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High-Tc superconductivity in layered cuprates is described in a BCS-BEC formalism
with linearly-dispersive s- and d-wave Cooper pairs moving in quasi-2D finite-width
layers around the CuO2 planes. This yields a closed formula for Tc involving the layer
width, the Debye frequency, the pairing energy and the in-plane penetration depth.
The new formula has no free parameters and reasonably reproduces empirical values of
superconducting Tcs for 11 different layered superconductors over a wide doping regime
including YBCO itself as well as other compounds like LSCO, BSCCO and TBCCO. In
agreement with the London formalism, the formula also yields a fair description of the

Tc dependence of the lower critical magnetic field in highly underdoped YBCO.
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1. Introduction

It appears widely accepted that central to high-Tc cuprate superconductivity

(HTSC) is the layered two-dimensional (2D) structure of copper oxides and that

superconducting pairing occurs mainly on the CuO2 planes. However, the precise

dynamical nature of the pairing is still the subject of intense research. Recent

experiments based on angle-resolved photo emission spectroscopy (ARPES) of un-

derdoped cuprates suggest that bound-fermion Cooper pairs (CPs) form already

at and below temperatures higher than the critical transition temperature Tc.
1–5

The bosonic nature of these CPs is consistent with the so-called “Uemura scal-

ing relation”6–8 of data from muon-spin-relaxation (µSR), neutron and Raman
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scattering and ARPES measurements which exhibit Tc versus Fermi temperatures

TF ≡ EF /kB, where EF is the Fermi energy associated with single charge carriers,

usually holes, and kB is the Boltzmann constant.

Empirical Tcs of many cuprate as well as other so-called “exotic” superconduc-

tors straddle a diagonal line parallel but below the Uemura-plot line associated with

the simple BEC formula TB ≃ 3.31~2n
2/3
B /mBkB ≃ 0.218TF corresponding to an

ideal gas of bosons of mass mB = 2m∗ and number density nB = ns/2, where

m∗ is the electron effective mass and ns the number density of individual charge

carriers. The first mentioned “empirical” diagonal line is shifted down from TB by

a factor 4–5, a fact judged9 to be of “fundamental importance of the BEC concept

in cuprates.” Several theoretical10–14 papers based on BEC proposed that HTSC

might be rooted in a 2D Bose–Einstein condensate (BEC) of CPs pre-existing above

Tc and coupled through a BCS-like phonon mechanism,17,18 originally taken as s-

wave. In Refs. 15 and 16 this scenario of the pseudogap is studied in detail.

As apparently first reported by Schrieffer,19 the Cooper model interaction20

leads to an approximate linear energy-versus-center-of-mass-momentum (CMM)

dispersion relation with the leading term (1/2)vF~K for excited CPs propagating

in the Fermi sea, where K is the CMM wavenumber and vF the Fermi velocity. This

linearity makes a Bose–Einstein condensate (BEC) possible in all space dimensions

d > 1. The formation of BEC of CPs in 2D does not violate Hohenberg’s theorem21

as this theorem holds only for quadratically-dispersive particles. BEC schemes pro-

vide a correct description of other relevant physical properties of HTSCs such as a

short coherence length, a type II magnetic behavior and the observed temperature

dependence of the electronic heat capacity.10 They also lead to excellent fits22 of

the condensate fraction curves for quasi-2D cuprates just below Tc, as well as for 3D

and even quasi-1D SCs. The leading-order linearity is not induced by the particular

interfermion interaction binding the CPs but is a consequence of the nonzero-vF
Fermi sea in which a CP by definition propagates (see Refs. 14, 23–26 for further

discussion).

