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A recent boson-fermion (BF) binary gas mixture model is extended to include:
(i) anisotropy of the BF interaction and (ii) momentum-independent Coulomb repul-
sions. It is applied to account for the peculiarities of the pseudogap observed as function
of absolute temperature T and concentration x of holes doped onto the CuO2 planes
and to study the further transformation of the pseudogap into the real superconducting
gap, as T is lowered. Using two-time Green functions it is shown that pair breakings
depend on the separation between the boson and fermion spectra of the BF mixture.
As this separation shrinks, the pair-breaking ability of the Coulomb interaction weakens
and disappears at the BEC Tc, i.e., at the T below which a complete softening of bosons
occurs. Simultaneous inclusion of both effects (i) and (ii) produces, as T is lowered,
“islands” in momentum space of incoherent Cooper pairs above the Fermi sea. These
islands grow upon further cooling and merge together just before Tc is reached. The new
extended BF model predicts a pseudogap phase in 2D high-Tc superconductors with
lines of points, or loci, on the Fermi surface along which the pseudogap vanishes. This
explains the origin of T -dependent “Fermi arcs” observed in ARPES experiments.

Keywords: Preformed Cooper pairs; pseudogap; Fermi arcs.

∗Permanent address

1347002-1

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

01
3.

27
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 A
U

T
O

N
O

M
O

U
S 

U
N

IV
E

R
SI

T
Y

 o
n 

04
/0

3/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://dx.doi.org/10.1142/S0217979213470024
mailto:tmamedov@baskent.edu.tr
mailto:dellano@unam.mx


October 23, 2013 9:51 WSPC/Guidelines-IJMPB S0217979213470024

T. A. Mamedov & M. de Llano

1. Introduction

Cooper oxides (or cuprates) are compound materials with various phases observed

at different absolute temperatures T and compositions x of holes doped into the

CuO2 planes. Such planes are unique structural elements for all Cu-based high-Tc

superconductors (HTSC). Phase diagrams, deduced from a vast number of experi-

ments (see e.g., Fig. 1 in Ref. 1), show a varied complexity of physics in those com-

pounds. In particular, clearly seen in that diagram are well-defined regions as an

insulating antiferromagnet, a pseudogapped metal, a superconductor and so-called

marginal-Fermi-liquid phases. They alternate as x increases. It is widely believed

that the complicated and rich physics of cuprates is a result of the combined effect

of low-quasi-dimensionality and strong correlations between individual charge car-

riers. Any comprehensive theory of high-Tc-materials must deduce, within a single

unified conception, the dominant interactions underlying the origin of each region

of the phase diagram, as well as the crossovers between them. In Ref. 1 special

stress is made on so-called “preformed Cooper pairs” as well as “Fermi arcs”, both

topics to be addressed in the present paper.

The transition from the insulating antiferromagnet phase of the undoped com-

pounds to the metallic state when extra holes are doped into the CuO2 planes is

attributed to the strong on-cite correlations of electrons in quasi-two-dimensional

(2D) CuO2 layers. Their effects are usually described in terms of the extended Hub-

bard model (see e.g., in Ref. 1). Unfortunately, the central question “is the pairing

of charge carriers exclusively of electronic origin or it is conditioned by some com-

bined mechanism involving, e.g., the effect of lattice vibrations”2 still lacks both an

experimental and a theoretical basis. Varied opinions are found in the literature,3

ranging from a complete negation of the role of electron–phonon interactions to the

opposite belief that electronic properties and related magnetic-ordering effects are

irrelevant for high-Tc materials. Indeed, the dynamical origin of the pairing interac-

tion is a matter of debate. But regardless of the actual dynamics producing pairing,

the notion of Cooper pairs (CPs) appears to be an essential ingredient in virtually

every theory of superconductivity. A comprehensive theory must account for the

presence between the insulating and superconducting phases of a so-called pseudo-

gapped metal domain, the appearance of which is most striking and unprecedented

(see, e.g., Ref. 4, Fig. 3). Experiments in cuprates with x spanning this domain

exhibit signatures of a suppression of the density of electronic states, i.e., the open-

ing of a gap in the single-particle electronic spectrum below some x-dependent

characteristic temperature T ∗ which can be appreciably higher than Tc. Whether

the pseudogap domain is a true thermodynamic phase emerging only for specific

compositions x of holes, or is it an “insulator-superconductor crossover” region,

remains one of the unsolved questions. Two broad trends are discussed in the liter-

ature4: First, a pseudogap is basically of the same origin as superconductivity.5 In

this case it might reflect the presence of preformed pairs,1 i.e., noncoherent pairs

above Tc but below T ∗. Or, it is a manifestation of some new order, different from

1347002-2

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

01
3.

