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The Young’s moduli of Al356/SiC (particle) Metal Matrix Composite (MMC) with different particle aspect
ratios were estimated by Finite Elements Analysis (FEA), using a simple 3-D model. The results were com-
pared to a 2-D axisymmetric FEA model, to the experimental results, and the predicted values obtained
from the Rule of Mixtures and the Halpin-Tsai (HT) model. FEA software ANSYS 11.0 was used. The 3-D
model consisted on taking the one-eight part of a unit cell, with particles having cylindrical shape, a vol-
ume fraction of 0.12 and aspect ratio from 0.2 to 1.8. The estimated Young’s moduli presented significant
differences, mainly at aspect ratios higher than 1.0, resulting the 3-D model estimations closer to the
experimental values. The results from the selected 3-D model were found to have higher accuracy when
compared to traditional axisymmetric 2-D model. Besides, the efficiency of this high symmetry 3-D
model showed that a more complex 3-D model is not necessary.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Metal matrix composites, and mainly aluminum matrix com-
posites, are materials that have been successfully used for many
applications, this is due to their attractive lightweight and superior
mechanical and thermal properties [1-3]. Particle reinforced
MMCs are also rather attractive since their almost isotropic prop-
erties, ease of fabrication, and low cost. Tensile strength, elastic
modulus and high temperature stability of MMCs are higher than
those of monolithic alloys, while their ductility, fatigue and frac-
ture toughness properties are considerably lower [4]. These prop-
erties depend on the particles volume fraction, distribution,
aspect ratio, size, orientation and interfacial bonding [1]. There
are numerous analytical and numerical models for the prediction
of mechanical behavior of composite materials, with reasonably
low errors [5-7]. The analytical models mainly include the Eshelby
model, the self-consistent model, the variational principles of elas-
ticity theory, the composite cylinder model and other unit-cell
models [8-11]. These models normally involve simplified assump-
tions and a uniform Representative Volume Element (RVE) or unit-
cell, which captures the major features of the microstructure.
Numerical methods usually contain less simplifying assumptions
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both in the mathematical formulation and in the selection of the
geometry of the RVE. These methods are also able to provide accu-
rate predictions and mainly include the finite difference method,
the finite elements method (FEM or Finite Elements Analysis,
FEA), and the boundary element method [8-11]. An easy way to
evaluate the effective elastic response of a composite with perfect
particle-matrix bonding under load, is the conventional Rule of
Mixtures. This rule can be formulated for particle-reinforced MMCs
as follows [1]:

Ec = EnVim + E,V,, (1)

where E and V are respectively the Young’s modulus and volume
fraction, for the matrix (m) and the particles (p). As observed, the
volume fraction of particles in a MMC plays a determining role,
affecting the elastic properties. Nevertheless this model does not
take into account the particle aspect-ratio. A simple Rule of Mix-
tures approach is inexact when estimating the effective modulus
of particle reinforced MMCs. This approach is based on the condi-
tion of isostrain between the matrix and the reinforcement, and
hence it is more exact for continuous fiber reinforcement with high
aspect ratio. That is why others accurate estimations have been
made in order to predict anisotropy in Young’'s modulus: e.g.: the
Halpin-Tsai (HT) model, which assumes a perfectly oriented dis-
continuous reinforcement in the composite, parallel to the applied
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load [12,13]. According to the HT model, the Young’s modulus for
composites can be determined by:

En(1+2sqV,)

E = 1—qv,

(2)
where E, E, and E,, are respectively the Young’s moduli of the
composite, the particle and the matrix, s is the aspect ratio of the
particle, V), their volume fraction, and q is a geometrical parameter
that can be written as:

_ (Ep/En) 1
(Ep/Em) + 25’

FEA is a viable method to analyze particle dispersed MMCs due
to its modeling capability of the particle, being able to model dif-
ferent geometries and analyze their effect on the composite prop-
erties [14]. The anisotropy of the reinforcement in composites is
challenging, especially when the deformation behavior is modeled,
then an adequate selection of the RVE must be done, trying to
reproduce the actual morphology, distribution, and orientation of
the reinforcing particles. Modeling and simulating MMCs with
complicated microstructures is very labor and time consuming.
The distribution of the particles within the cross-section of MMCs
is likely to be random. It is difficult, if not impossible, to model the
composite behavior with the real constituent geometry. Therefore,
it is normally assumed that particles are arranged in a regular and
periodic square, circular or hexagonal array. Particles and short fi-
bers have been successfully modeled using 2-D and 3-D analysis
with different reinforcement shapes: cubic, cylinder, truncated cyl-
inder, double-cone and sphere. The 2-D analysis is impossible to

q 3)

Table 1
Aspect ratio, diameter and height for the cylindrical modeled particles.
Aspect ratio (h/d) Diameter (pm) Height (um)
0.2 15.71 3.14
0.6 10.89 6.53
1.0 9.19 9.19
1.4 8.21 11.5
1.8 7.55 13.59
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Table 2
Mechanical properties for Al matrix and SiC particles [1,19].