On the other hand, ARPES data have been interpreted to suggest that HTSC

involves an unconventional dx2−y2 orbital pairing symmetry, since the energy gap ∆

(a measure of the energy needed to break a CP) displays a functional dependence

∆ = ∆0 cos 2θ where θ = tan−1 Ky/Kx is the angle between the total or CMM

~K = (~Kx, ~Ky) of paired electrons in the CuO2 plane and the a- (or x-) axis

while ∆0 is the value of the superconducting gap at the antinode (θ = 0, π/2).27,28

This behavior is also apparent in studies based on electronic Raman scattering29 and

in determinations of the in-plane magnetic penetration depth λab.
30–32 Although a

majority within the high-Tc community seems to argue for such non-s-wave pairing

symmetry there are compelling dissenting views, particularly work within the past

few years, by Müller,33 Harshman et al.,34 Klemm35 and many others.

Here we apply a general l-wave BCS-type theory in a quasi-2D BEC picture

with either l = 0 or l = 2 pairing symmetry. In Sec. 2 the l-wave BCS theory is

discussed within the framework of the present model; in Sec. 3 we study a BEC of
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linearly-dispersive, massless-like CPs in finite domains. We report explicit results

for thermodynamic properties of a confined BEC, such as particle number density,

energy density and specific heat. The density of SC charge carriers is estimated

in Sec. 4 in terms of the magnetic penetration depth for linearly dispersive CPs.

This leads to an analytic expression for the critical BEC temperature, which is then

applied to various superconductors including YBCO with different doping levels.

Discussion and conclusions are given in Sec. 5.

2. BCS Theory with l-Wave Pairs

An l-wave formulation of BCS theory was discussed long ago by Schrieffer19 him-

self and studied in considerable detail by Anderson and Morel36 in the weak-

coupling limit. The d-wave extension in strong-coupling Eliashberg theory is re-

ported in Refs. 37–39. The l-wave formulation of BCS theory has been successfully

employed27,28,40 to describe thermodynamic and transport properties of high-Tc

cuprates (see also Refs. 19, 27, 28, 36, 40).

We briefly review Schrieffer’s arguments showing that independently of the cou-

pling strength, the presence of a Fermi sea induces a linear dispersion relation

for CPs in an eigenstate of angular momentum l. A pair of fermions interact-

ing via an isotropic potential V near the Fermi surface and with kinetic energies

ǫk ≡ ~
2(k2 − k2F )/2m

∗ (with ~kF the Fermi momentum) satisfy the Schrödinger

equation in momentum space

(EK − ǫk+K/2 − ǫk−K/2)ak =
∑

k′

Vkk′ak′ , (1)

where ~K is the CMM, EK the energy eigenvalue (relative to the Fermi en-

ergy) and the interaction potential has matrix elements Vkk′ ≡ 〈k,−k|V |k′,−k′〉.

For a given K, the relative-co-ordinate problem is isotropic and the interac-

tion potential V ≡ V (|r|) admits a spherical harmonic expansion Vkk′ =
∑∞

l=0

∑l
m=−l Vl(|k|, |k′|)Y m

l (Ωk)Y
−m
l (Ωk′). By assuming that Vl as separable:

Vl(|k|, |k
′|) = V

(l)
0 f l

kf
l∗
k′ so that the coupling interaction between different l-states is

relatively weak, the problem admits an analytical solution. We introduce a Debye

momentum ~kD, a Debye energy ~ωD ≡ ~
2k2D/2m∗ with m∗ the electron effective

mass and a Debye temperature ΘD ≡ ~ωD/kB. Following similar steps as in the

standard BCS theory one obtains a BCS-type integral relation for a CP in the

eigenstate characterized by (l,m), namely:

V
(l)
0

∑

k

1

E
(l)
K − ǫk+K/2 − ǫk−K/2

≃ N0V
(l)
0

∫ k2

k1

dk

|E
(l)
K |+ ǫk+K/2 + ǫk−K/2

= 1 , (2)

where the density of states per spin N0 ≈ const in the domain kF < |k + K/2|,

|k −K/2| <
√

k2F + k2D and k1 = kF + (K/2) cos θ, k2 = kF + kD − (K/2) cos θ.
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The integral in (2) yields the energy spectrum of excited CPs up to terms of order

(kD/kF )
2 = ΘD/TF

19:

