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We draw attention to a feature suggested by a widely-cited paper by Suhl, Matthias,
and Walker in the context of multi-gap superconductivity that seems to have escaped
serious attention: interaction parameters in a superconductor characterized by two zero-
temperature gaps but a single critical temperature must be temperature-dependent.
Guided by this cue, we have presented a plausible scenario for a quantitative explanation
of the superconducting properties of MgB

2
via an alternative approach — the approach

provided by the recently derived set of generalized-BCS equations. Attention is drawn
to earlier work in diverse fields where a similar T -dependent approach has been fruitful.

Keywords: Multi-gap superconductors; multi-phonon exchanges; generalized BCS
equations.

1. Introduction: Review of Suhl, Matthias and Walker’s Approach

for a Two-Gap Superconductor

The approach followed in the seminal paper by Suhl et al.1 (SMW hereafter) has

been invoked, albeit qualitatively, in most studies e.g., Refs. 2–6 concerned so far

with multi-gap superconductors such as MgB2. Salient features of this approach

are: (1) It was originally given in the context of transition elements. (2) The in-

teraction Hamiltonian in this approach comprises three pieces which correspond to
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electrons in the: (i) s-band with a density of states Ns, (ii) d-band with Nd as the

density of states, and (iii) the overlap between the s- and the d-bands. (3) Two

gaps and, in general, two critical temperatures arise in this approach because the

BCS interaction parameter λ is found to be given by a quadratic equation involving

Vss, Vdd and Vsd which denote the interaction energies between pairs of electrons in

the three pieces of the Hamiltonian. (4) It asserts that: (a) when Vsd = 0, the su-

perconductor is characterized by two gaps and two critical temperatures; (b) when

Vss = Vdd = 0 and Ns 6= Nd, there are still two gaps with a state density
√
NsNd

and (c) when Vsd is finite but much less than
√
VssVdd both the gaps close at the

same temperature.

It is our purpose here to critically review these assertions and then to give a

concise but complete account of the superconducting properties of MgB2 via an

alternative approach.

To deal with the first part, we make Eq. (4) in the SMW paper as our starting

point since we have no problem up to this point in their paper:

A(T )[1− VssNsF (A, T )] = B(T )VsdNdF (B, T ) ,

B(T )[1− VddNdF (B, T )] = A(T )VsdNdF (A, T ) ,
(1)

where A(T ), B(T ) denote the T -dependent gap-values and

F (A, T ) ≡
∫ ~ω

0

dǫ
tanh[(ǫ2 +A2)1/2/2kBT ]

(ǫ2 +A2)1/2
, (kB ≡ Boltzman constant) (2)

while the equation for A(T ) is:

1− λAF (A, T ) = 0 . (3)

Thus, F (A, T ) is given by the inverse of the coupling constant and (3) may be

used to determine λA at any T since λ is independent of T in the BCS theory. In

particular, if Tc1 is the critical temperature for gap A, then A(Tc1) = 0 and we have

1 − λAF (0, Tc1) = 0. Similarly, for gap B one has 1 − λBF (0, Tc2) = 0. Note that

F (0, Tc1) 6= F (0, Tc2).

Consider now the case when Vsd = 0. In this case we have from (1)

A(T )[1− VssNsF (A, T )] = 0 ,

B(T )[1− VddNdF (B, T )] = 0 .

In general therefore, when A(T ) 6= B(T ) 6= 0 we have:

[1− VssNsF (A, T )] = 0 ,

[1− VddNdF (B, T )] = 0

and, in particular

[1− VssNsF (A, Tc1)] = 0 ,

[1− VddNdF (B, Tc2)] = 0 .
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These equations are independent of each other and lead to two unequal gaps and the

associated Tcs. Hence we agree with the SMW assertion 4(a) in the first paragraph.

Let us now consider the two equations in (1) when Vss = Vdd = 0. Multiplying

the two equations, we have:

F (A, T )F (B, T ) = 1/V 2
sdNsNd ≡ 1/λ2

eff

or

λeff = +Vsd

√

NsNd

since λeff must be positive. So, there is only one gap — not two as stated in 4(b).

We now consider the case when Vsd 6= 0. The values of the gaps corresponding

to Vsd = 0 were designated as A, B, respectively. Let their values be A′, B′ when

Vsd 6= 0. Equations (1) now are:

A′(T )[1− VssNsF (A′, T )] = B′(T )VsdNdF (B′, T ) ,

B′(T )[1− VddNdF (B′, T )] = A′(T )VsdNsF (A′, T ) .