27
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 A
U

T
O

N
O

M
O

U
S 

U
N

IV
E

R
SI

T
Y

 o
n 

04
/0

3/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



October 23, 2013 9:51 WSPC/Guidelines-IJMPB S0217979213470024

Uniform Coulomb Field as Origin of “Fermi Arcs”

superconductivity, which may possibly be in competition with the superconducting

state.6

A principal step towards a “complete theory” vitally hinges on which of these

two scenarios is correct, or at worst merely dominant. In the absence of such a

comprehensive theory, different phenomenological approaches motivated by experi-

mental findings and physical intuitions have appeared that consider various aspects

of cuprate physics. Two observations lend credence to boson-fermion (BF) binary-

gas-mixture models which posit the existence above Tc of actual bosonic CPs of

total charge 2e. First, pairs in conventional low-Tc and HTSC differ widely in size,

or so-called coherence lengths ζ, compared with the average spacing s between

pairs. For conventional superconductors ζ ≫ s and give rise to as many as a million

CPs overlapping any single CP. However, according to estimates, the average dis-

tance between pairs in CuO2 planes is approximately 25 Å, i.e., is more than (or of

order of) the typical coherence length of pairs observed in cuprates to be of order

20 Å (see, e.g., Ref. 7). Specifically, unlike CPs in low-Tc materials, because ζ and

s are comparable in cuprates, pairs in HTSCs by and large occur independently of

each other and may therefore be considered as made up of two bound fermions.

Second, recent experiments8,9 reveal a Bogoliubov quasiparticle spectrum in the

pseudogapped-metal domain of the phase diagram which confirms the notion that

a pseudogap existing above Tc must be related to pairing.10 This is perhaps the

best evidence for the preformed-pairs scenario. According to these experiments,

at temperatures between Tc and T ∗ dispersion of single-fermions behaves in some

directions of the Brilluoin zone as if the sample were a normal metal. It crosses

EF over an extended length forming “Fermi arcs”.1 In contrast, in other directions

there is a wavenumber range k near kF for which the spectrum of free fermions dis-

plays a gapped structure. If so, then the question “does the idea of preformed pairs

account for all the observed peculiarities of the pseudogap phase as one changes

T and x and its subsequent transformation into the actual superconducting gap”

becomes relevant.

This paper deals with those aspects of the problem. In Sec. 2 the generalized BF

Hamiltonian is introduced; in Sec. 3 the two-time Green-function (GF) technique

is applied to obtain the single-fermion occupation numbers nkσ and single-fermion

spectrum in the BF mixture; in Sec. 4 the role of renormalized boson energies in the

consequent BEC is discussed; in Sec. 5 we analyze the distribution of occupation

numbers nkσ along the direction of the 2D wavevector k as the temperature is

reduced; and in Sec. 6 concluding remarks are given.

2. BF Hamiltonian

BF Hamiltonians for binary gases were first introduced in Refs. 11–15. A ternary

model including also hole CPs alongside electron CPs, and capable of making pre-

cise contact with BCS theory16 as a special case, appeared later.17,18 The binary

BF model has been generalized in Ref. 19 to contain terms describing both the
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anisotropy of CP formation as well as Coulomb repulsion between fermions. The

Hamiltonian is now:

H ≡ Ho +HeB +HU . (1)

Here, the first term Ho in (1) is the sum of Hamiltonians of free (pairable but

unpaired) fermions He and of composite-boson CPs HB , namely:

Ho ≡ He +HB =
∑

k,σ

ξka
+
kσakσ +

∑

K

EKb+KbK , (2)

where a+kσ and akσ are the usual fermion creation and annihilation operators for

individual electrons of momenta k and spin σ =↑ or ↓ while b+K and bK are pos-

tulated17,20 (for a brief review, see Ref. 18) to be bosonic operators associated

with CPs of energy EK and definite total, or center-of-mass momentum (CMM),

wavevector K ≡ k1 + k2 which is just the sum of the wavevectors of two electrons.

In (2) fermion ξk = ǫk − µ and boson EK energies are measured from µ and 2µ,

respectively, where the electronic chemical potential µ is fixed from the constancy

of the total electron number. The second term in (1) is the BF vertex interaction

HeB ≡ L−d/2
∑

q,K

(fqb
+
Kaq+K/2↑a−q+K/2↓ + h.c.) (3)

and describes processes of boson formation/disintegration where fq = fφq is a phe-

nomenological BF coupling constant distributed around its average value f mea-

suring the vertex interaction strength, nonzero only in the electron-energy range

EF − ~ωD ≤ ǫ ≤ EF + ~ωD about the Fermi energy EF of the ideal Fermi gas. To

maintain a connection with the electron–phonon Debye energy, the pairing-energy

scale is denoted as ~ωD. Also, fq contains so-called anisotropy factors φq = φ−q

introduced to account for the anisotropy of the BF interaction associated with CP

formation. In the quite general formalism of Refs. 17, 18, which boils down to a

ternary BF gas mixture model mentioned earlier that does exclude two-hole CPs

unlike binary BF models, one can extract BCS theory as a special case21 if one

identifies the BF form factor coupling f with
√
2V ~ωD, where V is the strength of

the net attractive pair-forming BCS model interaction.16 Finally, last term HU in

(1) is chosen as

HU ≡ U0L
−d

∑

k,k′,q

a+
k+q/2↑a

+
−k+q/2↓a−k′+q/2↓ak′+q/2↑ (4)

and reflects the repulsive Coulomb interaction between fermions modeled as a spa-

tially uniform repulsive field of strength U0 ≥ 0. We believe that the inclusion of

this term is necessary to prevent the singularities in compressibility which naturally

occur in any gas of attractively interacting particles.