Material Young’s modulus, E (GPa) Poisson ratio, v
Aluminum A356 matrix 72.4 0.33
SiC particles 401.4 0.18
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Fig. 2. Optical micrograph of the Al-356/SiC MMC cross-section. Morphology and
distribution of the particles can be observed.
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use in many study cases due to the irregularity and the low sym-
metry of the reinforcement, besides 2-D multi-particle models give
results that are quite different from 3-D model ones. The most
important 2-D model for these analyses is the axisymmetric case,
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Fig. 3. (a) Variation of Young’s moduli estimations for the MMC vs the particles
aspect ratio for the studied models. (b) Variation of longitudinal and transversal
maximum deformation with aspect ratio.

Fig. 1. Cubic periodical unit cell for the particle-matrix system with an aspect ratio
of 1.4 (a); RVE with particle aspect ratios of 0.2 (b) and 1.8 (c); and the 2-D
axisymmetric model (d).
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although the model can be easily transformed in a 3-D analysis
case rotating 360° the 2-D model. A 3-D model is necessary in or-
der to predict the material responses such as strain to failure, frac-
ture toughness, and fatigue life, which depend on local events. 3-D
models have been used in order to provide a better understanding
of the elastic phenomenon and critical zones analysis. Various
works have found good relationships between the results obtained
by FEA models and the experimental measurements: Kari et al.
[15] model used 3-D cubic RVE, composed by various unit-cells,
Srikanth et al. [16] used a cylindrical RVE with various particles,
while Liu and Chen [17] modeled a composite material using three
different RVEs: cylindrical, cubic and hexagonal. Cubic and hexag-
onal unit cells can idealize the composite in terms of a uniform
periodic distribution of the particles in the matrix, exactly match-
ing each unit cell, and describe the morphology of the whole com-
posite. It is also common the use of axisymmetric unit cells
(actually cylindrical cell) as an approximation to a three-dimen-
sional hexagonal model. Nevertheless, cylindrical cells cannot be
organized in a periodic array without leaving voids or holes. Other-
wise, the major inconvenient of hexagonal or cubic 3-D models is
the complexity of the unit cell or the RVE, causing an important in-
crease in the computer requirements. That is why the main objec-
tive of the present work is to study a simple 3-D model, making
special emphasis in obtaining a less complicated RVE, and compare
its behavior and geometry with an established 2-D axisymmetric
model. In order to achieve this objective, a MMC composed by
the alloy Al-7.45Si-0.44Mg reinforced with SiC particles was taken
as the starting material. ANSYS 11.0 FEA software was employed
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for the theoretical calculations, and the results were compared
with the experimental values, with the Rule of Mixtures and the
HT model.

2. Experimental and calculation

A MMC comprising Al-7.45Si-0.44Mg alloy, reinforced with SiC
particles, was obtained as 2 mm diameter wires using the Ohno
Continuous Casting (OCC) method. This process consists on a mold
heated at a temperature few degrees higher than the solidification
temperature of the molten metal. By controlling the solidification
mechanism, it is possible to reduce the friction and produce small
diameter wires (2 mm), including particle reinforced MMCs [18].
Cross-sections of the obtained MMC were polished with standard
metallographic techniques and examined by optical microscopy.
Sigma Scan Pro 5.0 software was used to determine the volume
fraction, average size and aspect ratio of the reinforcement SiC par-
ticles. The obtained data were used as base conditions for modeling
the MMC with ANSYS 11.0, and are as follow: the SiC particles pre-
sented irregular shapes, their minimum and maximum average
lengths were 6.31%3.75 um and 14.72 +4.24 um, respectively;
the volume fraction and average aspect ratio were 0.12 +0.02
and 1.40 + 0.49, respectively. In order to generate these features
and analyze the effect of the aspect ratio on the Young’s modulus,
homogeneous distribution of the particles was assumed and differ-
ent dimensions and aspect ratio of the particles were used, as
shown in Table 1. Note that the height and diameter values are
dependent of the aspect ratio and volume of the particles. The vol-
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Fig. 4. Deformation of the RVEs under uniaxial load for the MMC reinforced with particles: (a) aspect ratio of 0.2 using a 3-D RVE, (b) aspect ratio of 0.2 using an axisymmetric
2-D model, (c) aspect ratio of 1.8 using a 3-D RVE, and (d) aspect ratio of 1.8 using an axisymmetric 2-D model.
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ume fraction and volume of the particles remained constant: for
the 3-D simulation, the particles were modeled as cylinders of
610 um®, whilst the matrix that surrounds the cylindrical particle
was considered as a cube of 5080 um?®.