With the definitions:

λs ≡ VssNs , λd ≡ VddNd , α ≡ V 2
ss/VssVdd ,

F (A′, T ) ≡ 1/λ1 , F (B′, T ) ≡ 1/λ2

(4)

these may be written as:

A′(T )(1− λs/λ1) = B′(T )VsdNd/λ2 ,

B′(T )(1− λd/λ2) = A′(T )VsdNs/λ1 .

Multiplying these together, we obtain:

(1 − λs/λ1)(1− λd/λ2) = αλsλd/λ1λ2 , (5)

where we have used (4) to write NsNd = λsλd/VssVdd.

Note that for any assigned value of α, the single Eq. (5) cannot determine the

two unknowns λ1 and λ2; also that one may not use λ2 = λd or λ1 = λs as a first

approximation because it causes the LHS of (5) to vanish.

If we now assume that:

F (A′ = 0, Tc) = F (B′ = 0, Tc) = 1/λ (6)

and recall from above that we had two distinct gaps in the absence of the inter-band

interaction, then (6) is tantamount to demanding that these gaps close at the same

Tc when such an interaction is switched on. Equation (5) now becomes:

λ2 − (λs + λd)λ + (1− α)λsλd = 0 , (7)

solutions of which are:

λ1,2 =
λs + λd ±

√

(λs − λd)2 + 4αλsλd

2
. (8)
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In the SMW paper, the equation for F (0) is

[Vsd +Nd(V
2
sd − VssVdd)F (0)][Vdd +Ns(V

2
sd − VssVdd)F (0)] = V 2

sd (9)

the solutions of which are:

F (0) =
1

λ1,2

=

±
[

V 2
sd/NsNd +

1

4
(Vdd/Ns − Vss/Nd)

2

]1/2

− 1

2
(Vdd/Ns + Vss/Nd)

V 2
sd − VssVdd

. (10)

This expression has been used by SMW in the BCS equation for Tc — without the

± signs which seems to be an inadvertent omission. It is straightforward to check,

by rationalizing the expression for 1/F (0) that, in terms of λS , λd and α defined in

(4), the solutions in (10) are identical with those given in (8). It follows therefore

that in obtaining (10) SMW have made the assumption stated in (6).

2. Application of SMW Approach to MgB2

We now attempt to apply the SMW formalism to the concrete example of MgB2

the two gaps of which have been reported7 to close at the same Tc. Relevant super-

conducting features of MgB2 are8:

∆01 = 2.1 meV , ∆02 = 6.2 meV ; Tc = 39 K ; ΘD = 815 K , (11)

where the Debye temperature ΘD has been taken to be the mean of 750 K and

880 K. In view of remark 4(a) in the opening paragraph, we are induced to attribute

the values of the two zero-temperature gaps in (11) to α = 0 in (8) and λS calculated

via

λ(0) =
1

arcsinh(kBΘD/∆0)
. (12)

Thus

λ1 = λd = 0.238 , λ2 = λs = 0.32 . (13)

We note that the Tcs corresponding to these λS are 13.9 K and 40.9 K, respectively.

On the other hand, λ corresponding to the empirical8 Tc = 39 K calculated via

λ(Tc) =
−1

ln(Tc/1.14ΘD)
(14)

is found to be,

λ(39 K) = 0.315 . (15)

Comparing this value with the second of the two values in (13), it is seen that

λ(0) > λ(39 K). This inequality will be further discussed.

We now seek to find if a small positive value of α (which we recall denotes

V 2
sd/VssVdd) can bring about closure of the two gaps at the higher Tc in accord with
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the assertion by SMW. To this end we successively put α = 0.01, 0.02 and 0.03 in

(8) and determine the values of λ1,2 that they lead to, and find that:

λ1,2 = 0.230, 0.328 (α = 0.01)

= 0.222, 0.336 (α = 0.02)

= 0.216, 0.342 (α = 0.03) . (16)

As a matter of fact, the smaller the value of α, the closer are the λ1,2-values

to the original values in (13) that one had with α = 0. It is easy to see that the

following inferences drawn from the above considerations are not dependent on the

particular values of λS invoked in (13): (a) If experiment dictates that an SC has

two zero-T gaps ∆0 but only one Tc, then we need two λS at T = 0 which must

converge to the same value as Tc is approached. This requirement cannot be met

by the SMW approach because any real, finite (nonzero) positive value of α in

this approach causes the greater of the two λS in the theory to increase and the

smaller one to decrease: this is transparent from (8) above which as already noted

is identical with (10). (b) Even if one assumes that a suitable value of α due to the

inter-band interactions could meet the requirement under consideration, the fact

would remain that a λ at T = 0 goes over to another value as Tc is approached.