Applied to cuprates, (1) implies that by introducing holes of composition x onto

the CuO2 planes, xNCu electrons, where NCu is the number of Cu sites, become

mobile. These xNCu electrons which would fill at T = 0 the states up to energy

EF = (π~2NCu/m)x in a 2D lattice, appear subsisting in a uniform repulsive field
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of strength U0 and interacting with each other via some pairing potential leading

to (1). Unfortunately, there is no derivation of (1) based on the electronic structure

of CuO2 planes and the genesis of atomic bonds.22,23

The total electron number whose operator is:

N ≡
∑

k,σ

a+
kσakσ + 2

∑

K

b+KbK (5)

includes, naturally enough, both the number of unpaired fermions plus twice the

number of bosons. It commutes with (1) and is therefore an invariant of motion

for the binary BF mixture state. Note that (5) reveals a very different structure of

BCS and BF models. Indeed, CPs in the BCS model may appear at temperatures

higher than Tc only as superconducting fluctuations. A nonzero equilibrium num-

ber density nB(T ) is possible only if T ≤ Tc. However, within a binary mixture

of mutually-converting fermions and bosons, nB(T ) may be nonvanishing on either

side of T = Tc, reflecting the existence above Tc of incoherent and below Tc of co-

herent equilibrium pair densities. The temperature and coupling dependent number

density nB(T ) of bosonic CPs is proportional24 to the difference EF − µ(T ) which

plays the role of an order parameter in this description. The position of µ(T ) with

respect to EF determines the phase the attractively-interacting fermions reside in,

viz., it consists of single fermions only for all EF < µ(T ) while EF = µ(T ) provides

the condition defining T ∗ below which the first pairs appear. On the other hand,

below T ∗ the relation EF > µ(T ) holds. That is, for all T < T ∗ the attractively-

interacting fermion gas becomes a binary mixture of interacting fermions and bosons

mutually converting into one another. Further decreasing T from T ∗ to Tc leads to

the critical µ at which EF −µ and therefore nB become sufficiently appreciable for

Bose–Einstein condensation (BEC) to occur.

It should also be noted that within (1) defining the characteristic T ∗ > Tc was

possible owing solely to the assumption on two-fermion states with a total energy

≥ 2EF . This new ingredient in the BF model is discussed in Ref. 25 where it

was shown that introducing a net attractive interaction between electrons in the

gas of electrons leads to the formation a new type of lower-energy mixture state

with bosonic excitations above the Fermi sea of unpaired electrons. This contrasts

sharply from BCS theory which is based on CPs with energy ≤ 2EF . As shown

in the Appendix, the question of two-fermion states with a total energy ≥ 2EF as

raised in Refs. 26–29 is resolved, already in terms of the familiar Cooper eigenvalue

equation30 but with a new (scarcely-known “improper” positive-energy) solution.

The relation between a Cooper-equation eigenvalue energy ≥ 2EF and a BF model

was also discussed in Ref. 25.

3. Single-Particle Spectrum in the BF Mixture

Whatever distribution of free carriers occurs in a superconductor can be addressed

by starting from nk,σ ≡ 〈a+k,σak,σ〉. These c-numbers nk,σ are then obtained,

e.g., from an infinite chain of equations for two-time retarded GF 〈〈A(t)|B(t′)〉〉 as
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defined in Ref. 31 Eq. (2.1b) for dynamical operators akσ(t) and a+k′σ(t
′) at times

t and t′ in the Heisenberg representation. If A and B are any two operators, the

Fourier transform 〈〈A|B〉〉ω of 〈〈A(t)|B(t′)〉〉 satisfies the infinite chain of equations

(see, e.g., Eq. (A.2) in Ref. 24).

~ω〈〈A|B〉〉ω = 〈[A,B]η〉H + 〈〈[A,H]−|B〉〉ω , (6)

where square brackets [A,B]η ≡ AB + ηBA denote the commutator (η = −1) or

anticommutator (η = +1) of operators A and B. Choosing B ≡ a+k′↑ and η = +1

we put in (6) first A ≡ ak↑ and then A ≡ a+
k↓
. This gives couple of equations which

relates the first-order GFs 〈〈ak↑|a+k′↑〉〉ω and 〈〈a+k↓|a+k′↑〉〉ω on the left-hand side with

higher-order GFs on the right-hand side.