E
(l)
K ≃ E

(l)
0 + c1~K +O(K2) , (3)

where E
(l)
0 is the binding energy of the CP ground state (with ~K = 0).20

E
(l)
0 = −2~ωD/[exp(2/N0V

(l)
0 )− 1] , (4)

with c1 ≡ 2vF /π in 2D, and c1 ≡ vF /2 in 3D. Clearly, the dispersion relation (3) is

linear in leading order rather than quadratic as would be expected in vacuo. One

direct consequence of this is that in order for a CP to remain bound, i.e., E
(l)
K < 0,

its maximum CM momentum ~K must not exceed the pair-breaking threshold

~K < ~K0 ≡ |E
(l)
0 |/c1.19

The structure of the dispersion relation is such that a CP state of energy E
(l)
K

is characterized only by a definite K but not definite k. It follows that the total

number of CPs in the system may be expressed in terms of the number operator

N̂ =
∑

K

∑

k

B̂k,K†B̂k,K =
∑

K

n̂K , (5)

where n̂K =
∑

k B̂
†
k,KB̂k,K ≡

∑

k n̂k,K is the number operator for CPs with fixed

CMM ~K, while B̂k,K, and B̂†
k,K are CP annihilation and creation operators de-

fined by B̂k,K ≡ ĉk+K/2,↑ĉ−k+K/2,↓ and B̂†
k,K ≡ ĉ†

k+K/2,↑ĉ
†
−k+K/2,↓.

10,41 Here,

ĉq,s, ĉ†q,s are Fermi operators of total momentum q, and spin s, which satisfy

the anti-commutation relations {ĉk+K/2,s, ĉk′+K/2,s′} = 0 = {ĉ†
k+K/2,s, ĉ

†
k′+K/2,s′},

{ĉk+K/2,s, ĉ
†
k′+K/2,s′} = δk,k′δs,s′ . These anti-commutators allow showing that the

operator n̂k,K is idempotent, i.e., n̂2
k,K = n̂k,K, with eigenvalues nk,K = 0 or 1.

Consequently, the eigenvalues of n̂K are either nK = 0, 1, 2, . . . so that CPs may

multiply occupy one and the same CMM state, including ~K = 0. We conclude

that CPs obey Bose–Einstein statistics and therefore may suffer a BEC below a

definite critical temperature Tc which can be identified with the superconducting

temperature.

3. BEC in Constrained Domains

Accordingly, we evaluate the CP number and energy densities by introducing the

exact mode density arising from the layered 2D structure of cuprates into the Bose–

Einstein integrals

n = n0(T ) +
1

V

∫ K0

0+
dK

g(K)

z−1 exp βE
(l)
K − 1

and u(T ) =
1

V

∫ K0

0+
dK

g(K)E
(l)
K

z−1 expβE
(l)
K − 1

. (6)
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Here z ≡ exp βµ is the fugacity (0 ≤ z ≤ 1) with µ the chemical potential and

β ≡ 1/kBT , K0 is the pair-breaking wavenumber and E
(l)
K = ~c1K (K > 0) is the

dispersion relation for excited CPs. An important point is that superconducting

pairing occurs mainly on the CuO2 planes, so that the density of CM states is not

simply given by the asymptotic Weyl expression g(K) = V K2/2π2. This expression

is valid only in the large volume limit V 1/3K ≫ 1, and thus neglects all finite-size

effects on the thermodynamic properties of the system. Several thermodynamic

properties of BECs in thin films were asymptotically evaluated by Pathria forty

years ago42 under a variety of boundary conditions, while a general study of spectra

of finite systems was addressed by Baltes and Hilf.43 Techniques based on the

determination of the density of states of finite-size systems have been exploited by

some of the authors of this paper to study the Casimir effect for quantum fields

both at zero and finite temperature.44–46 Previous results for BECs in constrained

domains were also presented in Ref. 47.