So either λS or λd, or both of them must have a rather complicated T-dependence

(due to itinerancy?) if one is to realize the broken curve in Fig. 2 of SMW. (c) The

assertion about the nature of T -dependence of the λS follows from the fact the

figure under consideration shows a change in the curvature of the plot of ∆(T )/∆0

against T near the higher Tc. Finally, (d) if one follows this plot backwards to

T = 0, one finds a third value for ∆0.

Despite some of the above, rather ambiguous, features of the SMW approach,

it provides one with an important clue for dealing with a superconductor that is

characterized by two ∆0s and one Tc, which is: consider the possibility of the λS

in the theory to be T -dependent. This is the feature of their approach that seems

to us to have escaped serious attention and which we follow up.

Even if the SMW approach is assumed to work for closure of both the gaps of

a CS at the same Tc, it cannot account for such high-Tcs as have been observed.

This is so simply because that approach is based on the single-phonon exchange

dynamics for the formation of Cooper pairs. We now invoke multi-phonon exchanges

via the generalized-BCS equations (GBCSEs) to address the observed (high) Tc and

the two gaps of MgB2.

3. Quantitative Study of MgB2 via Generalized-BCS Equations

It seems pertinent first of all to investigate if a T -dependence of λ is also a feature

of elemental superconductors. To this end we calculated λ(T = 0) via (6) and λ(Tc)

via (7) for seven selected elements: Cd, Pb, Hg, Sn, In, Tl and Nb. Interestingly, as
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shown,9 we found that for all of these:

λ(0) > λ(Tc) . (17)

Additionally, the difference between these two λS is significant for Pb and Hg,

whereas for the other five elements it is marginal. Therefore, while for the latter

five elements λ may be eliminated between (12) and (14) leading approximately to

the well-known BCS value of 3.53 for the gap-to-Tc ratio 2∆0/kBTc one cannot do

so for Pb and Hg, the so-called “bad actors”. A T -dependence of λ is thus seen to

shed light on the violation of the alleged universal gap-to-Tc ratio in BCS theory.

With the clue provided by SMW, and the feature of elemental superconductors

noted above in view, we now give a concise but complete account of the supercon-

ducting features of MgB2 via the alternative approach provided by the GBCSEs.

We recall10–12 that these equations constitute a generalization of the BCS equations

because: (a) they incorporate the mechanism of multi-phonon exchanges for the for-

mation of Cooper pairs in addition to the usual one-phonon exchange mechanism

and (b) they invoke more than one Debye temperature in order to take into account

the anisotropy of a composite (i.e., nonelemental) superconductor. The GBCSEs

for the two gaps are:

1 = λc
1(T )

∫ kBΘc

1
+|W1|/2

|W1|/2

dx
tanh(x/2kBT )

x
, (18)

1 = λc
1(T )

∫ kBΘc

1
+|W2|/2

|W2|/2

dx
tanh(x/2kBT )

x

+λc
2(T )

∫ kBΘc

2
+|W2|/2

|W2|/2

dx
tanh(x/2kBT )

x
, (19)

where,

λc
1(T ) = λc

1(0) + α1T ; λc
1(0) = 0.2216 , α1 = 1.7923× 10−3 K−1, Θc

1 = 1062 K

λc
2(T ) = λc

2(0) + α2T ; λc
2(0) = 0.1073 , α2 = −2.749× 10−3 K−1, Θc

2 = 322 K

|W1| = ∆1 , |W2| = ∆2 .

The equation for the higher Tc follows from (19) by putting |W2| = 0, giving

1 = λc
1(T )

∫ kBΘc

1

0

dx
tanh(x/2kBT )

x
+ λc

2(T )

∫ kBΘc

2

0

dx
tanh(x/2kBT )

x
. (20)

We recall that the Debye temperature is just another way to specify the Debye

frequency — two such temperatures arise for a binary because of the difference in

the masses of the vibrating ions that constitute its lattice. A virtue of GBCSEs

is: Given any two of the triplet of the BCS quantities {∆01,∆02, Tc}, they enable

one to calculate the third, which is an extension of what the normal BCS equations

achieve for elemental superconductors. For a detailed account of the values of λc
1(0),
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λc
2(0), Θ

c
1 and Θc

2 quoted above, we refer the reader to Ref. 11. It is easy to verify

that the GBCSEs given above can quantitatively account for not only the two zero-

temperature gaps and the Tc of MgB2, but also closure of the gaps at the higher

Tc in accord with experiment. In addition, one is enabled to tackle other problems

such as the thermal conductivity of this SC via, e.g., the Geilikman–Kresin/BRT

theories.13–15

We now address a question that cannot have escaped the cognoscenti: How is it

that the set of GBCSEs above for a two-gapped SC has two interaction parameters

whereas the SMW approach has three such parameters? We note that while the

physical origin of multiple gaps in the approach delineated above is different from

the one in SMW, effectively, it nonetheless has three interaction parameters for a

two-gapped SC. Symbolically, these are

(λc
1,Θ

c
1) , (21)