In analogy with the pure Bose gas where the emergence below a critical Tc

of nonzero 〈b0〉 and 〈b+0 〉 signals the appearance of superfluidity, here we ex-

pect nonzero 〈bK〉 and 〈b+K〉 to presage the BF mixture state that emerges in an

attractively-interacting fermion gas. Thus, we put:

〈〈bKa+−k+K↓|a+k′↑〉〉 = 〈bK〉〈〈a+−k+K↓|a+k′↑〉〉+ 〈〈(bK − 〈bK〉)a+−k+K↓|a+k′↑〉〉 (7)

and retain only the term proportional to 〈bK〉. Contributions beyond (7) con-

taining the difference b+K − 〈b+K〉 are neglected.24,32 Higher-order GFs, like

as 〈〈a+−k+q↓a−p+q/2↓ap+q/2↑|a+k′↑〉〉ω on the right-hand side of equations for

〈〈ak↑|a+k′↑〉〉ω and 〈〈a+k↓|a+k′↑〉〉ω are cast as a linear combination of the first-order

GFs and of a so-called irreducible piece which by definition cannot be reduced to

lower order GFs. Ignoring all terms leading to the violation of the translational

symmetry and to the magnetic ordering and by use of an exact equality:

L−d/2
∑

q

φq〈aq+Q/2↑a−q+Q/2↓〉H = −f−1ΩQ〈bQ〉H (8)

and the relation

∑

q,q′

〈

b+q
Ld/2

〉

H

〈

bq′

Ld/2

〉

H

= L−d
∑

q,q′

〈b+q bq′〉H ≃ L−d
∑

q

〈b+q bq〉H , (9)

which holds only for particles obeying Bose statistics in the thermodynamic limit,

long calculations the details of which are given in Ref. 19, we reach at the system

of linear equations for the first order GFs of view:

(~ω − ξk)〈〈ak↑|a+k′↑〉〉+ Sk〈〈a+k↓|a+k′↑〉〉 = δkk′ ,

S∗
k〈〈ak↑|a+k′↑〉〉+ (~ω + ξk)〈〈a+k↓|a+k′↑〉〉 = 0 ,

(10)

where we note that ξk = ξ−k and define Sk ≡ [fφk − (U0Ω0/f)]
∑

q〈bq/Ld/2〉. In
(8) ΩQ is the boson energy EQ renormalized due to the BF interaction and the

average 〈· · ·〉H is performed over the Hamiltonian (1). Equations (10) immediately

give:

〈〈ak↑|a+k′↑〉〉ω =
~ω + ξk

(~ω)2 − E2
k

δkk′ , (11)
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〈〈a+−k↓|a+k′↑〉〉ω = −[fφk − (U0Ω0/f)]
δkk′

(~ω)2 − E2
k

∑

q

〈

b+q
Ld/2

〉

H

. (12)

Poles of the GFs (11) and (12) occur when:

Ek =
√

(ǫk − µ)2 + E2
gk , (13)

which defines the single-fermion spectrum in the BF mixture phase. The spectrum

in the normal phase now appears gapped with the generalized gap:

Egk(λ, T ) ≡ f

(

φk − Ω0

2λ~ωD
ν

)

√

nB(λ, T ) , (14)

where nB(λ, T ) is the total number density of electron pairs. This generalizes the

principal result Eq. (21) of Ref. 32, namely:

Eg(λ, T ) ≡ f
√

nB(λ, T ) . (15)

Recall that the BF coupling parameter f in (14) and (15) was identified17,20 with

the net attractive interelectron BCS interaction strength V through the relation

f =
√
2~ωDV so as to recover the BCS gap equation as a special case21 of the

ternary BF model mentioned earlier. Here, we introduce the dimensionless parame-

ters λ ≡ N(0)V and, in (14) ν ≡ N(0)U0, with N(0) the electronic density of states

(DOS) for each spin at the Fermi surface. For conventional superconductors, the

sign of the order parameter Egk(λ, T ) remains positive on the entire Fermi surface,

whereas (14) may change sign. If the sign change takes place on a single connected

Fermi surface, continuity requires Egk(λ, T ) to vanish where the sign reversal oc-

curs.33 Note that Egk(λ, T ) is a positively defined gap only for points k of the

momentum space where f(φk − (Ω0/2λ~ωD)ν) > 0 is satisfied. Otherwise, we put

Egk(λ, T ) ≡ 0 assuming that due to the Coulomb repulsion for the directions in the

k space along which it happens that f(φk− (Ω0/2λ~ωD)ν) ≤ 0 so that pairing does

not occur. The expression (14) contains an important new physical result, namely,

that the pair-breaking ability of the Coulomb repulsion depends on the quantity

Ω0/~ωD describing the degree of separation between boson and fermion spectra.