The obtained unit-cell is shown in Fig. 1a, where
a=b=17.19 um. This cell represents the particle-matrix system,
and their repetition in the space reproduces the MMC. As men-
tioned above, the RVE consists on one-eight symmetric part of
the unit-cell. This RVE allows a better analysis of stress distribu-
tions. Fig. 1b and c show the RVE for the model of particles with
aspect ratios of 0.2 and 1.8, respectively. For the axisymmetric
model, the RVE is cylindrical, obtained from the revolution of the
square around Y axis (Fig. 1d). In this figure a cylinder with a radius
R and height h is represented. The left vertical boundary (Y axis)
represents the axially symmetric axis, while mirror symmetry ex-
ists about the bottom boundary (X axis). The aspect ratios and par-
ticles volume fraction were the same for the axisymmetric and 3-D
models.

The properties of the material used for the analysis are given in
Table 2. The experimental Young’s modulus for the wires obtained
by the OCC process was determined using a GrindoSonic MKk5, fol-
lowing ASTM E1876-97, and will be further compared to the esti-
mated values for validation purposes.

For the 3-D model, a 10-nodes high order 3-D solid element (So-
1id187) was selected to create the finite element mesh. This ele-
ment has a quadratic displacement behavior and is well suited
for modeling irregular meshes. Each of the 10 nodes has three de-
grees of freedom: translations in the nodal X, Y, and Z directions.
The nodes of the bottom were fully constrained (zero displace-
ment), while nodes of the YZ and XZ planes were constrained in
X and Y directions, respectively, using the coupled-node boundary
condition (keeping the nodes in the same plane) at faces X =Lx,
Y =Ly, and Z = Lz. For the axisymmetric model, 8-Node 2-D Struc-
tural Solid (Plane 82) element was used. This element is defined
by eight nodes having two degrees of freedom in each node: trans-
lations in the nodal X and Y directions. In this case the coupled-
node boundary condition was used for faces X (upper) and Y
(right). This condition is applied since the particles and the matrix
have different moduli, provoking un-even surfaces and making the
deformation measurement hard to define. It also represents the
condition that the composite block is an inclusion in an infinitely
large composite, consisting of the same filler particles and matrix
[20]. Using both, 3-D and axisymmetric models, Young’s moduli
of the MMC with different particles aspect ratios were uni-axially
estimated when applying a 5 MPa tensile stress on the upper end
nodes of the RVE. The stress and strain distributions were also
determined.

3. Results and discussion

The optical micrograph in Fig. 2 shows the microstructure of the
MMC wires obtained using OCC process. The morphological char-
acteristics of this MMC were used as starting point for FEA estima-
tions in the aforementioned model. The experimental value for the
Young’s modulus of the wires was 99.67 + 12.12 GPa, and will be
compared with our estimations using the same aspect ratio. The
Young’s modulus obtained by Rule of Mixtures was
111.88 £ 7.34 GPa. This value remains constant due to the fact that
this rule does not take into account the aspect ratio, as shown in
Eq. (1).