The correct density of states can be determined by assuming that the CM

component for an N -particle CP state is constrained within a rectangular domain

with spatial dimensions a1, a2, a3. We consider that these directions coincide with

the a, b and c, crystallographic directions of a given cuprate. By assuming for

definiteness that the CP CM-wavefunction satisfies periodic boundary conditions

within that domain (Dirichlet or null-flux Neumann boundary conditions can be

straightforwardly derived from the periodic solution), the CM density of states is

g(K) =
∑

{n} δ(K −Kn). Here, Kn = [(n1π/a1)
2 + (n2π/a2)

2 + (n3π/a3)
2]1/2. By

using summation relations described in Refs. 44–46 the exact density of states may

be rewritten in the convenient form:

g(K) =
V K2

2π

∑

m1,m2,m3

j0(Kum1,m2,m3
) (7)

with j0(x) the zero-order spherical Bessel function and um1,m2,m3
≡ [(a1m1)

2 +

(a2m2)
2 + (2a3m3)

2]1/2. Note that Weyl’s mode density is recovered in the large

volume limit a1a2a3 → ∞. The integrals in (6) can be performed by changing to

the variable x ≡ β~c1K. For x > 1 they are rapidly convergent due to the combined

action of the exponential factor of Bose distribution and a strongly oscillating mode

density. In that case the upper integration limit may safely be taken as infinite and

the integrals in (6) may be evaluated exactly. The number density (6) becomes:

n(T ) = n0(T ) +
(kBT )

3

π2~2c3

′
∑

m1,m2,m3

∞
∑

m=1

mzm

(m2 + α2
m1,m2,m3

)2
(8)

with αm1,m2,m3
= (kBT/~c1)[(m1a1)

2 + (m2a2)
2 + (m3a3)

2]1/2, while the energy

density is:

u(T ) =
(kBT )

4

π2~2c31

′
∑

m1,m2,m3

∞
∑

m=1

(3m2 − α2
m1,m2,m3

)zm

(m2 + α2
m1,m2,m3

)3
. (9)
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The primes on the summation signs in (8) and (9) mean that the term with m1 =

m2 = m3 = 0, corresponding to the asymptotic Weyl distribution, is omitted.

By considering that CPs propagate within infinite extent layers in the a and b

crystallographic directions, we keep only the terms m1 = m2 = 0 in (8) and (9).

The remaining summation over m3 may be performed analytically by introducing a

reduced (or dimensionless) thickness variable η ≡ kBTδ/~c1 while δ is the thickness

in length units, to give:

n(T ) = n0(T ) +
(kBT )

3

π2~3c31
Ψ3(z, η) and u(T) = 3

(kBT)
4

π2~3c31
Φ4(z, η) . (10)

Here Ψs(z, η) ≡
∑∞

m=1(z
m/ms)fm(η), Φs(z, η) ≡

∑∞
m=1(z

m/ms)gm(η), while

fm(η) ≡ (1/2)[hm(η) + (mπ/η) coth(mπ/η)], hm(η) ≡ (mπ/η)2 sinh−2(mπ/η), and

gm(η) ≡ (1/3)[(hm(η) + (mπ/η) coth(mπ/η)(1 + hm(η))]. Introducing the dimen-

sionless variable ηc ≡ kBTcδ/~c1 one finds that the critical temperature Tc follows

from the conditions nB
0 (Tc) → 0 and z(Tc) → 1, with the result

kBTc = [π2
~
3c31n/Ψ3(1, ηc)]

1/3 . (11)

The above expressions for the particle and energy densities yield well-known

expressions for 3D and 2D condensates10 by considering the limits η ≫ 1, and

η ≪ 1, respectively. In particular, in the constant-volume molar heat capacity

CV (T ) = R(nkB)
−1∂u(T )/∂T (with R the gas constant) involves a discontinuous

jump in the 3D case ∆CV = 6.57R at T = Tc, indicative of a second-order phase

transition. On the other hand, in the 2D (thin-layer) limit we get hm(η) → 0,

fm(η) ≃ mπ/2η, and gm(η) ≃ mπ/3η. Simple algebra leads to:

n2D(T ) = n2D
0 (T ) +

(kBT )
2

2π~2c21

∞
∑

m=1

zm

m2
and u2D(T ) =

(kBT )
3

π~2c21

∞
∑

m=1

zm

m3
, (12)

where the boson number density n2D and energy per unit area u2D are defined as

n2D ≡ δn(T ) and u2D ≡ δu(T ). The critical BEC temperature is now given by:

kBT
2D
c =

[

2π~2c21n
2D

ζ(2)