Most affected by the Coulomb repulsion are those pairs that are well separated in

energy from the single-fermion continuum.19

Knowing the two-time GF 〈〈ak↑|a+k′↑〉〉ω and 〈〈a+−k↓|a+k′↑〉〉ω one can find expres-

sions for the corresponding average values 〈〈a+k′↑ak↑〉〉H and 〈〈a+k′↑a
+
−k↓〉〉H from the

relation31:

〈A(t)B(t′)〉H =
1

2π

∫ ∞

−∞

dωeiω(t−t′)JAB(ω) ,

where the so-called spectral density JAB(ω) is in turn determined from:

〈〈A|B〉〉ω+iε − 〈〈A|B〉〉ω−iε = −i(e~ω/kBT − 1)JBA(ω) .

After some algebra one arrives at the expression:

〈a+
kσakσ〉H ≡ nkσ =

1

2

[

1− ξk
Ek

tanh

(

Ek

2kBT

)]

, (16)
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which defines the distribution over the states k of free carriers which arise as intrin-

sic excitations of a system of paired fermions. To get (16) we rewrite the right-hand

side of (11) as:

~ω + ξk
2Ek

(

1

~ω − Ek

− 1

~ω + Ek

)

(17)

and apply the operator identity

1

x± iε
=

1

x
∓ iδ(x) (18)

to find the spectral density Ja+

k↑
ak↑

(ω). For gapless fermions, i.e., when Ek ≡ ξk,

(16) becomes familiar occupation numbers,

nkσ =
1

2

[

1− tanh

(

ξk − EF

2kBT

)]

(19)

characteristic for the Fermi–Dirac distribution of interactionless fermions. However,

if Ek is gapped then (16) contrasts to the distribution of “normal” fermions. Namely,

because of the rapid decrease of x−1 tanhx as x increases in (16), the occupation

of high-energy single-fermionic states Ek appears denser than the occupation of

states with lower Ek. In fact, (16) reflects the occupation-number reduction of single-

fermionic states. Such a reduction occurs much more effectively if Ek is small. Some

of the fermions now appear involved into paired states. The majority of single-

fermions in states close to the Fermi energy pair up and thus lead to a decrease in

nkσ, explaining the behavior foreseen by (16).

4. Renormalized Boson Energies

Important quantities are the average number densities

nBQ =
1

eΩQ/kBT − 1
(20)

of bosonic CPs at a given two-fermion state Q, where ΩQ are energies of those

states. However, ΩQ in (20) are not the energies EQ of “bare bosons” which appear

in (2). Now bare bosons appear as “dressed” due to their interaction with fermions

so that their energy EQ becomes a λ- and T -dependent ΩQ. The total number-

density of composite bosons at any T is then just:

nB ≡ L−d
∑

Q

nBQ . (21)

Variation in T and/or in λ changes nBQ and thus nB which are functions of ΩQ.

This precise interpretation of ΩQ thus defines the peculiarities of the BF system,

in particular, the onset temperature T ∗ of boson formation and the BEC Tc. The

condition EF = µ yields the T ∗ below which a transition occurs from normal state

with no composite bosons to one with such bosons. At Tc a singularity occurs in the

total number density of bosons. This happens as boson energies are softened, i.e., as
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ΩQ → 0. In an isotropic model described by (1) without an explicit Coulombic term,

an implicit equation to determine ΩQ was derived in Ref. 24 (see, also Ref. 19),

namely:

ΩQ = EQ + f2L−d
∑

k

1

ΩQ − 2ξk

ξk
Ek

tanh(Ek/2kBT ) . (22)

with

Ek ≡
√

ξ2k + 2λ(~ωD)(EF − µ) . (23)

Here EQ are energies of initial interactionless bosons measured from twice the

fermionic chemical potential µ. An expression for the renormalized ΩQ in a BF

mixture with a spatially-uniform Coulomb interaction of strength U0 ≥ 0 between

fermions will be reported elsewhere. To analyze (14) and (20), and to get a quali-

tative feel of boson formation in establishing electronic properties, we restrict our-

selves to (22).

5. Discussion

Figure 1 shows Ω0(λ, T )/EF for several fixed values of (EF − µ)/EF (which de-

termines the total boson number density nB(λ, T ) Refs. 19 and 24) as a function

of T/TF . The dimensionless interaction parameters λ and ~ωD/EF are chosen to

be respectively 0.7 and 0.2. By applying Eq. (37) of Ref. 24 for 2D supercon-

ductors, this particular choice of λ and ~ωD/EF yields for the BEC temperature

Fig. 1. Dimensionless remormalized bosonic CP energy Ω0(λ, T )/EF as function of T/TF for
several fixed fractional number densities nB(λ, T )/N(EF )EF = (EF − µ)/EF of bosons. Figure
schematically shows how non-temperature-dependent “bare” bosonic CP energies EK in (2) are
renormalized by “switching-on” the BF vertex interaction. However, the position of E0 measured
from the total energy 2EF of two interactionless fermions that make up a composite CP boson is
not shown. Defined in Ref.24 as E0 = 2[EF + ~ωD/ sinh(1/λ)], it is a coupling-dependent energy,
larger than Ω0(λ, T ) over the whole range of temperatures T ≤ T ∗. Here, λ and ~ωD/EF are
chosen respectively to be 0.7 and 0.2. Black arrowhead marks associated BEC critical temperature.
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the value Tc/TF = 0.03. According to Eq. (36) from this latter reference, the de-