Fig. 3a shows the comparative behavior of the Young’s modulus
calculated using the HT model and the FEA models: 3-D proposed
in this work and 2-D axisymmetric. The results obtained with the
FEA and HT models showed a Young’s modulus increment as the
aspect ratio increases, resulting FEA values higher than the ob-

tained with the HT model. This behavior could be explained due
to the fact that FEA uses a specific morphology for the particles
(cylindrical), while HT model does not take into account any spe-
cific morphology. It is worth mentioning that although the behav-
ior for both FEA models were very similar for low aspect ratios, the
difference in the Young's modulus significantly increases for aspect
ratios higher than 1.0, being higher for the 3-D model. In order to
analyze this behavior, it is important to remark that for higher as-
pect ratios, the reinforced role of the particles is higher and the RVE
shape becomes critical, this will be further analyzed. The FEA
Young’s moduli for high aspect ratios was found to be closer to
the values of the Rule of Mixture than for low aspect ratios. This
could be attributed to the fact that for low aspect ratios, the
strengthening effect is low. On the other hand, the Young’s modu-
lus predicted by 3-D FEA for the MMC with particle aspect ratio of
1.4 (93.8GPa) is relatively closer to the experimental result
(99.67 £12.12GPa) than the axisymmetric model value
(92.1 GPa). It is important to notice that the particle geometry
selection leads to a good correlation between aspect ratio and elas-
tic modulus, confirming that the use of more complicated models
would be unnecessary. Although the SiC particles in the material
contain sharp corners, the experimental values are usually slightly
different than the numerical predictions for unit cylinders. This
may be attributed to some degree of particle fracture during ther-
mo-mechanical processing, development of residual stresses, and
particle clustering in the composite [21].

Maximum longitudinal and transversal deformation behaviors
can be observed in Fig. 3b for both, 2-D and 3-D models. The lon-
gitudinal deformation decreased while transversal deformation in-
creased for both models in a similar way. The absolute values were
higher for the 2-D model. This result showed that the influence of
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Fig. 5. (a) Effect of the aspect ratio on the maximum axial stress for the 2-D and 3-D
models. (b) Effect of the aspect ratio on the maximum axial strains for the 2-D and
3-D models.
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the RVE geometry is important: equal particles morphology, aspect
ratios, volume and volume fractions tend to generate different re-
sults when the RVE shape changes. Our estimations are consistent
with the results reported using other FEA models for different com-
posite materials [13,22]. It is also important to mention that the
Young’s modulus could vary with particle size for a constant vol-
ume fraction [23]. The differences between the deformations for
the used aspect ratios are less than 10%. This is due to the low as-
pect ratio of particulate materials, where the load transfer is not as
efficient as in the case of continuous fiber reinforcement, but is still
significant in providing strengthening. These results are consistent
with models and estimations that establish critical reinforcement
aspect ratio values, varying with volume fractions. A critical aspect
ratio is the required for effective composite performance [24]. For a
given reinforcement-matrix combination, the mechanical behavior
of the composite also depends on the volume fraction and size of
the reinforcement. When the aspect ratio is very large or very
small, the composite stresses are almost the same [25].

The graphical response of the RVEs to the distributed applied
loads can be observed in Fig. 4a-d for 3-D model (a and c) and
for the axisymmetric model (b and d), for aspect ratios of 0.2 and
1.8. As observed, the total deformation is minimum for the SiC par-
ticles, which is the material that gives the stiffness and strength to
the MMC, and is very similar for both models. This suggests that
qualitative deformation responses have not significant differences
between 2-D and 3-D models, however, quantitative differences
could be critical, as observed in Fig. 3b.
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On the other hand, the analysis of the maximum axial stress
and strain behavior showed a linear increase with aspect ratio
for both 2-D and 3-D models (Fig. 5a and b). As can be observed
in Fig. 5a, the maximum stress is higher for the 2-D model than
for the 3-D model. Nevertheless this difference decreases for high
aspect ratios. In the case of the axial strain, 2-D values are higher
for low aspect ratios, although for aspect ratios higher than 1.0
the behavior is opposite, and the values for the 3-D model are
higher. This fact could be explained due to the geometry of the
RVE, and will be analyzed taking into account the location of
the maxima points.

The location of maxima stresses in the particle-matrix interface
agrees well with the reported in the literature for microscopy stud-
ies, being usually critical points (Fig. 6a-d). The fractures initiate in
these points and stress will cause to grow. Particles with higher as-
pect ratio are under higher stresses, being concentrated at the
sharp corners of the particles [26]. For low volume fraction rein-
forced composites (as in the present case, 0.12), cracks initiate gen-
erally at the particle-matrix interfaces [27].