]1/2

, (13)

where ζ(2) = π2/6. In this case the molar heat capacity is CV (T ) =

[6Rζ(3)/ζ(2)](T/Tc)
2 for T < Tc, but must be evaluated numerically for T > Tc.

In contrast with the 3D case the heat capacity turns out to be continuous at

T = Tc. It should be noted that in this case the ratio CV (T )/T ∝ T for T ≤ Tc.

This linear behavior has been observed in a number of HTSC materials.48 In

fact, if we estimate the parameter η by introducing typical values for cuprates

kBTc . 100 K ≃ 10−2 eV, δ ≃ 3−4×10−10 m, c1 ≃ 105 ms−1 (~ ≃ 7×10−16 eV–s),

we get η . 10−1, so that the quasi-2D limit may correctly approximate the

thermodynamic properties of HTSC materials as in the present BCS-BEC model,

especially in the regime of low Tcs (or small doping). Here we remain within this

approximation.
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Fig. 1. Energy density u(T ) as function of T/Tc for several reduced layer widths η ≡ kBTδ/~c1.

Fig. 2. Molar constant-volume heat capacity CV (T ) as function of T/Tc for several reduced layer
widths η ≡ kBTδ/~c1.

The relations just derived provide a complete description of the thermodynamic

behavior of a constrained Bose gas system. Figure 1 is a plot of the internal energy

as function of reduced temperature T/Tc for different values of the reduced layer

width η. It reveals a marked variation with η. For η ≫ 1 the internal energy

develops an abrupt (but continuous) drop at Tc, while a gentler drop occurs in the

opposite limit η ≪ 1. This implies that the molar specific heat may radically alter

its behavior depending on the layer width. In Fig. 2 we plot the specific heat for

different values of the reduced layer width. We see that in the quasi-3D limit the
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specific heat is discontinuous, leading to a second-order phase transition; in the

quasi-2D limit it is continuous, implying a third-order phase transition. Then, the

character of the BEC phase transition depends either on the underlying energy-

momentum dispersion relation or on the effective dimensionality of the system.

4. Charge-Carrier Density and Critical Temperature

The density of SC charge carriers may be determined instead from knowledge of the

magnetic penetration depth λab(T ), i.e., the distance from the surface over which an

external magnetic field decays within the superconductor along the crystallographic

plane ab. This can be measured, for example, by MSR techniques.6–8 A conventional

Drude approach (not shown here) yields the explicit form of this parameter for

linearly-dispersive CPs with charge 2e, and moving with a uniform CM momentum

P :

1

λ2
ab(T )

≡
(2e)24πc1

c2P
n(T ) , (14)

where e is the electron charge and c the speed of light (an equivalent expression

has been derived by Fujita10 by using phase invariance of the CP wavefunction).

Since the momentum P may take any value within the interval 0 < P ≤ ~K0 we fix

it by introducing its mean value P → P̄ = ~K0/2. By additionally introducing in

(14) the pair-breaking condition K0 = E
(l)
0 /~c1 and the weak coupling BCS relation

|E
(l)
0 | = ∆

(l)2
0 /2~ωD for arbitrary l symmetry,36 we obtain:

n =

[

c2

64πc21e
2

](

∆2
0

~ωD

)

1

λ2
0

, (15)

where λ0 ≡ λab(0). Taking into account that the total number of bosonic CPs

per unit volume n is made up mainly of those concentrated in narrow layers of

width δ about the CuO2 planes, it seems reasonable to consider δ = d, where d

is the interlayer spacing between adjacent CuO2 planes (∼ 3 Å in cuprates50).