viation of µ(λ, T ) from EF at Tc (in EF units) necessary for BEC to occur is

(EF − µ)/EF = 0.06. Specifically, BEC does not occur until the fractional boson

density, Eq. (20) in Ref. 24,

nB(λ, T )/N(EF )EF = (EF − µ)/EF , (24)

(the ratio of total boson number to the number of available states) reaches the crit-

ical value 0.06. Clearly, Ω0 is positive at higher T . However, for any fixed nB(λ, T )

the boson energy Ω0(λ, T ) decreases monotonically upon cooling and passes through

zero at a value of T/TF determined by the value of nB(λ, T ) alone. Physically, the

composite-boson concentration nB(λ, T ) in a BF mixture increases at lower values

of T , as expected. From Fig. 1, for larger nB(λ, T ) the temperature T at which

Ω0(λ, T ) changes sign (indicated by dots in figure) and shifts to lower T . How-

ever, BEC cannot occur until nB(λ, T ) is at least as large as the critical value

nB(λ, Tc). For the parameters chosen in Fig. 1, BEC does not occur whenever

nB(λ, T )/N(EF )EF < 0.06.

In a binary mixture of mutually-converting fermions and bosons nB(λ, T ) is not

fixed as in Fig. 1. But, since upon cooling thermal dissociations of pairs are reduced,

the number of fermions bound into bosons increases and this occurs in accordance

with (5). The number nB(λ, T ) rises and precisely at Tc it reaches the critical value

nB(λ, Tc) required for BEC. Owing to this continuous increase in nB(λ, T ), the

value of Ω0(λ, T ) does not vanish until T equals Tc, or

lim
T→Tc

Ω0(T ) = 0 . (25)

Thus, from Fig. 1 one concludes that in a BF mixture with varying boson num-

ber density nB(λ, T ) the temperature-dependent quantity Ω0(λ, T ) changes sign

precisely at the Tc associated with BEC (black arrowhead at Tc/TF = 0.03 in fig-

ure). It should be noted that the temperature-dependent behavior of boson energies

found here relies on (22) and is thus associated with boson formation/disintegration

processes alone.

At the finite temperatures, there are two types of free fermionic charge carriers

in the system mutually converting into each other: first, pairable but still unpaired

fermions with energies ξk ≡ ǫk − µ distributed continuously near the Fermi level,

and second, single-electron excitations of the condensate of paired fermions (i.e., ex-

citations of the bosonic subsystem sometimes called “bogolons”) whose energy spec-

trum is gapped with a Bogoliubov spectrum (13). In thermodynamic equilibrium

we assume that these two different kinds of fermions are distributed in energy as

usual, according to

nkσ =
1

2

[

1− tanh

(

Ek

2kBT

)]

, (26)

where Ek is ξk for free and
√

ξ2k + E2
gk for gapped fermions (the bogolons). The

generalized gap Egk in Ek, (13), differs from zero only in specific directions of the
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2D vector k. Furthermore, for any deviation of k from kF one expects that Egk

approaches rapidly to zero.

From (14) the behavior of Egk as a function of the direction of the wavevector

k is expressed in terms of dimensionless anisotropy factors φk whose explicit ex-

pression requires a detailed microscopic treatment. However, to extract qualitative

features of the effect of actual anisotropic interactions, one may approximate φk

by modeling it in line with common symmetry requirements. Specifically, we shall

assume that as k changes the function φk varies in accordance with the symmetry

of a 2D square Brillouin zone. It can thus be fitted as:

φα
k =

1

1− α/2
(1− α sin2 2ϕ) (27)

with the prefactor chosen so as to normalize to unity the mean value of φα
k over the

azimuthal angle ϕ determining the direction in k-space of the 2D vector k. Here

0 ≤ α ≤ 1 in general and α = 0 for isotropic superconductors. Varying α from 0 to 1

spans all ranges from weak to very strong anisotropy. Note that φk (27) modulates

the angular dependence of the anisotropic BF interaction strength fk ≡ fφk which

is assumed to be distributed within the interval f −∆f ≤ fk ≤ f + ∆f of width

2∆f around its average value f in (1). To illustrate how φα
k varies with the direction

of k, i.e., with the azimuthal angle ϕ, in Fig. 2 it is shown for values α = 0.25, 0.35

and 0.45. In our reference calculation we use α = 0.35 (full curve in figure).