Fig. 7a-d shows the strain distribution for 3-D (Fig. 7a and c)
and 2-D model (Fig. 7b and d), for aspect ratios of 0.2 and 1.8. As
can be observed, the strain distribution using the two models is
similar. For an aspect ratio of 0.2 (Fig. 7a and b) maxima strains
are located at the particle-matrix interfaces, while for an aspect ra-
tio of 1.8 (Fig. 7c and d) the maxima are located at the center of the
upper side of the RVE. This behavior could be also related to the
RVE shape, as for stresses distribution. These figures show that 3-
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Fig. 6. Maximum axial stress distribution for the RVEs under uniaxial load for the MMC reinforced with particles: (a) aspect ratio of 0.2 using a 3-D RVE, (b) aspect ratio of 0.2
using an axisymmetric 2-D model, (c) aspect ratio of 1.8 using a 3-D RVE, and (d) aspect ratio of 1.8 using an axisymmetric 2-D model.
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D model allowed observing points out of reach for the axisymmet-
ric model (points at the corner).

In order to analyze the differences for the cylindrical (2-D mod-
el) and the cubic (3-D model) RVEs, the dimensions of the unit cells
were studied, emphasizing in the relationship between the heights
and transversal areas for the particle-RVE systems. As already
mentioned, the particle-RVE volume relationship was constant
for both, cylindrical and cubic RVEs, where Vpariicie/Vrve = 0.12. As
expected, the relationships between the heights of the RVEs and
the particles (Hgryve/hparticie) changed. The relationships between
the transversal areas (Arve/dparticie) also changed. As can be ob-
served in Fig. 8a, the relationship Hryg/hparicie decreased with the
aspect ratio, being 7.78% higher for the cylinder than for the cube
for all the aspect ratios. In addition, the relationship Agrve/dparicie
increased with the aspect ratio, as shown in Fig. 8b, being 7.65%
higher for the square (transversal area of the cube) than for the cir-
cle (transversal area of the cylinder) for all the aspect ratios.

These results could help to explain the differences between the
estimated values for 2-D and 3-D models for different aspect ratios.
First, the Young’s Moduli estimation, obtained from axial deforma-
tion i.e. higher Hryg/hparice relationship for the cylinder would
leads to a higher deformation for the 2-D model, while a higher
Arve/@particie T€lationship for the square would leads to a higher
deformation for the 3-D model. The Hryg/hparice difference
(7.78%) is slightly higher than the Aryg/dparticie difference (7.65%),
results that suggest a higher Young's modulus for the 3-D model.
This difference has not effect at low aspect ratios, where the rein-
forcement effect is low, and Young’s Moduli were almost the same
for both RVEs (Fig. 3a). Nevertheless, for high aspect ratios the

MMC is more susceptible to small changes in the RVE shape, and
the Young’s modulus was higher for the 3-D model, as predicted
by the geometrical analysis.

Finally, these facts could also explain the stress and strain
behavior observed in Fig. 5a and b, respectively. The lowest Agyg/
Gparticle elationship for the circle provokes the highest maxima ax-
ial stress and strain for the cylindrical RVE at low aspect ratios. At
higher aspect ratios the Hgyg/hparicie €ffect is more important and
the maxima values are closer. Even maxima strains are located in
the cubic RVE for aspect ratios higher than 1.0.

4. Conclusions

In this work, a three-dimensional model was presented in order
to study the behavior of a particulate reinforced MMC with differ-
ent aspect ratios, subjected to an axial load. A 2-D axisymmetric
model was also used for comparative purposes. The elastic moduli
estimated using both 2-D and 3-D FEA models are close to those
predicted by the Halpin-Tsai model. The results of the calculated
Young’s modulus using the proposed 3-D FEA model was in better
agreement with the experimental results than those obtained by
the Halpin-Tsai model and the 2-D FEA model. Qualitative differ-
ences were not obtained when comparing 2-D and 3-D models:
deformation, stress and strain distributions showed an excellent
agreement. Nevertheless, quantitative differences were observed
for the estimations obtained using these models: Young’s modulus
was higher for the 3-D model, mainly for higher aspect ratios;
maxima stresses and strains were higher for the 2-D model at
low aspect ratios, while at higher aspect ratios the maxima corre-
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Fig. 8. Geometrical characteristics of the 2-D and 3-D RVEs for different aspect
ratios: (a) Hrve/hparticie relationship, and (b) Arve/@particie relationship.

spond to the 3-D model estimations. This behavior could be ex-
plained due to geometrical differences between selected unit cell,
mainly in transversal area and height. Besides, the 3-D model al-
lowed observing points out of reach for the axisymmetric model.
The results suggest that the 3-D model with one-eight part of the
unit-cell as the representative volumetric element can be success-
fully used to model the mechanical behavior of a MMC.
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