This assumption is consistent with contour plots of charge distributions derived

from band-structure calculations for cuprates.51,52 By introducing n2D = dn into

expression (13) this finally leaves:

Tc =
~c

4πkBe

[

3d

~ωD

]1/2
∆0

λ0
, (16)

which depends only on fundamental constants and physical variables accessible in

principle by current experimental techniques. Interestingly, Tc depends linearly on

∆0 and 1/λ0, in contrast with Uemura’s empirical relation Tc ∝ 1/λ2
0. In fact,

by introducing in (16) the YBCO parameters50 ΘD = 410 K and ∆0 = 17 meV,

as well as d = 3.36 Å, one gets the inverse linear relation Tc = A/λ0, with A =

14.24 [µ ·mK]. In Fig. 3 (adapted from Ref. 57) we compare the prediction given by

this linear relation with measured values of Tc versus 1/λ0 for underdoped YBCO

films, with dopings corresponding to Tcs ranging from 6 to 50 K (including also
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BEC Model of High-Tc Superconductivity in Layered Cuprates

Fig. 3. Comparison of experimental Tcs versus theoretical predictions as function of zero-
temperature inverse penetration length λ−1

0 for YBCO compounds with different dopings. Square
datapoints are taken from Ref. 57, except for uppermost square referring to the optimally doped
regime.50 Vertical “error bars” represent full widths of σ1 peaks where σ1 is the real part of the
conductivity σ employed in Ref. 57 to determine λ−1

0 .

one point corresponding to the optimally doped regime). This relation also gives an

excellent description of measured data by Zuev et al.57 which fall on the same curve

defined by T 2.3±0.4
c ∝ λ−2

0 , irrespective of annealing procedure, oxygen content, etc.

The linear dependence of Tc on 1/λ0 had already been observed58 in single YBCO

crystals near the optimally-doped regime. Similarly, Broun et al.32 report that their

samples of high-purity single-crystal YBCO follow the rule Tc ∝ 1/λ0 ∝ (p−pc)
1/2,

where the doping p is the number of holes per copper atom in the CuO2 planes

and pc the minimal doping for superconductivity onset. The measured value of the

penetration length in YBCO crystals is an order of magnitude larger than in thin

films,32,58 so that the specific values of Tcs derived from the linear relation are not in

such good agreement as in the YBCO films. However, one should expect variations

of parameters such as the energy gap associated to crystals and film systems. It

has been pointed out57 that YBCO films seem to behave more like other cuprate

compounds such as BiSrCaCuO or LaSrCuO than do YBaCuO single crystals.

Theoretical values of Tc for superconducting cuprates with different composi-

tions have been also calculated using (16). Here we report on the 11 layered-cuprate

superconducting compounds (La.925Sr.075)2CuO4, YBa2Cu3O6.60, YBa2Cu3O6.95,

YBa2Cu3O7−δ, (Y.95Pr.05)Ba2Cu3O6.95, (YPr40)Ba2Cu3O6.95, YBa2Cu3O8,

Tl2Ba2Ca2Cu2O8, Tl2Ba2Ca2Cu3O10, Bi2Sr2Ca2Cu3O10 and Bi2Sr2CaCu2O8.

Characteristic parameters for these materials were taken from tables compiled in

Refs. 49, 50, 59–61. Table 1 shows results obtained using the foregoing assumptions,

together with the physical parameters involved in the calculation. In most cases we
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Table 1. Physical parameters of cuprate superconductors and predicted values for Tc, as well as

the gap-to-Tc ratio 2∆0/kBTc. Here, ΘD ≡ ~ωD/kB . Penetration depth λab is estimated from
plasma frequency via ωp = c/λab. Parameters are taken from (a) Refs. 49, 50, 59 and references
cited therein; (b) Ref. 50 Table 6.1; (c) Table 1 in Ref. 61; (d) supplementary information in
Ref. 49; and (e) Ref. 59.

