite permutation symmetry, like integer and half-integer values of particle
spin for bosons and fermions, and this inherent characteristic has to be different for
different [λN ]. So, the particles belonging to the different types of permutation sym-
metry [ λN ] are not identical, as it is in the particular cases of bosons, [N ], and
fermions [1N ].

Let us trace down the genealogy of irreducible subspaces ε
[λN ]
ξ . In Fig. 1, the

genealogy for all irreducible subspaces with N = 2 to 4 is presented.
We called the hypothetical particles characterized by the multi-dimensional rep-

resentations of the permutation group as intermedions implying that they obey some
intermediate between fermion and boson statistics. For bosons and fermions there
are two non-intersecting chains of irreducible representations: [N ] → [N + 1] and
[1N ] → [1N+1], respectively; and the energy expression for each type of particles has
the same analytical form that does not depend on the number of particles in a system.
The situation changes drastically, if we put into consideration the multi-dimensional

1The matrices of transpositions for all irreducible representations of groups π2–π6 are presented in book
[11], Appendix 5.
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Fig. 1 The Young diagrams for N = 2−4 and their genealogy

representations. The number of different statistics depends upon the number of par-
ticles in a system and rapidly increases with N . For the multi-dimensional represen-
tations we cannot select any non-intersecting chains, as in the fermion and boson
cases. According to Fig. 1, the intermedion particles with a definite [λN ] in the N th
generation can originate from particles of different [λN−1] in the (N − 1)th genera-
tion, even from fermions or bosons. The linear combination of wave functions with
different permutations symmetry [λN−1] cannot describe the identical particles.

Let us consider N = 3. In this case there is only one multi-dimensional representa-
tion [λ3] = [21]. In the (N − 1)th generation this representation originates from both
[12] and [2]. The linear combinations of these representations

Ψn(x1, x2) = c1Ψ
[2](x1, x2) + c2Ψ

[12](x1, x2), (26)

where xi denotes three spatial and one spin coordinates of the i-th particle, describes
distinguishable particles. In fact,

P12
∣∣Ψn(x1, x2)

∣∣2 = ∣∣c1Ψ
[2](x1, x2) − c2Ψ

[12](x1, x2)
∣∣2 �= ∣∣Ψn(x1, x2)

∣∣2
. (27)

The physical picture in which adding one particle changes properties of all par-
ticles cannot correspond to a system of independent identical particles (although, it
cannot be excluded for some quasiparticle systems where we have not an indepen-
dency of quasiparticles, see the discussion in Introduction). For an ideal gas, it is evi-
dent that adding a particle identical to a system of N identical particles cannot change
the properties of a new (N + 1)-particle system. On the other hand, the interaction
of identical particles does not change the permutation symmetry of non-interacting
particle system. It can be rigorously proved [72]. Namely:

The wave vector |Ψ 〉 of a system of interacting particles characterized by the
Hamiltonian

H = H0 + V̂ (28)

is defined in the same Fock space as the wave vector |Ψ0〉 of non-interacting system
and it can be generated from the latter by using some unitary transformation

|Ψ 〉 = Û |Ψ0〉. (29)
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The form of this unitary transformation can be obtained, if we use the well-known
relationship that the Brillouin-Wigner perturbation theory [80] is based on:

|Ψ 〉 = |Ψ0〉 + Q

E − H0
V̂ |Ψ 〉, (30)

where Q is the projection operator that projects an arbitrary vector onto the multi-
tude of vectors of Hilbert (Fock) space that are orthogonal to the vector |Ψ0〉. Upon
substituting Eq. (29) into Eq. (30), we get an equation for Û , from which follows

Û−1 = 1 − Q

E − H0
V̂ . (31)

Since the interaction operator V̂ of identical particles is invariant with respect to
permutations of identical particles, the operator Û is also invariant. Hence, according
to Eq. (29), the states |Ψ 〉 and |Ψ0〉 have the same permutation symmetry.

Thus, the scenario, in which all symmetry types [λN ] are allowed and each of
them corresponds to a definite particles statistics, contradicts to the concept of particle
identity and their independency from each other.

All contradictions are resolved, if only the one-dimensional irreducible represen-
tations of the permutation group are permitted, as follows from the Pauli exclusion
principle. Thus, the existence in Nature of only symmetric and antisymmetric types
of permutation symmetry is not accidental. It is intimately connected with the identity
of particles and their independence.

4 Concluding Remarks

In spite of more than 85 years studies of the Pauli exclusion principle and spin-
statistics connection, we still have not a rigorous theoretical ground for it. As we
showed in Sect. 2, the indistinguishability principle is insensitive to the permuta-
tion symmetry of wave function and is satisfied also by wave functions belonging to
the multi-dimensional representations of the permutation group characterized by the
Young diagrams [λN ] of general type. So, the indistinguishability principle cannot be
used for the verification of the Pauli exclusion principle. Experimental data known
to date confirm the Pauli exclusion principle; all elementary particles belong only to
one of two statistics: fermion or boson statistics (for quasiparticles, it is not true).