(λc
2,Θ

c
2) , (22)

(λc
1,Θ

c
1) + (λc

2,Θ
c
2) (23)

It has been shown in Refs. 11 and 12 that we are led via (23) to the larger gap

and via (21) or (22) to the smaller gap in MgB2, YBCO, etc — in agreement with

experiment. If the parameters in (21) lead to the observed smaller gap, then a

natural question to ask is: What about another small gap led to by the parameters

in (22)? In our work in references just cited, we had remarked that it is “too small to

be observed.” It turns out that precisely such gaps have recently been reported16–18

for the iron-pnictide SCs. For a detailed account via GBCSEs of the gaps and the

Tc of the prominent member Ba0.6K0.4Fe2As2 of the iron-pnictide family we refer

the reader to Ref. 19.

4. Some Remarks about T-Dependent Hamiltonians

Indeed, the above considerations have willy-nilly led us to the not-very-familiar ter-

ritory of T -dependent Hamiltonians because the effect of temperature on any prop-

erty of the system is usually taken into account by averaging over the Boltzmann-

weighted T -independent energy eigenvalues. Nonetheless, it is not the first time that

such territory has been reached, as evidenced by the employment of T -dependent

dynamics in the context of:

(1) Superconductivity in the work of Bogoliubov, Zubarev and Tserkovnikov, as

discussed by Blatt20;

(2) An explanation21 of the empirical law: Hc(T ) = Hc(0)[1 − (T/Tc)
2], where

Hc(T ) is the critical field at T ;

(3) Finite-temperature behaviour22–25 of a class of relativistic field theories (RFTs)

to address the question of restoration of a symmetry which at T = 0 is broken

either dynamically or spontaneously;

(4) Wick–Cutkosky model26 in an RFT;
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(5) The legions of unidentified solar emission lines27;

(6) QCD to explain28,29 the masses of different quarkonium families and their de-

confinement temperatures, and most recently in

(7) A comparative study30 of the experimental features of the Bose–Einstein con-

densates in clouds of 7Li,23Na, 41Ca, 85Rb, 87Rb and 133Cs atomic gases.

5. Conclusions

We have pointed out that in a situation envisaged by SMW in the framework of

the BCS theory, the interaction parameters must be T -dependent. Acting on this

cue, we have presented a plausible scenario for a quantitative understanding of the

superconducting properties of MgB2 via the set of GBCSEs. Finally, we have drawn

attention to the similarity of the T -dependent approach followed here with earlier

such studies in diverse fields.
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DGAPA-PAPIIT (México) for partial support from grant IN102011 and J. E. Hirsch

for a brief consultation.

References

1. H. Suhl, B. T. Matthias and L. R. Walker, Phys. Rev. Lett. 3, 552 (1959).
2. A. Y. Liu, I. I. Mazin and J. Kortus, Phys. Rev. Lett. 8(7), 087005 (2001).
3. H. J. Choi et al., Nature 418, 758 (2002).
4. E. Bauer et al., J. Phys.: Condens. Matter 13, L487 (2001).
5. M. Schneider et al., Physica C 363, 6 (2001).
6. A. V. Sologubenko et al., Phys. Rev. B 66, 014504 (2002).
7. M. Iavarone et al., Phys. Rev. Lett. 89, 187002 (2002).
8. C. Buzea and T. Yamashita, Superconduct. Sci. Technol. 14, R115 (2001).
9. G. P. Malik and M. de Llano, J. Mod. Phys. 4A, 6 (2013).

10. G. P. Malik, Int. J. Mod. Phys. B 24, 1159 (2010).
11. G. P. Malik, Int. J. Mod. Phys. B 24, 3701 (2010).
12. G. P. Malik and U. Malik, J. Supercond. Nov. Magn. 24, 255 (2011).
13. B. T. Geilikman, Sov. Phys. J. Exp. Theor. Phys. 7, 721 (1958).
14. B. T. Geilikman and V. Z. Kresin, Sov. Phys. Dokl. 3, 1161 (1958).
15. J. Bardeen, G. Rickayzen and L. Tewordt, Phys. Rev. 113, 982 (1959).
16. D. Lee, Nat. Phys. 8, 364 (2012).
17. Y. Zhang et al., Nat. Phys. 8, 371 (2012).
18. M. P. Allan et al., Science 336, 563 (2012).
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