From (14) Egk(λ, T ) is largest along the directions of maximum φk. But for

any fixed λ and T as the vector k deviates from the axes along which the gap is

maximum, it decreases and turns to zero at points where φk becomes equal or less

Fig. 2. Anisotropy factors φα

k
defined in (27) as function of direction of the 2D vector k for

three different values of α = 0.25, 0.35 and 0.45. Variation of the BF interaction strength fk
is modulated in terms of factors φα

k
distributed within an interval of width 2∆φα

k
around their

average value depicted as the dotted circle of radius 1. In the present work we used α = 0.35 (full
curve) in the calculation of Fig. 3.
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than the contribution coming from the termR ≡ (Ω0/2λ~ωD)ν in (14). This λ, ~ωD,

ν ≡ N(0)U0 and T dependent, dimensionless parameter R has been introduced in

Ref. 19 where it was shown that due to variation of Ω0 on T , the magnitude of

R and therefore the sizes of the regions within which quasiparticles exhibit either

gapped
√

ξ2
k
+ E2

gk or a normal ξk behavior, are not constant but rather change

with temperature.

Figure 3 shows occupation numbers nkσ of states with least energy ξk = 0

above µ as a function of the azimuthal angle ϕ determining the direction in k-

space of the 2D vector k for several fixed values of reduced temperature t = T/TF .

Comparison is made between nkσs as temperature is reduced from T ∗ towards Tc.

To get Fig. 3, as in the case of the full curve in Fig. 1, we have used λ = 0.7,

~ωD/EF = 0.2 and the fractional boson density (24) is assumed fixed at 0.04.

Regarding the dimensionless Coulomb parameter in Fig. 3 we use ν = 1.1. As

readily seen from (26), for temperatures T ≥ T ∗, nkσ as a function of ξk ≡ ǫk − µ

behaves as in normal metals. Namely, it does not depend on the direction of k

and as the energy ξk increases, nkσ drops from 1 to 0 remaining exactly equal

to 1/2 for states with least energy. And the width of the energy interval around

EF within which occupation numbers vary from 1 to 0 is ∼ T/TF . However, at

temperatures below T ∗, as seen from Fig. 3, this happens only for disconnected

segments of k wherein the energy gap (14) associated with CP formation vanishes.

These segments, whose extension is determined by φk ≤ (Ω0/2λ~ωD)ν, trace out

(a) (b)

(c) (d)

Fig. 3. Occupation numbers nkσ of the least-energy state measured from µ as function of di-
rection of the 2D vector k. Comparison is made between nkσs as the temperature (in TF -units)
is reduced from T ∗ towards to Tc [graphs from Fig. 3(a) to Fig. 3(d)]. Fermi arcs are depicted
as segments of azimuthal angle ϕ between two strokes along nkσ versus ϕ curves. The reduction
in size of Fermi arcs (i.e., extension of segments between consecutive strokes) are clearly seen as

T is reduced from T ∗ towards to Tc. As the BEC is approached, these consecutive strokes join
together into a single stroke as, Fig. 3(d).
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along the Fermi surface loci called “Fermi arcs”.1 The energy gap (14) along such

arcs of the 2D Fermi surface thus disappears. On the other hand, outside these Fermi

arcs, i.e., within regions wherein the opposite condition φk ≥ (Ω0/2λ~ωD)ν holds,

there are no singly-occupied-fermionic states immediately near the energy equal

to µ. Dispersion in such regions is analogous to a Bogoliubov dispersion relation

but with the generalized gap (14). Single-fermionic states along such directions are

acceptable only for high-energy fermions with ξk ≥ Egk(λ, T ), i.e., for fermions

appearing as a result of pair disintegrations in the subsystem of incoherent bosons.

Finite, but significantly reduced nkσ seen outside Fermi arcs in Fig. 3 arise from

“bogolons” whose energy (least energy ξk = 0) is higher by Egk than energy µ

around which the fermions from the Fermi arcs are distributed. As a result of

the difference in energy scales, where Ek in (26) is either ξk or
√

ξ2k + E2
gk, the

occupation of states with wavenumber k directed along various segments appear

significantly different.

From Fig. 3, a difference begins to appear on cooling in the distribution of single-

fermion states over varying angles ϕ. First, small “islands” of reduced nkσ emerge

in the directions of maximum φk. Further lowering T is followed by shortening

Fermi arcs, depicted in Fig. 3 as small arcs between two short strokes on nkσ-vs-

ϕ-curves in going from (a) to (b) · · · to (d). Below the temperature at which the

Coulomb factor R ≡ (Ω0/2λ~ωD)ν passes through the minimum of the anisotropy

factor φk the areas with normal distribution of fermions, i.e., Fermi arcs, disappear

entirely and the attractively-interacting Fermi gas becomes an anisotropic mixture

of coexisting bosons and fermions mutually converting into each other.