It is demonstrated that the permission for an identical particle system to be in
multi-dimensional permutation states leads to contradictions with the concept of
particle identity and their independence. Thus, the realization in Nature only one-
dimensional permutation states (symmetric and antisymmetric) is by no means acci-
dental. We may not expect that some unknown elementary particles can be described
by some multi-dimensional representation of the permutation group.

It is important to stress that the introduction in the parastatistics theory the permu-
tation symmetries, corresponding to the multi-dimensional representations, relates to
the wave functions that do not include the internal degrees of freedom. Taking into
account the wave functions describing the internal degrees of freedom, we always
can obtain the proper permutation symmetry for the total wave function with the full
accordance with the Pauli exclusion principle.
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Appendix: Short Necessary Knowledge on the Permutation Group

The permutation symmetry is classified according to the irreducible representations
of the permutation group πN .2 The latter are labeled by the Young diagrams

[λ] = [λ1λ2 · · ·λk],

λ1 ≥ λ2 ≥ · · · ≥ λk,

k∑

i=1

λi = N, (32)

where λi is represented by a row of λi cells. The presence of several rows of equal
length λi is convenient to indicate by a power of λi . For example,

It is obvious that one can form from two cells only two Young diagrams:

For the permutation group of three elements, π3, one can form from three cells three
Young diagrams:

The group π4 has five Young diagrams:

Each Young diagram [λ] uniquely corresponds to a specific irreducible represen-
tation Γ [λ] of the group πN . The assignment of a Young diagram determines the

2For a more detailed treatise see books by Kaplan [11] and Hamermesh [81].
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permutation symmetry of the basis functions for an irreducible representation, i.e. de-
termines the behavior of the basis functions under permutations of their arguments.
A diagram with only one row corresponds to a function symmetrical in all its ar-
guments. A Young diagram with one column corresponds to a completely antisym-
metrical function. All other types of diagrams correspond to intermediate types of
symmetry. There are certain rules that enable one to find the matrices of irreducible
representations of the permutations group from the form of the corresponding Young
diagram. Such rules are especially simple in the case of the so-called standard orthog-
onal representation (this is the Young-Yamanouchi representation; see Ref. [11]).

The basis functions for an irreducible representation Γ [λ] can be constructed by
means of the so-called normalized Young operators [11],3

ω
[λ]
rt =

√
fλ

N !
∑

P

Γ
[λ]
rt (P )P, (33)

where the summation over P runs over all the N ! permutations in the group πN ,
Γ

[λ]
rt (P ) are the matrix elements and fλ is the dimension of the irreducible rep-

resentation Γ [λ]. The application of operator (33) to a nonsymmetrized product of
orthonormal one-particle functions ϕa

Φ0 = ϕ1(1)ϕ2(2) · · ·ϕN(N) (34)

produces a normalized function

Φλ
rt = ω

[λ]
rt Φ0 =

√
fλ

N !
∑

P

Γ
[λ]
rt (P )PΦ0 (35)

transforming in accordance with the representation Γ [λ]. Let us prove this statement
applying an arbitrary permutation Q of the group πN to the function (35):

QΦ
[λ]
rt =

√
fλ

N !
∑

P

Γ
[λ]
rt (P )QPΦ0 =

√
fλ

N !
∑

R

Γ
[λ]
rt

(
Q−1R

)
RΦ0. (36)

In this equation we have denoted the permutation QP by R and made use of the
invariance properties of a sum over all group elements. Further, we write the matrix
element of the product of permutations as products of matrix elements and make use
of the property of orthogonal matrices:

Γ
[λ]
rt

(
Q−1R

) =
∑

u

Γ [λ]
ru

(
Q−1)Γ [λ]

ut (R) =
∑

u

Γ [λ]
ur (Q)Γ

[λ]
ut (R). (37)

Substituting (37) in (36), we obtain finally

QΦ
[λ]
rt =

√
fλ

N !
∑

u

Γ [λ]
ur (Q)

(∑

R

Γ
[λ]
ut (R)RΦ0

)
=

∑

u

Γ [λ]
ur (Q)Φ

[λ]
ut . (38)

The function Φ
[λ]
rt transforms as the r-th column of the irreducible representation

Γ [λ], and the set of fλ functions Φ
[λ]
rt with fixed second index t forms a basis for

3Operator (33) should not be mixed up with the operator that symmetrizes the rows and antisymmetrizes
the columns in Young diagram, which is also often referred to as the Young operator [81].
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the irreducible representation Γ [λ]. One can form altogether fλ independent bases
corresponding to the number of different values of t . This should be expected, since
N ! functions PΦ0 form a basis for the regular representation of πN , and in the de-
composition of the regular representation, each irreducible representation occurs as
many times as its dimension. The first index, r , characterizes the symmetry of the
function Φ

[λ]
rt under permutation of the arguments. It can be shown [11] that the sec-

ond index, t , enumerating the different bases of Γ [λ], characterizes the symmetry of
Φ

[λ]
rt under permutations of the one-particle functions ϕa .
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