Superconductor T
exp (a)
c T th

c Θ
(b)
D

∆
(c)
0 λ

(d)
ab

d(e)
2∆0

kBTc

(exp) 2∆0

kBTc

(th)

(La.925Sr.075)2CuO4 39 32.0 360 6.5 270 6.62 4.18 4.71

YBa2Cu3O6.60 59 85.3 410 19.0 240 5.87 7.47 5.17

YBa2Cu3O6.95 93.2 92.2 410 17.0 145 3.36 3.78 4.27

YBa2Cu3O7 92 91.0 410 19.0 170 3.36 4.84 4.78

(Y.95Pr.05)Ba2Cu3O7 75 73.6 410 19.0 210 3.36 5.87 5.99

(Y.60Pr.40)Ba2Cu3O7 40 35.9 410 19.0 430 3.36 11.01 12.27

YBa2Cu3O8 80 77.5 410 19.0 200 3.38 5.50 5.58

Bi2Sr2CaCu2O8 80 66.5 250 16.0 250 3.35 4.64 5.58

Bi2Sr2Ca2Cu3O10 110 107.2 260 26.5 252 3.35 5.59 5.73

Tl2Ba2Ca2Cu2O8 110 108.2 260 24 221 3.2 5.05 5.14

Tl2Ba2Ca2Cu3O10 125 127.7 280 26 196 3.2 4.82 4.75

find rather satisfactory agreement between predicted and measured values of Tc.

We also find very good agreement between theoretical and experimental gap-to-Tc

ratios 2∆0/kBTc. We have not attempted to estimate uncertainties of our theoret-

ical results since the accumulated data of some physical parameters appearing in

(16), particularly ∆0, show a wide scatter.

5. Discussion and Conclusions

To address cuprate high-Tc superconductors (HTSCs) we have presented a general

BCS–BEC approach to study thermodynamic properties of boson particles con-

strained within finite quasi-2D spatial regions. A linear, as opposed to quadratic,

dispersion relation is involved associated with the bosonic-CPs total or CMM.

The continuous variation of thermodynamic variables when crossing over from

the 2D to the 3D regime is explicitly shown. When merged with an l-wave BCS

formalism for a quasi-2D BEC of moving CPs the approach describes features

characteristic of HTSCs: (i) a simple formula for the critical transition temper-

ature Tc ∝ 1/λab ∝ n1/2 (where λab and n are the ab-plane penetration depth

and charge-carrier number density, respectively) which applies to different cuprate

SCs over a wide range of dopings and (ii) a molar constant-volume specific heat

CV /T ∝ T , for T ≤ Tc. Although the Tc ∝ 1/λab behavior arising from our model

apparently disagrees with the phenomenological Uemura relation Tc ∝ 1/λ2
ab,

6–8

different experimental studies32,57,58 show a clear agreement with the inverse lin-

ear dependence of Tc on the SC density. It has been noted by Zuev et al.57

that most of the data in the original Uemura’s plot come from samples that

are not as severely underdoped as the samples considered in their experimental

studies. Conversely, Homes has remarked that Uemura’s relation works reason-
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ably well for underdoped materials, but not in the optimally doped or overdoped

regime.49

Our results exhibit a weak dependence on the angular momentum state l, con-

sistently with results derived by Maki et al.27,28 for quantities averaged over a

cylindrical Fermi surface. Furthermore, several authors10,63 have proposed that the

doping process could modify the electron-phonon interaction and the Fermi sur-

face with a concomitant shift from d- to s-type coupling as doping increases. The

strongest evidence for an s-wave order parameter in a cuprate is reviewed in Ref. 35

where several c-axis-twist experiments on BSCCO along with earlier c-axis tunnel-

ing between BSCCO/Pb junctions are surveyed. Reference 64 summarizes many of

the problems with the so-called “phase-sensitive” tests65 in YBCO. Additionally,

predictions made in Ref. 66 that a vortex in a d-wave superconductor would exhibit

a measurable density of states in a four-fold pattern emanating from the core have

not been observed67 in either YBCO or BSCCO. However, the vortex cores appear

to be consistent67 with isotropic s-waves.

Acknowledgments
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