The idea of the presence of various charge-carrier groups in HTSCs has been ex-

tensively explored in the literature (see, e.g., Ref. 34). In particular, a phenomeno-

logical model with Fermi lines on a 2D square-like Fermi surface and regions of

momentum space with bosons, originating from fermions paired into a d-wave sym-

metry state, was proposed in Ref. 35. However, in most studies such as this latter

reference, temperature, coupling and the boson-number-density dependences of bo-

son energies which are so important, were missed. The presence of disconnected

Fermi arcs in HTSC films is also well-established experimentally.8–10,36

Lastly, we note that in the newly discovered iron-based superconductors such as

BaFe2(As0.7P0.3) Zhang et al. report37 the discovery of several disconnected Fermi

surfaces and ring-like gap nodes on the Fermi surface. These properties are fully

consistent with the results of the present paper.

6. Conclusions

Introducing a uniform Coulomb interaction in an anisotropic BF binary gas mixture

model reveals, in the pseudogap phase, along with the BF mixture regions (or

BF regions where the quasiparticles exhibit a Bogoliubov-dispersion behavior) also

the so-called Fermi arcs alongside of which a normal (i.e., with no pseudogap)

distribution of free fermions prevails. On cooling, the extent of these Fermi arcs
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diminishes, but BF regions grow and merge into one another at temperatures when

the Fermi arcs disappear altogether. This occurs because of a softening of the boson

energies as one approaches the BEC at lower T . Explanation for the presence of

Fermi arcs with the temperature-dependent extension becomes possible owing to the

softening of boson energies as one decreases T . Indeed, if (25) did not occur, then the

extension of the Fermi arcs would hardly decrease on lowering T . The present work

predicts, even in phonon-mediated dynamics, the presence in the energy-momentum

dispersion relation of HTSCs of a line of nodal points, i.e., lines in momentum space

along which the generalized gap (14) vanishes, and hence, gives rise to Fermi arcs

as reported in Refs. 8, 9 and 36.
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Appendix A.

It is well-known that the Cooper equation30 for the energy eigenvalue ε0

1 =
λ

2

∫ EF+~ωD

EF

dǫ

ǫ− EF − ε0/2
(A.1)

straightforwardly lead to the familiar negative-energy solution of zero-CMM K = 0

CPs

ε−0 = − 2~ωD

exp(2/λ)− 1
−→
λ→0

−2~ωD exp(−2/λ) < 0 . (A.2)

Being the energy of two electrons relative to the energy 2EF of a free two-electron

state (A.2) implies a bound state of two electrons. This negative-energy solution ε−0
played a key role in understanding the superconducting state and leads to the BCS

theory16 of SCs. Note that in its original form (A.1) is valid only for negative ε0
since if ε0 ≥ 0 but lying within the interval 0 < ε0 < 2~ωD the integrand in (A.1)

has a singularity.

It is commonly believed that for ε0 ≥ 0 the two-electron states are simply

scattering states.38 However, as reported in Refs. 26–29 two-fermion-states with

a total energy ≥ 2EF raised the question of whether there are two-particle so-

lutions with an energy embedded in the continuum of single fermionic states of

the attractively-interacting gas of electrons. If so, these might be suggestive of a

resonant-like quasi-bound state in the continuum. Here we address this question

by showing that if one isolates a simple pole at ǫ = EF + ε0/2 ≡ ǫ0 in (A.1) by

shifting it onto the complex plane, then such a solution is already present in the

Cooper problem. One can substitute the integral on the right-hand side of (A.1) by

its principal value to give:

2/λ =
1

2
lim
η→0

∫ EF+~ωD

EF

dǫ

(

1

ǫ− ǫ0 − iη
+

1

ǫ − ǫ0 + iη

)
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=
1

2
lim
η→0

∫ EF+~ωD

EF

dǫ
2(ǫ− ǫ0)

(ǫ − ǫ0)2 + η2

=
1

2
lim
η→0

ln

(

(EF + ~ωD − ǫ0)
2 + η2

(EF − ǫ0)2 + η2

)

=
1

2
lim
η→0

ln

(

[EF + ~ωD − (EF + ε0/2)]
2 + η2

[EF − (EF + ε0/2)]2 + η2

)

= ln

(

2~ωD − ε0
ε0

)

.

This immediately leads to the scarcely-known “improper” positive-energy solution

ε+0 = +
2~ωD

exp(2/λ) + 1
−→
λ→0

+2~ωD exp(−2/λ) > 0 (A.3)

reported in Ref. 25 and based exclusively on the elementary fact that
∫

x−1dx =

ln |x| and not ln x as commonly assumed.

It should be noted that the shift of a singularity in (A.1) onto complex plane, by

substituting ǫ0 → ǫ0+iη in (A.1), is physically equivalent to introducing a damping

η of two-particle states, ignored entirely in obtaining (A.1). Once raised above the

Fermi sea, these positive-energy CPs readily dissipate into two free fermions.
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